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Abstract 

Background:  Lung adenocarcinoma (LUAD) is the most frequent subtype of lung cancer. The prognostic signature 
could be reliable to stratify LUAD patients according to risk, which helps the management of the systematic treat-
ments. In this study, a systematic and reliable immune signature was performed to estimate the prognostic stratifica-
tion in LUAD.

Methods:  The profiles of immune-related genes for patients with LUAD were used as one TCGA training set: n = 494, 
other validation set 1: n = 226 and validation set 2: n = 398. Univariate Cox survival analysis was used to identify the 
candidate immune-related genes from each cohort. Then, the immune signature was developed and validated in the 
training and validation sets.

Results:  In this study, functional analysis showed that immune-related genes involved in immune regulation and 
MAPK signaling pathway. A prognostic signature based on 10 immune-related genes was established in the training 
set and patients were divided into high-risk and low-risk groups. Our 10 immune-related gene signature was sig-
nificantly related to worse survival, especially during early-stage tumors. Further stratification analyses revealed that 
this 10 immune-related gene signature was still an effective tool for predicting prognosis in smoking or nonsmoking 
patients, patients with KRAS mutation or KRAS wild-type, and patients with EGFR mutation or EGFR wild-type. Our sig-
nature was negatively correlated with B cell, CD4+ T cell, CD8+ T cell, neutrophil, dendritic cell (DC), and macrophage 
immune infiltration, and immune checkpoint molecules PD-1 and CTLA-4 (P < 0.05).

Conclusions:  These findings suggested that our signature was a promising biomarker for prognosis prediction and 
can facilitate the management of immunotherapy in LUAD.
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Background
Lung carcinoma is the most frequent human malig-
nant neoplasm and the highest cause of cancer-related 
deaths worldwide [1]. Despite recent advances in sur-
gery, chemotherapy, radiotherapy, targeted therapy and 
immunotherapy, the 5-year survival rate of patients with 
non-small cell lung cancer (NSCLC) remains poor [2, 

3]. NSCLC, accounting for approximately 85% of lung 
cancer cases, consists of two common histological sub-
types: lung adenocarcinoma (LUAD) and squamous cell 
carcinoma (LUSC) [4]. Increasing evidence suggests the 
well-known biological diversity of LUAD and LUSC. 
For example, epidermal growth factor receptor (EGFR) 
mutations are more frequent in LUAD than in LUSC [5]. 
LUAD is the most common subtype of NSCLC [6].

The immune system has been reported to play an 
essential role in the development and progression of can-
cer [7, 8]. Tumor immunotherapy as an important driver 
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of personalized medicine harness the anti-tumor effects 
of the immune system to obtain a durable cure with min-
imal toxicity [9, 10]. In recent years, the immune check-
point proteins such as cytotoxic T-lymphocyte antigen 
4 (CTLA-4) or the programmed cell death ligand 1/pro-
tein 1 pathway (PD-L1/PD-1) have been used as crucial 
targets for immunotherapy in many cancers, including 
LUAD [11, 12]. For example, PD-L1 expression is a pre-
dictive biomarker for worse prognosis of NSCLC and the 
probability of clinical benefit from immune-modulating 
drugs is greater in NSCLC patients expressing PD-L1 
[13, 14]. Most studies on immune-related genes such as 
PD-L1, CD8A, and CD4 expression have been conducted 
in NSCLC [15–17]. Because the biological differences 
among the various histological subtypes might have a 
different therapeutic influence. Moreover, the molecu-
lar characteristics describing tumor-immune effects still 
remain largely unclear in LUAD. Therefore, we focused 
exclusively on the study of LUAD to further explore the 
prognostic and predictive significance of the immune-
related genes.

In our present work, multiple cohorts were utilized to 
construct and validate a novel immune prognostic signa-
ture for the stratification of LUAD. This study provided 
more in-depth insight into the prognostic stratification of 
patients with LUAD as well as provided a tumor-immune 
interaction with great promise for the therapeutic inter-
ventions of LUAD.

