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Abstract 

Background: Genome-wide association studies have identified genetic variants associated with the risk of brain-
related diseases, such as neurological and psychiatric disorders, while the causal variants and the specific vulnerable 
cell types are often needed to be studied. Many disease-associated genes are expressed in multiple cell types of 
human brains, while the pathologic variants affect primarily specific cell types. We hypothesize a model in which what 
determines the manifestation of a disease in a cell type is the presence of disease module comprised of disease-asso-
ciated genes, instead of individual genes. Therefore, it is essential to identify the presence/absence of disease gene 
modules in cells.

Methods: To characterize the cell type-specificity of brain-related diseases, we construct human brain cell type-
specific gene interaction networks integrating human brain nucleus gene expression data with a referenced tissue-
specific gene interaction network. Then from the cell type-specific gene interaction networks, we identify significant 
cell type-specific disease gene modules by performing statistical tests.

Results: Between neurons and glia cells, the constructed cell type-specific gene networks and their gene functions 
are distinct. Then we identify cell type-specific disease gene modules associated with autism spectrum disorder and 
find that different gene modules are formed and distinct gene functions may be dysregulated in different cells. We 
also study the similarity and dissimilarity in cell type-specific disease gene modules among autism spectrum disor-
der, schizophrenia and bipolar disorder. The functions of neurons-specific disease gene modules are associated with 
synapse for all three diseases, while those in glia cells are different. To facilitate the use of our method, we develop an 
R package, CtsDGM, for the identification of cell type-specific disease gene modules.

Conclusions: The results support our hypothesis that a disease manifests itself in a cell type through forming a statis-
tically significant disease gene module. The identification of cell type-specific disease gene modules can promote the 
development of more targeted biomarkers and treatments for the disease. Our method can be applied for depicting 
the cell type heterogeneity of a given disease, and also for studying the similarity and dissimilarity between different 
disorders, providing new insights into the molecular mechanisms underlying the pathogenesis and progression of 
diseases.
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Background
In the past years, multiple tissue-specific referenced 
interactomes or gene interaction networks have been 
constructed [1–3], which promote to reveal the poten-
tial molecular mechanisms underlying human diseases. 
Studies have shown although many disease-associated 
genes are expressed in multiple tissues, the pathologic 
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variants often affect primarily specific tissues [4–6]. It 
was hypothesized that what determines the manifesta-
tion of a disease in a tissue is the presence of disease gene 
module instead of individual genes [7]. A disease gene 
module is defined as a gene module comprised of dis-
ease-associated genes. Therefore, in addition to identify-
ing individual disease-associated genes, it is also essential 
to identify the presence/absence of disease gene modules 
in tissues.

The advance of single-cell RNA sequencing (scRNA-
seq) and single-nucleus RNA sequencing (snRNA-seq) 
have promoted the survey of cell atlases in heterogene-
ous tissues, such as human brains. The brain is a highly 
complex organ consisting of highly interconnected cells 
from different cell types. Although genome-wide asso-
ciation studies have identified genetic variants associated 
with the risk of brain-related diseases, such as neurologi-
cal and psychiatric disorders, the causal variants and the 
specific cell types in which the disease-risk variants may 
be active are often needed to be studied. The transcrip-
tional mechanisms controlling the developmental and 
functional properties of cell types in tissues from healthy 
and diseased individuals remain elusive [8]. Diverse cell 
types may be vulnerable for different brain-related dis-
orders [9–13]. To identify the primary pathological cell 
types for a particular disease, especially for which the 
single-cell/nucleus RNA-seq data of diseased samples is 
not available, one kind of methods is to detect the cell 
type enrichments in susceptibility genes [13]. However, 
many disease-associated genes are expressed in multiple 
cell types, some of which do not show pathophysiological 
manifestations of the disease or of any functional abnor-
mality. Therefore, here we further hypothesize that the 
presence of disease gene modules instead of individual 
genes determines the manifestation of a disease in cells 
from different cell types.

To characterize the cell type specificity of diseases in 
human brains, we first construct human brain cell type-
specific gene interaction networks based on human brain 
nucleus gene expression data [14] and a referenced tis-
sue-specific gene interaction network [1]. Then from the 
cell type-specific gene interaction networks, we identify 
candidate cell type-specific disease gene modules. By 
performing statistical tests, we assess the significance 
of the cell type-specific disease gene modules. Our ana-
lytical method can be applied for depicting the cell type 
heterogeneity of a given disease, and also for studying the 
similarity and dissimilarity between different diseases.

