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Abstract

Background: DNA methylation can regulate the role of long noncoding RNAs (IncRNAs) in the development of lung
adenocarcinoma (LUAD). The present study aimed to identify methylation-driven IncRNAs and mRNAs as biomarkers
in the prognosis of LUAD using bioinformatics analysis.

Methods: Differentially expressed RNAs were obtained using the edge R package from 535 LUAD tissues and 59
adjacent non-LUAD tissues. Differentially methylated genes were obtained using the limma R package from 475 LUAD
tissues and 32 adjacent non-LUAD tissues. Methylation-driven mRNA and IncRNA were obtained using the MethylMix
R package from 465 LUAD tissues with matched DNA methylation and RNA expression and 32 non-LUAD tissues with
DNA methylation. Gene ontology and ConsensusPathDB pathway analysis were performed to identify functional
enrichment of methylation-driven mRNAs. Univariate and multivariate Cox regression analyses were performed to
identify the independent effect of each variable for predicting the prognosis of LUAD. Kaplan—-Meier curve analysis of
DNA methylation and gene expression might provide potential prognostic biomarkers for LUAD patients.

Results: A total of 99 methylation-driven mRNAs and 17 methylation-driven IncRNAs were obtained. Univariate and
multivariate Cox regression analysis showed that 6 INcRNAs (FOXET, HOXB13-AS1_2,VMO1, HISTTH3F, AJ003147.8,
ASXL3) were retrieved to construct a predictive model associated with overall survival in LUAD patients. Combined
DNA methylation and gene expression survival analysis revealed that 4 INcRNAs (AC023824.1, AF186192.1, LINCO1354
and WASIR2) and 8 mRNAs (S1PR1, CCDC181, F2RL1, EFS, KLHDC9, MPV17L, GKN2, ITPRIPLT) might act as independent
biomarkers for the prognosis of LUAD.

Conclusions: Methylation-driven INncRNA and mRNA contribute to the survival of LUAD, and 4 IncRNAs and 8 mRNAs
might be potential biomarkers for the prognosis of LUAD.

Keywords: Lung adenocarcinoma, Methylation-driven IncRNA, Methylation-driven mRNA, Biomarkers, Overall
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Background

Lung cancer is the leading cause of cancer-related death
worldwide [1]. Lung adenocarcinoma (LUAD) accounts
for 45-55% of non-small-cell lung cancer (NSCLC), with
a 5-year overall survival rate of less than 15% [2]. Due
to the heterogeneity of lung adenocarcinoma, it is still a

*Correspondence: doctorlihao@163.com; quyiging@sdu.edu.cn

! Department of Respiratory and Critical Care Medicine, Qilu Hospital
of Shandong University, Jinan 250012, China

Full list of author information is available at the end of the article

B BMC

great challenge to develop successful individual-based
treatment [3]. Therefore, there is an urgently need to
identify effective and promising biomarkers in predicting
the prognosis of LUAD.

Genetic aberrant expression is crucial for cancer etiol-
ogy, and the joint effect of both genetic and epigenetic
changes facilitates the development of human cancer
[4-6]. DNA methylation acts as the key element in epi-
genetic modifications and plays a significant role in the
regulation of cellular functions and carcinogenesis [7-9].
Epigenetic modification, especially DNA methylation,
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can provide a novel horizon to explore new biomarkers in
predicting the prognosis of cancer [10-14]. A large num-
ber of studies have demonstrated that DNA methylation
can regulate the expression of IncRNA, and this phenom-
enon may be associated with the prognosis of lung can-
cer [15]. For instance, the IncRNA AFAP1-ASI1 acts as an
oncogene in NSCLC, while its expression is tightly regu-
lated by DNA methylation, which might provide prog-
nostic and diagnostic values for NSCLC patients [16].

MethyIMix, an algorithm implemented in the R pro-
gramming environment, identifies disease-specific hyper-
and hypomethylated genes [17]. Currently, few studies
on methylation-driven genes have been reported [18].
Recently, a study based on using MethylMix to explore
methylation-driven genes for predicting the progno-
sis of LUAD was reported; however, they only obtained
information about methylation-driven mRNA [19]. In
this study, DNA methylation and RNA-Seq data were
extracted from The Cancer Genome Atlas (TCGA) data-
base, and we used the MethylMix R package to obtain
LUAD-specific methylation-driven IncRNA sequences.
Furthermore, a Cox survival predictive model with 6
IncRNAs was constructed to predict the diagnosis and
prognosis of LUAD. Finally, the combined effect of DNA
methylation and gene expression survival analysis was
examined, which might provide a novel insight to explore
methylation-driven IncRNA and mRNA for predicting
the prognosis of LUAD.