Materials and methods
Study samples
The raw expression data (Workflow Type: HTSeq-
Counts) for LUAD were enrolled from Genomic Data 
Commons Data Portal, which fulfilled the approval of 
the project by the consortium. The Cancer Genome Atlas 
(TCGA) data were normalized by the Trimmed Mean of 
M-values (TMM) method and the mean expression levels 
with ≤ 1 were excluded. Then, the expression data were 
transformed with log2. For the prognostic information, 
patients with incomplete follow-up time were excluded. 
Finally, 494 cases with LUAD had sufficient survival data 
recorded. The Gene Expression Omnibus (GEO) data-
sets by microarray were used in the patients with LUAD. 
IRON normalization was performed on the GSE72094, 
with log2 expression. The GSE31210 data were normal-
ized by the MAS5 algorithm and the expression data 
were transformed with log2. The cases with insufficient 
follow-up time were excluded. Finally, 226 patients 
from GSE31210 (validation set 1) and 398 cases from 
GSE72094 (validation set 2) were included.

In this study, TCGA data was applied as a training set. 
The remaining two cohorts were applied as two valida-
tion sets. Overall survival (OS) was estimated from the 

date of the study enrollment to the recorded date of death 
of any cause or the last follow-up time. The clinicopatho-
logical characteristics of LUAD patients from the training 
and validation sets are listed in Table 1.

The functional analysis of immune genes
We applied the Immunology Database and Analysis Por-
tal (ImmPort) database to select immune-related genes 
in immunology research [18, 19]. Using univariate Cox 
regression analysis, 299 survival-related genes with 
P < 0.05 were found in the TCGA training set (Additional 
file  1: Table  S1), where further analyzed for functional 
enrichment analysis. The functional analysis was con-
ducted using clusterProfiler package [20] for gene ontol-
ogy (GO) terms and the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathways.

Development of the immune‑related gene prognostic 
signature
Immune-related genes were obtained from the ImmPort 
database (https​://immpo​rt.niaid​.nih.gov) (Additional 
file  2: Table  S2). We performed the following process 
to establish the immune signature. First, univariate Cox 
regression analysis with P < 0.05 was conducted to find 
the potential immune-related prognostic genes. Three 
data sets were used to get overlapping genes, which can 
increase the credibility of the potential immune-related 
prognostic genes, the final 52 overlapping survival-
related immune genes were found (Additional file  3: 
Table  S3 and Additional file  4: Figure S1). Second, to 
achieve the final immune-related prognostic genes in our 
model, multivariate Cox regression analysis based on the 
two-step method was finally carried out for these 52 can-
didate immune-related genes in the TCGA training set. 
Finally, 10 immune-related genes were identified from 
the TCGA cohort in the present model (Additional file 5: 
Table S4).

Tumor‑infiltrating immune cells
TIMER was applied to estimate the abundance of tumor-
infiltrating immune cells in the tumor microenviron-
ment (TME) (http://cistr​ome.dfci.harva​rd.edu/TIMER​/), 
including six immune cell types: B cell, CD4 T cell, CD8 
T cell, neutrophil, macrophage, and dendritic cell (DC). 
We investigated whether our signature played a role in 
immune infiltration.

Statistical analysis
Spearman’s correlation coefficient was used to assess 
the association between risk score and tumor-infiltrat-
ing immune cells and immune checkpoint molecules. 
The cut-off value was determined based on the median 
value in the training set. Patients were divided into 

https://immport.niaid.nih.gov
http://cistrome.dfci.harvard.edu/TIMER/
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low-risk group and high-risk group. To examine sig-
nificant differences of between the low-risk group and 
the corresponding high-risk group, Kaplan–Meier sur-
vival methods with the log-rank test were applied. To 
estimate the predictive accuracy of the immune-related 
gene signature, time-dependent receiver-operating 
characteristic (ROC) method was conducted in all data-
sets. Univariate and multivariate survival analyses were 
conducted using the Cox proportional hazard model 
to determine whether there was a significant relation-
ship between the immune signature and the survival of 
patients with LUAD, along with the clinicopathological 
variables in the training and validation sets. Subgroup 
analyses were also carried out according to the strati-
fication of age, gender, smoking status, tumor stage, 
KRAS mutation, and EGFR mutation status. All data 
were analyzed by using R software (version 3.5.1; R 
Foundation for Statistical Computing, Vienna, Austria).