Materials and methods
Single nucleus gene expression data
We used the human brain nucleus gene expression data 
derived from middle temporal gyrus (MTG) of human 

cortex [14], which includes 15,928 nuclei originally sam-
pled from eight human donor brains, of which 15,206 
were from postmortem donors with no known neuropsy-
chiatric or neurological conditions and 722 were from 
distal and normal tissues of neurosurgical donors. We 
downloaded the matrices of exon and intron read counts 
(the version of 2018) from Allen Institute for Brain Sci-
ence and added them together to obtain gene expression 
data. Then we preprocessed the data with R packages of 
scater [15] and scran [16], including the quality control 
of nuclei and genes, and removing a minority of nuclei 
assigned to different cell cycle phases by the function of 
cyclone in scran. Nuclear and mitochondrial genes down-
loaded from Human MitoCarta2.0 [17] were excluded 
and protein-coding genes were retained. After remov-
ing the nuclei not assigned to any specific cell types, 
we obtained the final data matrix, which contains the 
expression level of 17,120 protein-coding genes in 12,246 
nuclei, including 8994, 2762, 227, 3, 15, 112, and 133 
nuclei from glutamatergic neuron (Gluta), GABAergic 
interneuron (GABA), astrocyte (Ast), endothelial (End), 
microglia (Mic), oligodendrocyte (Oli), and oligodendro-
cyte precursor cell (OPC), respectively.

Tissue‑specific gene interaction network
In order to depict the cell type specificity of genes in a 
tissue, we used the tissue-specific gene interaction net-
work published in [1] as a referenced network. Because 
the human brain nucleus gene expression data we used 
was derived from MTG, a part of temporal lobe, we 
downloaded the temporal lobe-specific gene interaction 
network as a reference from the website of https ://hb.flati 
ronin stitu te.org/downl oad. The network only includ-
ing the edges with evidence supporting a tissue-specific 
functional interaction (denoted as top edges) was used 
for the analyses.

Construction of cell type‑specific gene network
To identify cell type-specific gene interaction networks, 
we first calculated the counts per million (CPM) using 
the R package of edgeR [18]. Then we calculated cell 
type-specificity of genes, using a similar method in a 
study [19], which is defined as the minimum fold change 
in expression between the cell type of interest and each of 
the other cells. The specificity of gene g in the interested 
cell type indexed by c is calculated as:

where each of k cell types is denoted by a numerical index 
from the set (1, 2, . . . , k) , r denotes one cell type from the 
reference cell set, Nc and Nr are the numbers of nuclei 

specificityg ,c = min
r∈[1,2,...,k]\c

∑Nc
i=1 exp

(

i, g , c
)

/Nc
∑Nr

j=1 exp
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)

/Nr
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classified into cell types c and r respectively, exp ( i, g , c ) 
denotes the expression of gene g in nucleus i from cell 
type c. Next, to compare the cell type-specificity of a gene 
g in a considered cell type c with those in other cell types, 
we calculated cell type score by comparing the cell type-
specificity with the median and interquartile range (IQR) 
of its specificity across all cell types. The score of gene g 
in the interested cell type c is calculated as:

Then we extracted the genes with scoreg ,c greater than a 
threshold in the considered cell type and the interactions 
between these genes from the referenced tissue-specific 
gene network, which is defined as cell type-specific gene 
interaction network. The threshold is recommended 
to be set as a positive value, which makes the cell type-
specificity values of retained genes are larger than their 
medians across cell types and the retained genes would 
be more likely specific to the cell type.

Disease‑associated gene lists
To identify cell type-specific disease gene modules, 
we used gene lists associated with three kinds of neu-
ropsychiatry diseases, autism spectrum disorder (ASD), 
schizophrenia (SCZ) and bipolar disorder (BPD). A total 
of 913 ASD candidate genes from Simons Foundation 
Autism Research Initiative (SFARI) were downloaded, 
which include 119, 144, 219, and 472 genes from catego-
ries S (syndromic), 1 (high confidence), 2 (strong candi-
date), and 3 (suggestive evidence). We downloaded genes 
associated with SCZ from SZDB [20], a database for 
schizophrenia genetic research, where these genes were 
identified by different kinds of studies including conver-
gent functional genomics, CNV, differentially expres-
sion, GWAS, genetic linkage and association studies, 
Sherlock integrative analysis, and Pascal gene-based test. 
The genes supported by more than two kinds of studies, 

scoreg ,c =
specificityg ,c −median

(

specificityg

)

IQR
(

specificityg

)

a total of 1419 genes, are used as SCZ-associated genes. 
We also downloaded 599 BPD candidate genes from 
BDgene database [21], each of which is positively sup-
ported by at least one kinds of studies.

Identification of cell type‑specific disease gene module
To identify cell type-specific gene module associated 
with a disease, we mapped the disease-associated genes 
onto the constructed cell type-specific gene interaction 
network, where the connected components among dis-
ease-associated genes were considered as candidate cell 
type-specific disease gene modules. We calculated the 
total number of disease-associated genes in the cell type-
specific gene network (denoted as T), and the size of can-
didate disease gene module (denoted as Sobs) which is the 
number of genes contained in the disease gene module. 
To access the significance of a candidate cell type-specific 
disease gene module, we performed permutation tests 
assuming that disease genes do not preferentially interact 
in the cell type-specific gene interaction network. With 
this null hypothesis, we selected T genes randomly in the 
cell type-specific gene interaction network and calculated 
the size of the largest connected component among these 
T genes, denoted as Srand. The procedure was repeated for 
1000 times, and the P-value of permutations was deter-
mined by n/1000, where n is the number of largest con-
nected components whose Srand were greater than Sobs in 
the permutation tests. The correction for multiple test-
ing was performed by controlling the false discovery rate 
(FDR) with the Benjamini–Hochberg method [22]. The 
candidate cell type-specific disease gene modules whose 
FDR-adjusted P-values < 0.1 are reported as significant.