Results
The molecular mechanism of immune‑related genes
299 survival-related immune genes were performed for 
gene enrichment analysis. As shown in Fig.  1, KEGG 
analysis demonstrated that MAPK, Ras, Rap1, ErbB 
pathways, EGFR tyrosine kinase inhibitor resistance, 
proteasome, and endocrine resistance were associated 
with these immune genes (Fig. 1a). GO analysis showed 
that the immune-related mechanisms such as immune 
response-activating/regulating cell surface receptor 
signaling pathway, T cell activation, T cell receptor 
signaling pathway, antigen receptor-mediated signaling 
pathway, antigen processing and presentation, cytokine 
activity, and MHC protein complex etc. were enriched 
(Fig. 1b).

Table 1  Clinicopathological characteristics of LUAD patients from the training and validation sets

Characteristics Training set (n = 494) Validation set 1 (n = 226) Validation set 2 (n = 398)

Number of cases % Number of cases % Number of cases %

Median 66 (33–88) 61 (30–76) 70 (38–89)

Age (years)

 ≥ 65 274 55.5 62 27.4 291 73.1

 < 65 220 44.5 164 72.6 107 26.9

Gender

 Male 228 46.2 105 46.5 176 44.2

 Female 266 53.8 121 53.5 222 55.8

Stage

 Stage 3–4 106 21.8 0 0 72 18.3

 Stage 1–2 380 78.2 226 100 321 81.7

Smoking

 Yes 411 85.6 111 49.1 300 90.6

 No 69 14.4 115 50.9 31 9.4

KRAS mutation

 Mutation 20 8.8 139 34.9

 Wild-type 206 91.1 259 65.1

EGFR mutation

 Mutation 127 56.2 41 10.3

 Wild-type 99 43.8 357 89.7

T

 T 3–4 64 13

 T 1–2 427 87

M

 Positive 25 7.1

 Negative 325 92.9

N

 Positive 164 34

 Negative 318 66
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Construction of a 10 immune‑related gene signature
We finally applied the multivariate Cox regression model 
to select the final genes in the training cohort. Eventu-
ally, 10 immune-related genes were used to construct 
a prognostic model in LUAD. A prognostic index was 
established based on the expression level and the corre-
sponding regression coefficient of each immune-related 
gene, the following formula was present: [FURIN* 
0.1089] + [PSMD14*(−  0.2344)], [ARRB1*(−  0.2738
)] + (TUBB3*0.1028) + (ADM*0.1159) + [ZAP70*(− 
0.2977)] + [RFXAP*(−  0.2549)] + [SHC3*(−  0.1522)] 
+[BMP5*(− 0.0763)] + (CD40LG*0.1625).

A 10 immune‑related gene signature predicts survival 
in LUAD
The distribution and survival status of patients for the 10 
immune-related gene signature were shown in the train-
ing and validation sets (Fig.  2a). Time-dependent ROC 
results were used to evaluate the predictive capacity of 
a 10 immune-related gene signature at 1, 3, and 5 years 
(Fig. 2b). The AUCs (Area under the ROC curve) for the 
long-time survival at 5  years were > 0.70 in the training 
set and the other two validation cohorts, indicating a 
good accuracy of the 10 immune-related gene signature 
for survival prediction. Kaplan–Meier curves showed 
that patients with LUAD in the high-risk group had 
closely shorter prognosis than patients with LUAD in the 
low-risk group (all P values < 0.001) (Fig. 2c).