Results
The analytical workflow can be seen in Fig.  1. To char-
acterize the cell type-specificity of disease gene module, 
we first constructed cell type-specific gene interaction 
networks based on a referenced tissue-specific gene net-
work. Specifically, for each cell type, we first calculated 

b Cell type -specific gene network 
Node size is proportional to score of each gene.

d Cell type-specific disease gene module 
The significant connected component.

Calculate cell type 
score of genes Map disease genes

c Cell type-specific gene network 
Colored nodes are disease genes. 

Identify connected component 
among disease genes

a Referenced gene network 

Score > threshold Assess significance

Fig. 1 The analytical workflow. From a the referenced gene network, b a cell type-specific gene network is compiled by extracting genes with 
cell type scores greater than a threshold and their interactions. Then c disease genes are mapped onto the cell type-specific network and d the 
statistically significant cell type-specific disease gene module is identified by permutation tests
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the cell type specificity of genes and obtained the cell 
type scores of genes (Materials and Methods), and then 
by extracting the genes with cell type scores greater than 
a threshold and their interactions from the referenced tis-
sue-specific gene network (Fig. 1a), we constructed a cell 
type-specific gene interaction network (Fig. 1b). Next, we 
mapped the disease-associated genes onto each cell type-
specific gene network (Fig. 1c) and the connected com-
ponents among disease-associated genes were considered 
as candidate cell type-specific disease gene modules. By 
performing permutation tests (Materials and Methods), 
we identified statistically significant cell type-specific dis-
ease gene modules (Fig. 1d).

Cell type‑specific gene networks
Here we use the human brain nucleus gene expres-
sion data derived from middle temporal gyrus (MTG) 
of human cortex [14] and the temporal lobe-specific 
gene network as a referenced tissue-specific gene net-
work [1] (Materials and Methods). After pre-processing, 
the MTG gene expression data includes 17,120 protein-
coding genes. The temporal lobe-specific gene network 
contains 92,396,363 interactions between 25,825 genes. 
For enhancing reliability, we first filtered out the inter-
actions whose weight values rank the last 20%, then the 
referenced gene network contains 1,289,258 interactions 

between 15,850 genes. After retaining the overlapping 
genes between genes in the referenced gene network 
and our analyzed gene expression data, the referenced 
gene network contained 1,042,968 interactions between 
13,850 genes.

For each cell type, we first calculated the cell type spec-
ificity of genes and then calculated the cell type scores of 
genes. Additional file 1 lists the calculated cell type scores 
of genes whose cell type specificity are not “NA”, which 
are also used for the subsequent analyses. To examine 
the difference of gene scores between cell types, we com-
puted the spearman correlation of gene scores between 
each pair of cell types (Fig.  2a). It can be seen that the 
cell type scores of genes in neurons are obviously distinct 
from those in glia cells, even showing a negative correla-
tion, and there is almost no correlation among glia cells. 
These imply that the calculated cell type specificity of 
genes are different among different cell types.

Next, for each cell type, we compiled a cell type-specific 
gene network by extracting cell type-specific genes (genes 
with cell type scores > 0) and their interactions from the 
referenced tissue-specific gene network. To check the 
overlap of cell type-specific genes between cell types, we 
calculated Jaccard similarity between genes from each 
pair of cell type-specific gene networks (Fig.  2b), which 
also shows the distinction of cell type-specific genes 

a

-log10 (adjusted P-value)

-log10 (adjusted P-value)