Fig. 1  Functional enrichment analysis of immune-related genes in LUAD. a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. b Gene 
ontology (GO) analysis on biological process (BP), cellular component (CC), and molecular function (MF)
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Fig. 2  The prognostic signature based on 10 immune-related genes in LUAD. a The distribution and survival status of patients for the 
immune-related gene signature. b Time-dependent ROC results at 1, 3, and 5 years. c Kaplan–Meier curves between the high-risk and low-risk 
groups
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Independent prognostic and predictive value of the 10 
immune‑related gene signature
To examine whether our 10 immune-related gene sig-
nature was an independent molecular factor for sur-
vival prediction in the training and validation sets, 
univariate and multivariate Cox models were further 
carried out in this study (Table 2). Univariate Cox anal-
ysis showed that the high-risk group was closely asso-
ciated with worse survival of LUAD in TCGA training 
set (494 cases: HR = 2.57, 95% CI 1.85–3.56, P < 0.001), 
validation set 1 (226 cases: HR = 9.11, 95% CI 3.21–
25.82, P < 0.001), and validation set 2 (398 cases: 
HR = 2.80, 95% CI 1.87–4.17, P < 0.001). After adjusting 
for clinical and pathologic factors, further multivari-
ate Cox analysis suggested that our immune signature 
was still a novel independent molecular indicator for 
predicting worse survival in LUAD in TCGA training 
set (HR = 1.68, 95% CI 1.11–2.54, P = 0.013), valida-
tion set 1 (HR = 8.63, 95% CI 2.95–25.21, P < 0.001), 

and validation set 2 (HR = 2.38, 95% CI 1.57–3.62, 
P < 0.001).

Predictive role of the 10 immune‑related gene signature 
with the survival in various clinical and mutational 
characteristics
Stratification analyses were conducted based on age (≥ 65 
vs. < 65 years), gender (male and female), smoking behav-
ior (smoking and nonsmoking), tumor stage (stage 3–4: 
advanced-stage and stage 1–2: early-stage), KRAS muta-
tion status (mutation and wild-type) and EGFR mutation 
status (mutation and wild-type) in the entire set (Figs. 3, 
4). The cut-off value was 0.9325 and cases were divided 
into high- and low-risk groups. Because patients with 
various T, M, N, and TP53 mutation status were con-
ducted in only a cohort, these clinical variables such as 
T, M, N, and TP53 mutation status were removed from 
subgroup analyses. For early-stage patients, the high-risk 
group indicated closely poor prognosis than the low-risk 

Table 2  Univariate and  multivariate Cox analyses of  the  immune-related gene signature in  one training set and  two 
validation sets

CI confidence interval

Variables Univariate Cox analysis Multivariate Cox analysis

Hazard ratio (95% CI) P Hazard ratio (95% CI) P

Training set

 Immune-related gene signature (high- vs. low-risk) 2.57 (1.85–3.56) < 0.001 1.68 (1.11–2.54) 0.013

 Age (≥ 65 vs. <65 years) 1.21 (0.88–1.66) 0.235

 Gender (male vs. female) 1.05 (0.77–1.43) 0.773

 Tumor stage (stage 3–4 vs. 1–2) 2.81 (2.03–3.88) < 0.001 1.69 (1–2.86) 0.051

 T (T 3–4 vs. 1–2) 2.41 (1.61–3.60) < 0.001 1.48 (0.9–2.44) 0.123

 M (positive vs. negative) 1.86 (1.06–3.25) 0.03 1.05 (0.53–2.06) 0.896

 N (positive vs. negative) 2.64 (1.93–3.62) < 0.001 1.71 (1.09–2.66) 0.019

 Smoking (yes vs. no) 0.89 (0.57–1.41) 0.627

Validation set 1

 Immune-related gene signature (high- vs. low-risk) 9.11 (3.21–25.82) < 0.001 8.63 (2.95–25.21) < 0.001

 Age (≥ 65 vs. <65 years) 1.89 (0.96–3.71) 0.066

 Gender (male vs. female) 1.52 (0.78–2.96) 0.219

 Smoking (yes vs. no) 1.64 (0.84–3.20) 0.15

 KRAS mutation (yes vs. no) 0.87 (0.27–2.85) 0.817

 EGFR mutation (yes vs. no) 0.47 (0.24–0.93) 0.03 0.86 (0.43–1.73) 0.673

Validation set 2

 Immune-related gene signature (high- vs. low-risk) 2.80 (1.87–4.17) < 0.001 2.38 (1.57–3.62) < 0.001