G
O

 term
s

c
Gluta Genes: 4395

Edges: 108614

GABA Genes: 6395
Edges: 259746

Ast Genes: 6434
Edges: 274195

Oli Genes: 7407
Edges: 447517

OPC Genes: 6409
Edges: 319120

End Genes: 2956

Edges: 92957

Mic Genes: 6022

Edges: 343738
b

Fig. 2 a The spearman correlation of gene scores between each pair of cell types. b Jaccard similarity between genes from each pair of cell 
type-specific gene networks. c For each cell type-specific gene network, the number of genes and interactions, and the top ten enriched GO terms 
are shown. Each color denotes each cell type
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between neurons and glia cells. At this threshold, on 
average 41.28% of genes were retained in a cell type, rang-
ing from 21.34% for End to 53.48% for Oli; on average 
25.28% of gene interactions were retained in a cell type, 
ranging from 8.91% for End to 42.91% for Oli (Fig.  2c). 
To characterize the gene functions of cell type-specific 
gene networks, we applied gene ontology analysis using 
clusterProfiler [23]. The GO term whose FDR-adjusted 
P-value < 0.1 and number of genes in the term is not less 
than ten was considered as significant (Additional file 2). 
The top ten enriched GO terms are shown for each cell 
type-specific gene network in Fig. 2c. For the two kinds 
of neurons, glutamatergic neuron (Gluta) and GABAer-
gic interneuron (GABA), the cell type-specific gene net-
works are associated with the functioning of synapses, 
such as the functions of glutamatergic synapse, synaptic 
membrane, neuron to neuron synapse, and so on. For the 
glia cells, the enriched GO terms in the cell type-specific 
gene networks include covalent chromatin modification, 
histone modification, proteasomal protein catabolic pro-
cess, mRNA catabolic process, cell-substrate junction, 
focal adhesion, neutrophil mediated immunity, neutro-
phil degranulation, and neutrophil activation. It can be 
seen that different kinds of gene functions are demon-
strated in different cell types, especially between neurons 
and glia cells.

Cell type‑specificity of disease gene modules for a given 
disease
To illustrate how a disease manifests itself in particular 
cell types, we further identified cell type-specific disease 

gene modules. We first applied our analytical workflow 
for autism spectrum disorder (ASD), which is a set of 
neuropsychiatric disorders, characterized by impair-
ments in social interaction and communication, and 
repetitive and restricted behaviors. We downloaded 
ASD-associated genes from SFARI and mapped the ASD 
genes onto each constructed cell type-specific gene net-
work. The connected components among ASD genes 
in the cell type-specific gene network are regarded as 
candidate cell type-specific ASD gene modules. By per-
forming permutation tests for 1000 times, we identified 
statistically significant cell type-specific ASD gene mod-
ules (Additional file 3: Figure S1A). In addition, we used 
stricter thresholds (score > 1 and score > 2) for construct-
ing cell type-specific ASD gene modules (Additional 
file 3: Figure S1B, C). When using a stricter threshold, the 
obtained cell type-specific gene network and the result-
ing disease gene module would be a subset of the ones 
obtained using a less rigid threshold. If one would like to 
prioritize a disease gene module consisting of less genes, 
a stricter threshold should be used. In the rest of the arti-
cle, for a clearer illustration of disease gene modules and 
for locating moderate number of genes, we report the cell 
type-specific ASD gene modules obtained using score 
threshold of one (Additional file 3: Figure S1B). For each 
cell type, Fig. 3A1 shows the sizes of candidate cell type-
specific ASD gene modules, and the sizes of identified 
significant ASD gene modules. It can be seen that only 
the largest ASD gene module could be identified as sig-
nificant. To examine the overlap between each pair of cell 
type-specific ASD gene modules, a Venn plot is shown as 
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C3

Genes: 174
Edges: 377 

Size: 135

Genes: 85
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Size: 65
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Edges: 188

Size: 82

Genes: 212
Edges: 657

Size: 179
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Genes: 114
Edges: 228

Size: 80
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Genes: 107
Edges: 201

Size: 79
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Genes: 72

Edges: 95

Size: 39

Gluta
Genes: 54

Edges: 53

Size: 27

Genes: 47
Edges: 41

Size: 24

Genes: 63

Edges: 67

Size: 29
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Fig. 3 For a ASD, b SCZ and c BPD, the sizes of candidate cell type-specific disease gene modules and the identified significant disease modules 
(marked with *) are shown in A1, B1 and C1. A2, B2 and C2 are Venn diagrams of cell type-specific disease gene modules. A3, B3 and C3 show the 
genes and their interactions in the cell type-specific disease gene modules for Gluta, GABA, Ast and OPC. The numbers of disease-associated genes 
and their edges in the cell type-specific gene network, and the size of identified cell type-specific disease gene module are listed. The genes with 
top five cell type scores are also shown as bar plots
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Fig. 3A2. Different gene modules are formed in different 
cells. In cell types of Gluta, GABA, Ast and OPC, the cell 
type-specific ASD gene modules have less overlap with 
others, and we also plotted the gene modules in Fig. 3A3. 
For each cell type-specific ASD gene module, we per-
formed GO analysis and listed the included genes, their 
cell type scores and SFARI categories in Additional file 4. 
The genes with top five cell type scores in each cell type-
specific ASD gene module are also shown in Additional 
file 5: Figure S2.