 Age (≥ 65 vs. <65 years) 1.38 (0.89–2.14) 0.151

 Gender (male vs. female) 1.55 (1.07–2.25) 0.02 1.42 (0.97–2.09) 0.075

 Smoking (yes vs. no) 1.37 (0.60–3.14) 0.459

 Tumor stage (stage 3–4 vs. 1–2) 2.61 (1.74–3.91) < 0.001 2.63 (1.74–3.97) < 0.001

 KRAS mutation (yes vs. no) 1.46 (1.00–2.12) 0.049 1.1 (0.74–1.62) 0.643

 EGFR mutation (yes vs. no) 0.26 (0.10–0.71) 0.008 0.4 (0.14–1.10) 0.077

 TP53 mutation (yes vs. no) 1.24 (0.82–1.86) 0.313
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group (P < 0.05), but no significant prognostic relation-
ship was observed between the high- and low-risk groups 
for advanced-stage patients (Fig.  4), which might cause 
owing to the small study population of advanced-stage 
patients. The results demonstrated that high-risk LUAD 
patients in each stratum of age, gender, smoking behavior, 
KRAS mutation, and EGFR mutation status presented 
worse survival than low-risk LUAD patients (all P val-
ues < 0.05) (Figs.  3, 4), suggesting that our 10 immune-
related gene signature-based risk group stratification 
was still an effective tool for survival prediction in older 
or younger, male or female, and smoking or nonsmok-
ing patients with LUAD, patients with KRAS mutation 
or KRAS wild-type, and patients with EGFR mutation or 
EGFR wild-type.

A stratification analysis of stage 1 and stage 2 tumors 
was also performed. The result showed that the high-risk 

group was closely correlated with poor prognosis in 
stage 1 and stage 2 LUAD tumors (P < 0.05) (Additional 
file 6: Figure S2), suggesting that our immune signature-
based risk group stratification was still an effective tool 
for prognosis prediction in stage 1 and stage 2 tumors. 
Moreover, multivariate Cox analysis within early stages of 
LUAD tumors demonstrated that our immune signature 
was still an independent molecular factor for predicting 
survival (HR = 3.93, 95% CI 2.38–6.5, P < 0.0001) (Addi-
tional file 7: Table S5).

Tumor‑infiltrating immune cells
We analyzed whether our immune-related gene sig-
nature was related to immune infiltration in LUAD, 
such as B cell, CD4 T cell, CD8 T cell, neutrophil, mac-
rophage, and dendritic cell (DC). As shown in Fig.  5, 

Fig. 3  Kaplan-Meier analyses of LUAD patients with age, gender, and smoking behavior, including a ≥ 65 years, b < 65 years, c male, d female, e 
smoking, and f nonsmoking
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our immune-related gene signature was negatively cor-
related with B cells (r = − 0.40, P < 0.001), CD4+ T cells 
(r = − 0.27, P < 0.001), DCs (r = − 0.22, P < 0.001), CD8+ 
T cells (r = − 0.15, P = 0.001), neutrophils (r = − 0.12, 
P = 0.011), and macrophages (r = − 0.11, P = 0.012).

Association between our signature and immune 
checkpoint molecules
Immune checkpoint blockade (ICB) therapy such as 
immune-checkpoint proteins programmed cell death 
1 (PD-1), programmed cell death-ligand 1 (PD-L1), and 
cytotoxic T-lymphocyte-associated protein 4 (CTLA-
4) targets has been reported to provide clinical benefits 
for cancer immunotherapy in some advanced-cancers 
such as melanoma and NSCLC [21, 22]. We investigated 
the correlation between our signature and the immune 
checkpoint molecules PD-1, PD-L1, PD-L2, and CTLA-4 

in LUAD. The results showed that our signature was 
negatively associated with PD-1 (r = − 0.11, P = 0.017) 
and CTLA-4 (r = − 0.25, P < 0.001) (Fig.  6a, b). In addi-
tion, PD-1, PD-L1, PD-L2, and CTLA-4 were found to be 
coexpressed in LUAD (P < 0.001) (Fig. 6C).