Table  1 lists the top five enriched GO terms for each 
cell type-specific ASD gene module. The functions of 
ASD gene modules are different among different cell 
types. For Gluta and GABA, the cell type-specific ASD 
gene modules are obviously associated with the function-
ing of synapses, while its dysregulation has been known 
to be involved in the development of ASD [24]. In brains, 
glutamate and GABA (gamma-aminobutyric acid) are 
major excitatory and inhibitory neurotransmitters, which 
pass messages at synapses from the presynaptic neuron 
to the postsynaptic neuron. For Gluta, gene SATB2 with 
the largest cell type score is of note (Fig. 3A3), and SATB2 
belongs to categories of S and 3 in SFARI. For GABA, the 
cell type score of RELN is significantly larger than those 
of other genes (Fig. 3A3), and RELN belongs to category 
1 in SFARI. Gene RELN encodes an extracellular matrix 
glycoprotein that is mostly synthesized in GABAergic 
interneurons in adulthood [25]. As to SATB2 and RELN, 
their associations with ASD have been shown in previ-
ous studies [26–29]. The Ast-specific ASD gene mod-
ule is related to functions of synapse organization and 
regulation of neuron projection development. Actually, 
astrocytes are integral partners with neurons in regu-
lating synapse formation, development, organization, 
function and elimination [30, 31]. PAX6 and SLC1A2 are 
the top two genes in the Ast-specific ASD gene mod-
ule (Fig.  3A3), and they are both syndromic genes. As 
to End, endothelial cells are involved in many aspects of 
vessel function, including formation of new blood ves-
sels, which is called angiogenesis [32, 33], our identified 
End-specific ASD gene module are associated with reg-
ulations of angiogenesis and vasculature development. 
The gene with largest cell type score in the End-specific 
ASD gene module is USP7 belonging to categories of S 
and 2 in SFARI (Additional file  5: Figure S2). The Mic-
specific ASD gene module is related to the function of 
peptidyl-lysine modification. In Oli, the cell type-specific 
ASD gene module is involved with functions of regula-
tion of cell morphogenesis, regulation of cell morpho-
genesis involved in differentiation, and regulation of 
transmembrane transporter activity. It can be seen that 
different gene modules are formed and different gene 
functions may be affected in different cell types by ASD. 

Our method has been shown to be effective in discover-
ing cell type-specific disease-associated gene expression 
patterns.

As to the methods for identifying cell type-specific dis-
ease-associated gene modules, the most straightforward 
way is using clustering algorithm to first detect gene 
modules from cell type-specific gene interaction net-
work, and then identifying gene modules enriched with 
disease-related genes. Therefore, we also applied Lou-
vain clustering by using R package of igraph [34] to iden-
tify cell type-specific gene modules. Then we detected 
cell type-specific gene modules enriched with SFARI 
ASD genes. We found that in most of cell types, there is 
only one gene module which is enriched with ASD genes 
and contains more than five genes, no matter using score 
threshold of zero or one (Additional file 6: Figure S3A1, 
B1). For these ASD gene-enriched modules, we checked if 
they are significantly overlapping with our identified dis-
ease gene modules. It is found that our disease gene mod-
ule significantly overlaps with the ASD gene-enriched 
module/modules and in most cell types, only overlaps 
with one ASD gene-enriched module (Additional file  6: 
Figure S3A2, B2). Therefore, it has been proven that our 
method is effective and the results are consistent with the 
ones obtained using clustering methods.

The example application of our analytical method to 
ASD supports our hypothesis that a disease manifests 
itself in a cell type through forming a statistically sig-
nificant disease gene module. It is essential to detect and 
compare the cell type-specific disease gene modules for 
studying the cell type heterogeneity of a given disease. 
The identification of cell type-specific disease gene mod-
ules can promote the development of more targeted bio-
markers and treatments for the disease.

Similarity and dissimilarity of cell type‑specific disease 
gene modules between diseases
In addition to characterizing the cell type heterogene-
ity of a given disease, our analytical pipeline can be 
applied to study the similarity and dissimilarity of cell 
type-specific disease gene modules between diseases. 
Schizophrenia (SCZ) and bipolar disorder (BPD) are two 
kinds of neuropsychiatry disorders sharing similar clini-
cal manifestations with ASD, suggesting shared genetic 
influences and common biological mechanisms underly-
ing these disorders. To study the effect of genetic corre-
lation in these disorders and illustrate the similarity and 
difference between disease gene modules in a given cell 
type, we also identified cell type-specific SCZ (Additional 
file 7: Figure S4, Fig. 3b) and BPD (Fig. 3c) gene modules 
using cell type score threshold of one. From Fig. 3B1, C1, 
it also can be seen that only the largest candidate SCZ/
BPD gene module could be identified as significant. 
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Table 1 The top five enriched GO terms for cell type-specific disease gene modules

Cell type ASD SCZ BPD

Ast GO: 0098793 presynapse GO: 0016358 dendrite development GO: 0032922 circadian regulation of gene 
expression

GO: 0050808 synapse organization GO: 0050769 positive regulation of neuro-
genesis

GO: 0007623 circadian rhythm

GO: 0010975 regulation of neuron projection 
development

GO: 0007409 axonogenesis GO: 0048511 rhythmic process

/ GO: 0010975 regulation of neuron projection 
development

GO: 0042752 regulation of circadian rhythm

/ GO: 1901214 regulation of neuron death GO: 0050795 regulation of behavior

GABA GO: 0060078 regulation of postsynaptic 
membrane potential

GO: 0098982 GABA-ergic synapse GO: 1902495 transmembrane transporter 
complex

GO: 0042391 regulation of membrane 
potential

GO: 0098793 presynapse GO: 1990351 transporter complex

GO: 0045211 postsynaptic membrane GO: 0097060 synaptic membrane GO: 0022824 transmitter-gated ion channel 
activity

GO: 1902495 transmembrane transporter 
complex

GO: 0045211 postsynaptic membrane GO: 0022835 transmitter-gated channel 
activity

GO: 1990351 transporter complex GO: 0060078 regulation of postsynaptic 
membrane potential

GO: 0005230 extracellular ligand-gated ion 
channel activity

Gluta GO: 0097060 synaptic membrane GO: 0097060 synaptic membrane GO: 0097060 synaptic membrane

GO: 0045211 postsynaptic membrane GO: 0045211 postsynaptic membrane GO: 0045211 postsynaptic membrane

GO: 0099572 postsynaptic specialization GO: 0099572 postsynaptic specialization GO: 0034702 ion channel complex

GO: 0098984 neuron to neuron synapse GO: 0098978 glutamatergic synapse GO: 1902495 transmembrane transporter 
complex

GO: 0022839 ion gated channel activity GO: 0098984 neuron to neuron synapse GO: 1990351 transporter complex

OPC GO: 0097060 synaptic membrane GO: 0098978 glutamatergic synapse GO: 0045211 postsynaptic membrane

GO: 0045211 postsynaptic membrane GO: 0051961 negative regulation of nervous 
system development

GO: 0097060 synaptic membrane

GO: 0099572 postsynaptic specialization GO: 0032279 asymmetric synapse GO: 0034702 ion channel complex

GO: 0098984 neuron to neuron synapse GO: 0098984 neuron to neuron synapse GO: 1902495 transmembrane transporter 
complex

GO: 0032279 asymmetric synapse GO: 0097060 synaptic membrane GO: 0032279 asymmetric synapse

End GO: 0016570 histone modification GO: 0030902 hindbrain development /

GO: 0016569 covalent chromatin modifica-
tion

GO: 0005925 focal adhesion

GO: 0045765 regulation of angiogenesis GO: 0005924 cell-substrate adherens junction

GO: 0033044 regulation of chromosome 
organization

GO: 0030055 cell-substrate junction

GO: 1901342 regulation of vasculature 
development

GO: 1903706 regulation of hemopoiesis

Mic GO: 0016569 covalent chromatin modifica-
tion

GO: 0050769 positive regulation of neuro-
genesis

/

GO: 0016570 histone modification GO: 0010975 regulation of neuron projection 
development

GO: 0018205 peptidyl-lysine modification GO: 0016049 cell growth

GO: 0031056 regulation of histone modifica-
tion

GO: 0031346 positive regulation of cell pro-
jection organization

GO: 1902275 regulation of chromatin organi-
zation

GO: 0070997 neuron death
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For each significant cell type-specific SCZ or BPD gene 
module, we listed the enriched GO terms, the included 
genes, their cell type scores and SZDB or BDgene data-
base categories in Additional files 8 and 9. The genes with 
top five cell type scores in the cell type-specific SCZ gene 
modules are also shown in Additional file  5: Figure S2. 
For BPD, only in four cell types, Gluta, GABA, Ast and 
OPC, cell type-specific BPD gene modules were identi-
fied as significant (Fig. 3C1). Therefore, for comparison, 
Fig.  3A3, B3, and C3 show the cell type-specific ASD, 
SCZ and BPD gene modules in these four cell types along 
with the genes with top five cell type scores.

Table  1 also lists the top five enriched GO terms for 
each cell type-specific SCZ and BPD gene modules. 
In the two kinds of neurons, the functions of cell type-
specific disease gene modules for all three diseases are 
associated with synapses, while in the glia cells, those 
are different among ASD, SCZ and BPD. For instance, in 
Ast, the cell type-specific ASD gene module is associated 
with the functions of presynapse, synapse organization 
and regulation of neuron projection development, and 
the SCZ module is associated with dendrite develop-
ment, positive regulation of neurogenesis, axonogenesis, 
regulations of neuron projection development and neu-
ron death, while the BPD module is related to circadian 
rhythm and regulation of behavior. This demonstrates 
that the contributing disease-associated genes in astro-
cytes are different in BPD compared with ASD and SCZ. 
For End, ASD gene module is involved with functions 
of histone modification, covalent chromatin modifica-
tion, regulation of angiogenesis, and regulation of vas-
culature development, while SCZ gene module is related 
to functions of hindbrain development, focal adhesion, 
cell-substrate junction, and regulation of hemopoiesis. 
For Oli-specific ASD gene module, its gene functions 
include covalent chromatin modification, regulation of 
cell morphogenesis, histone modification and regula-
tion of transmembrane transporter activity, while the 

SCZ gene module is associated with regulation of neu-
ron projection development, neuronal cell body, axono-
genesis, and positive regulation of neurogenesis. From 
the perspective of disease gene modules, it can be noted 
that different gene modules are identified and the genes 
with top cell type scores are distinct between different 
diseases (Fig. 3c, Additional file 5: Figure S2), while it is 
interesting that gene RELN has the largest cell type score 
in GABA-specific disease gene modules for all three dis-
eases. Gene RELN is essential in synaptic plasticity, den-
dritic morphology, and cognitive function [25]. Several 
studies have shown the role of RELN in the susceptibility 
to ASD [29, 35], SCZ [25, 36] and BPD [37].