Discussion
The most frequent histological subtypes of lung can-
cer are LUAD and frequently occurs in females and 
nonsmoking people [23]. LUAD is related to distinct 
oncogene alterations. The common somatic gene aber-
rations are EGFR and KRAS mutations, and ALK rear-
rangements, which have been extensively reported and 
studied in LUAD [24, 25]. The frequency of oncogenic 
driver aberrations is different based on ethnicity, gender, 
and smoking behavior, which may result in differences 
in treatment efficacy [26]. In addition, in recent years 

Fig. 4  Kaplan–Meier analyses of LUAD patients with stage, KRAS mutation status, and EGFR mutation status, including a stage 3–4, b stage 1–2, c 
KRAS mutation, d KRAS wild-type, e EGFR mutation, and f EGFR wild-type
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reliable prognostic biomarkers have already appeared 
that are modifying the prognosis, which are applied to 
select groups of patients who are at high-risk and who 
may benefit from the personalized therapy [27–29], but 
their accuracy of survival estimation is not shown and 
remains limited. Therefore, it is imperative to identify 
precise biomarkers of LUAD and to select the appropri-
ate immunotherapy for improving survival of this dis-
ease. In our current work, we constructed and validated 
a new prognostic signature based on 10 immune-related 
genes for survival prediction in patients with LUAD.

The immune system has a key role in cancer devel-
opment progression [7, 8]. Such as, MAPK signaling 
involves in cell proliferation, apoptosis and immune 
escape, which contributes to the progression of the 
tumor [30]. Cytokines regulate tumor growth, survival, 
and invasion, and metastatic colonization [31]. LUAD 

shows altered T cell and NK cell compartments [32]. 
Choi et al. reported that high ImmuneScore was associ-
ated with favorable prognosis in LUAD [33]. However, 
immune-related molecular mechanisms involved in 
LUAD remain largely unclear. In this study, immune-
related genes were found to be associated with immune 
regulation (i.e. immune response-activating/regulating 
cell surface receptor signaling pathway, T cell activation, 
and cytokine activity etc.) and biological pathways such 
as MAPK signaling in LUAD. Further 10 immune-related 
gene signature for survival prediction was identified in 
LUAD. Immune signatures can predict prognosis across 
solid tumors [34]. For example, a proposed clinical-
immune signature is significantly correlated with worse 
prognosis and can be a promising biomarker for pre-
dicting overall survival in ovarian cancer [35]. The seven 
immune-related gene signature is significantly related 

Fig. 5  Correlation between our signature and tumor-infiltrating immune cells. a Association between risk score and B cells. b Association between 
risk score and CD4+ T cells. c Association between risk score and CD8+ T cells. d Association between risk score and Neutrophils. e Association 
between risk score and dendritic cells (DCs). f Association between risk score and Macrophages
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Fig. 6  Correlation between our signature and known immune checkpoint genes. a Association between risk score and PD-1. b Association 
between risk score and CTLA-4. c Association of each immune checkpoint gene. “x” for no correlation; blue for negative correlation; red for positive 
correlation
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to poor survival and can serve as a potential marker for 
reflecting the prognosis in clear renal clear cell carcinoma 
[36]. A prognostic immune signature can predict cervical 
cancer patients’ survival [37]. The nine immune-related 
gene signature is correlated with worse prognosis and is 
a potential predictive biomarker in hepatocellular carci-
noma [38]. The previous findings were consistent with 
our current result that the high-risk patients were related 
to short survival time and worse survival of LUAD. Then, 
multivariate Cox analysis indicated that our immune 
signature remained an independent molecular indicator 
for survival prediction. These analyses confirmed that 
our immune signature was an effective and good perfor-
mance for predicting prognosis in LUAD, which was rea-
sonable and reliable.