CtsDGM: an R package for identifying cell type‑specific 
disease gene module
To facilitate the use of our analytical workflow, we devel-
oped an R package, CtsDGM, for the identification of cell 
type-specific disease gene modules. CtsDGM contains 
four components, including the calculation of cell type 
specificity and scores of genes, the identification of cell 
type-specific gene networks and cell type-specific dis-
ease gene modules (Fig. 4). The input data include a gene 
expression matrix (row: gene, column: cell) with row and 
column names, a list of cell type annotation with each 
denoting each cell in the gene expression matrix, a ref-
erenced gene interaction network with each row record-
ing the gene–gene pair, and a list of disease-associated 
genes. CtsDGM can calculate cell type specificity and cell 
type score of each gene in each cell type using the gene 
expression matrix and the cell type annotation. Next, by 
setting a cell type score threshold, cell type-specific gene 
interaction networks can be obtained from the refer-
enced gene interaction network along with gene cell type 
scores. Then using a list of disease-associated genes, Cts-
DGM can identify significant cell type-specific disease 
gene modules by performing permutation tests, and out-
put the modules, FDR-corrected permutation P-values, 

Table 1 (continued)

Cell type ASD SCZ BPD

Oli GO: 0016569 covalent chromatin modifica-
tion

GO: 0010975 regulation of neuron projection 
development

/

GO: 0022604 regulation of cell morphogen-
esis

GO: 0043025 neuronal cell body

GO: 0010769 regulation of cell morphogen-
esis involved in differentiation

GO: 0007409 axonogenesis

GO: 0016570 histone modification GO: 0098793 presynapse

GO: 0022898 regulation of transmembrane 
transporter activity

GO: 0050769 positive regulation of neuro-
genesis



Page 9 of 12Guan et al. J Transl Med           (2021) 19:20  

and gene cell type scores. CtsDGM is available at https ://
githu b.com/JGuan -lab/CtsDG M.

CtsDGM can be used according to the need of users. 
One can just use CtsDGM to calculate gene cell type 
specificity or score, or identify cell type-specific gene 
interaction network. About defining cell type-specific 
gene interaction network, our package is flexible to allow 
ones to input gene scores calculated by other methods, 
such as applying the tissue-specificity metrics reviewed 
in a study [38] to scRNA-seq/snRNA-seq data, and then 
CtsDGM can extract cell type-specific gene network by 
setting a threshold. The necessary input data for our ana-
lytical method has been readily accessible, which makes 
our method applicable for other diseases. There have 
been several studies providing tissue-specific interac-
tomes or gene interaction networks. For instance, the 
temporal lobe-specific gene interaction network we used 
in this study was downloaded from GIANT at the web-
site of https ://hb.flati ronin stitu te.org/downl oad where 
many other tissue-specific gene interaction networks are 
also provided [1]. Besides, a recent study has evaluated 
the existing gene interaction networks, and also created 
a parsimonious composite network (PCNet) with both 
high efficiency and performance [2]. PCNet and other 
evaluated gene interaction networks are integrated and 
deposited on NDEx with UUID: f93f402c-86d4-11e7-
a10d-0ac135e8bacf. In addition, there have been more 
and more public scRNA-seq or snRNA-seq datasets. 
For example, Allen Institute for Brain Science provides 
human or mouse brain-related datasets, and Hemberg’s 
group at the Sanger Institute provides a collection of 
publicly available datasets, such as the ones involving 
human brain, liver and pancreas, mouse brain, pancreas, 
and retina, which can be accessed at https ://hembe rg-lab.

githu b.io/scRNA .seq.datas ets/. One can choose the data-
set to use according to the disease focused on.

Discussion
The advance of scRNA-seq and snRNA-seq have pro-
moted the survey of cell type heterogeneity in human 
brains. Genome-wide association studies have identified 
genetic variants associated with the risk of brain-related 
diseases, while the causal variants and the specific vul-
nerable cell types are often needed to be studied. To iden-
tify the primary pathological cell types for a particular 
disease, especially for which the single-cell/nucleus RNA-
seq data of diseased samples is not available, one kind of 
methods is to detect the cell type enrichments in suscep-
tibility genes. However, many disease-associated genes 
are expressed in multiple cell types, the pathologic vari-
ants affect primarily specific cells while other cells do not 
show pathophysiological manifestations of the disease or 
of any functional abnormality. Therefore, we hypothesize 
that the presence of disease gene modules instead of indi-
vidual genes determines the manifestation of a disease in 
cells.