This model for LUAD contained 10 immune-related 
genes. Among them, FURIN correlates with many can-
cer-related processes such as cell proliferation, migra-
tion, invasion, and angiogenesis, which promotes tumor 
progression [39]. FURIN has also a crucial function in 
the adaptive immunity [40]. PSMD14 induces cell cycle 
and senescence and may participate in the role of the 
proteasome [41, 42]. ARRB1 mediates signaling path-
ways and correlates with the regulation of DNA damage 
response [43]. ARRB1 participates in cell invasion and 
proliferation, thereby contributing to NSCLC progres-
sion [44]. TUBB3 is a key mechanism of drug resistance 
and TUBB3 expression shows predictive value for the 
prognosis in many cancers [45]. SHC3 regulates signal 
transduction, thereby stimulating hepatocellular carci-
noma proliferation, migration, invasion, and epithelial-
to-mesenchymal transition (EMT) [46]. BMP5 activates 
multiple signaling pathways such as p38 MAPK signaling 
[47]. CD40LG polymorphism is related to various immu-
nological disorders such as tumors [48]. Adrenomedullin 
(ADM) correlates with cellular growth, anti-apoptotic 
property, angiogenesis, tumor cell motility and metasta-
sis, inflammatory and immune responses. And ADM is 
also a significant factor for worse survival in some can-
cers [49, 50]. ZAP70 is related to the T cell antigen recep-
tor (TCR) complex and is required for T cell activation 
[51, 52]. RFXAP is a key transcription factor for major 
histocompatibility complex (MHC) II [53]. On the basis 
of the above findings, our work integrated 10 immune-
related genes into a single panel, found patients in the 
high immune-risk group associated with worse survival, 
and confirmed the predictive value of our signature in 
LUAD. The high abundance of T cell and B-cell is cor-
related with improved survival in many cancer types, 
including lung cancer [54]. A high level of tumor-infil-
trating lymphocytes is associated with better prognosis 
of LUAD [55]. High B-cell and CD8+ T cell infiltration 
is reported to be associated with favorable prognosis in 

LUAD [54, 56]. The immune checkpoint molecules PD-1 
and CTLA-4 treatment is a promising cancer immuno-
therapy approach for clinical benefits [21]. Studies have 
reported the coexpression PD-1, PD-L1, PD-L2, and 
CTLA-4 immune checkpoint molecules [57]. In our 
study, we also found PD-1, PD-L1, PD-L2, and CTLA-4 
immune checkpoint molecules were coexpressed in 
LUAD. Although our signature was negatively corre-
lated with tumor-infiltrating immune cells and PD-1 and 
CTLA-4, the correlation was not very significant. Bio-
markers of response to ICB do not frequently only focus 
on the target molecules, but rather inflammatory/inter-
feron signaling cascades [58–60]. Thus, our signature 
may not have a significant response to immune check-
point molecules. Additional data on the association of 
our model with other signatures (either a cytolytic signa-
ture, IFNG signature, chemokine signature, or the tumor 
inflammation signature) could be needed in the future.

The common somatic mutations are EGFR and KRAS 
in LUAD [24]. Hsiao et al. reported that EGFR mutations 
were closely correlated with therapeutic efficacy and pro-
gression-free survival in LUAD [61]. We further evalu-
ated the predictive effect of our 10 immune-related gene 
signature in different clinical and molecular features. 
We found that our 10 immune-related gene signature 
remained a strongly powerful tool for predicting prog-
nosis in older or younger, male or female, and smoking 
or nonsmoking patients with LUAD, patients with KRAS 
mutation or KRAS wild-type, and patients with EGFR 
mutation or EGFR wild-type. Our immune signature in 
the high-risk group was observed to be associated with 
worse prognosis for early-stage tumors. Further multi-
variate Cox analysis showed that our immune signature 
was still an independent molecular indicator for survival 
prediction in early-stage LUAD tumors.

These are several limitations in this work that should be 
noted. First, our study was a retrospective design, more 
prospective clinical data sets as possible are needed to 
validate our result in the future. Second, our immune 
signature was developed by numerous genes, further bio-
logical functions are warranted to be further explored 
in LUAD. Third, our immune signature was calculated 
based on the gene expression values. Thus, intra-tumor 
heterogeneity supported by genetic and phenomenologi-
cal data, which could cause sampling bias.

Conclusion
In conclusion, a 10 immune-related gene signature 
was built for prognosis prediction in LUAD. This study 
demonstrated that this 10 immune-related gene sig-
nature may become a promising prognostic marker 
for LUAD, especially in early-stage patients, which 
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could facilitate the personalized therapy and serve 
new immunotherapy of LUAD. Further studies are still 
required to prove this signature in LUAD in the future.
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