To characterize the cell type specificity of brain-related 
diseases, we first constructed human brain cell type-spe-
cific gene interaction networks based on human brain 
nucleus gene expression data and a referenced tissue-
specific gene interaction network. Then we mapped 
disease-associated genes onto the cell type-specific gene 
interaction networks and identified significant connected 
components among disease genes by performing sta-
tistical tests, which are defined as cell type-specific dis-
ease gene modules. First, we identified cell type-specific 
ASD gene modules for studying the cell type heteroge-
neity of ASD. We found that only the largest connected 

Referenced 
gene network

Gene
expression 
(gene cell)

Cell type 
annotation

Calculate 
gene cell type 

specificity

Calculate 
gene cell type 

score

Identify cell 
type-specific 
gene network

Identify cell 
type-specific 

disease module

Disease genes

Cell type 
specificity of 

each gene

Cell type score 
of each gene

Cell type-specific 
gene network

Cell type-specific 
disease module

Gene score

Gene score

Input

CtsDGM

Output
P-value

Fig. 4 The input, output and workflow of CtsDGM

https://github.com/JGuan-lab/CtsDGM
https://github.com/JGuan-lab/CtsDGM
https://hb.flatironinstitute.org/download
https://hemberg-lab.github.io/scRNA.seq.datasets/
https://hemberg-lab.github.io/scRNA.seq.datasets/
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components among ASD genes could be identified as 
significant disease gene module. Different gene modules 
are formed in different cells, and distinct gene functions 
are demonstrated in different cell type-specific ASD gene 
modules. For instance, the Gluta- and GABA-specific 
ASD gene modules are involved with the functioning of 
synapses; the Ast-specific ASD gene module is associated 
with the functions of synapse organization and regulation 
of neuron projection development; the End-specific ASD 
gene module is associated with regulations of angiogen-
esis and vasculature development; the Oli-specific ASD 
gene module is related to regulation of cell morphogen-
esis. In addition, distinct genes demonstrate the top cell 
type scores in different cells, which implies the primary 
causal genes are different across cells.

As to the methods for identifying cell type-specific 
disease-associated gene modules, one may think of the 
most straightforward way that using clustering algo-
rithm to first detect gene modules from cell type-specific 
gene interaction network, and then identifying the ones 
enriched with disease-related genes. Therefore, we also 
applied Louvain clustering to perform the analysis and 
identified cell type-specific gene modules enriched with 
known ASD genes. We found that only in few cell types, 
there are more than one module which are enriched with 
ASD genes and contain more than five genes. In addi-
tion, our identified cell type-specific disease gene module 
could overlap with the ASD gene-enriched module/mod-
ules, and in most cell types, only overlaps with one ASD 
gene-enriched module. Therefore, it has been proven 
that our method is effective and the results are consistent 
with the ones obtained using clustering methods.

Moreover, to study the influence of genetic overlap 
among ASD, SCZ and BPD, we study the similarity and 
dissimilarity among their cell type-specific disease gene 
modules. For the two kinds of neurons, the functions of 
cell type-specific disease gene modules are associated 
with synapse for all three diseases, while those are dif-
ferent in glia cells. For instance, in astrocytes, the cell 
type-specific ASD gene module is associated with the 
functions of presynapse, synapse organization and regu-
lation of neuron projection development, and the SCZ 
module is associated with dendrite development, positive 
regulation of neurogenesis, axonogenesis, regulations of 
neuron projection development and neuron death, while 
the BPD module is related to circadian rhythm and regu-
lation of behavior. For Oli-specific ASD gene module, its 
gene functions include covalent chromatin modification, 
regulation of cell morphogenesis, histone modification 
and regulation of transmembrane transporter activity, 
while the SCZ gene module is associated with regulation 
of neuron projection development, neuronal cell body, 
axonogenesis, and positive regulation of neurogenesis. 

From the perspective of disease gene modules, it can 
be noted that different gene modules are identified and 
the genes with top cell type scores are different between 
diseases.

Our method has been shown to be effective in discov-
ering cell type-specific disease-associated gene expres-
sion patterns. The results support our hypothesis that a 
disease manifests itself in a cell type through forming a 
statistically significant disease gene module. The identifi-
cation of cell type-specific disease gene modules can pro-
mote the development of more targeted biomarkers and 
treatments for the disease. Our analytical pipeline can 
be applied for depicting the cell type heterogeneity of a 
given disease and studying the similarity and dissimilarity 
between different diseases.

Conclusion
We constructed cell type-specific gene interaction net-
works by integrating single nucleus gene expression data 
with a referenced gene network. Then statistically signifi-
cant cell type-specific disease gene modules were identi-
fied by performing permutation tests. We also developed 
an R package to facilitate the use of our analytical pipe-
line. Our method can be applied for depicting the cell 
type heterogeneity of a given disease and studying the 
similarity and dissimilarity between different diseases, 
providing new insights into the molecular mechanisms 
underlying the pathogenesis and progression of diseases.
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