Methods

Data retrieving and analyzing

Methylation and RNA-Seq expression data were
retrieved from LUADs from the TCGA database. The
methylation data were downloaded from 475 cancer
tissues and 32 noncancer tissues from the Illumina
Human methylation 450k platform. The RNA-Seq data
(level 3), including mRNA and IncRNA expression,
were retrieved from 535 cancer tissues and 59 noncan-
cer tissues from the IlluminaHiSeq_ RNASeq platform.
First, on the basis of “limma R” packages in R with
absolute fold change (log 2) >0 and adjusting the false
discovery rate (FDR) to a P value<0.05, we obtained
aberrant methylated genes. The methylation difference
of the mean of the 3000 bp (base pair) sites upstream
of the gene was analyzed to identify the differential
level of methylation in the gene promoter [19-22]. We
analyzed the differential level of methylation in the
promoter of genes by using the limma R package [23].
Then, based on the “edge R” packages in R with absolute
fold change (log 2) >3 and adjusting the false discovery
rate (FDR) to a P value<0.01 to correct the statistical
significance of multiple experiments, we retrieved dif-
ferentially expressed mRNA and IncRNA. MethylMix
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is a kind of R statistical package for integrating DNA
methylation data and RNA expression data to identify
methylation-driven genes in kinds of cancers [17, 24—
26]. Filtering or eliminating missing value genes is the
preprocessing common step when running MethylMix
R software [17]. In this present manuscript, we filtered
or eliminated missing value genes and intersected DNA
methylation data with RNA expression data for match-
ing. Finally, there were a total of 465 LUAD samples
with matched DNA methylation and RNA expression
and 32 non-LUAD samples with DNA methylation data
for entering the MethylMix R package. Then, calculated
the correlation between DNA methylation level and
RNA expression to find significantly negatively related
genes, a beta mixture model was constructed for the
degree of methylation of samples, Wilcoxon rank test
was used to calculate differential methylation in LUAD
and adjacent non-LUAD samples. Finally, the methyl-
ation-driven mRNA and IncRNA was obtained. Since
the data were directly obtained from the TCGA data-
base, no approval was required from the local ethics
committee.

Functional enrichment analysis of methylation-driven
mRNA in LUAD

To determine the function represented in the methyl-
ation-driven mRNA, we used the Database for Annota-
tion, Visualization and Integrated Discovery (DAVID)
(http://david.abcc.ncifcrf.gov/) to perform a functional
and enrichment analysis on the methylation-driven
mRNA by using GO and ConsensusPathDB analysis. In
the GO analysis, a P value of less than 0.05 was consid-
ered statistically significant. Furthermore, the GOCircle
and GOChord plotting functions of the GOplot R pack-
age were used to allow data from expression analysis and
data from functional annotation enrichment analysis.
ConsensusPathDB (http://cpdb.molgen.mpg.de/) is an
online software program that includes binary and com-
plex signaling, gene regulatory and drug-target interac-
tions, and biochemical pathways. P<0.05 was considered
statistically significant.

Construction of a differentially methylated, IncRNA-related
predictive model in LUAD

We identified the differentially methylated IncRNA
associated with overall survival with P<0.05 to act as
prognostic methylation IncRNA candidates for mul-
tivariate Cox regression analysis. On the basis of the
median risk score, LUAD patients were divided into
two cohorts, high-risk cohorts and low-risk cohorts.
Receiver operating curves were used to test the effect of
the IncRNA signature (high risk vs low risk) on overall
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survival. We analyzed the receiver operating curve by
calculating the area under the curve (AUC) under the
binomial exact confidence interval to reveal prognostic
biomarkers for predicting survival in LUAD.

Combined methylation and gene expression survival
analysis

To further explore the effect of methylation level and
gene expression level of the same methylation-driven
key gene on LUAD patient prognosis, we performed
a combined methylation and gene expression sur-
vival analysis to identify potential methylation-driven
mRNAs and methylation-driven IncRNAs for pre-
dicting the prognosis of LUAD patients. Therefore,
a Kaplan—Meier curve was performed. P<0.05 was
regarded as statistically significant.

Results

Identification of methylation-driven mRNA and IncRNA

in LUAD

A total of 99 mRNAs and 17 IncRNAs were identified
to be associated with DNA methylation using Meth-
ylMix criteria. The methylation-driven mRNAs and
IncRNAs are shown in Tables 1 and 2, respectively.
We constructed a mixed model and performed a Wil-
coxon rank test for determining differential methyla-
tion (logFC>0, P<0.05, Cor<—0.3). Figure 1 shows
that two methylation-driven mRNAs (ZNF454 and
ZNF471) (Fig. 1f, g) and two methylation-driven IncR-
NAs (TUSC8 and LINC00676) (Fig. 1h, i) have signifi-
cant negative correlations between methylation and
gene expression levels. In Fig. 1, the distribution of
the methylation degree shows that ZNF454 (Fig. 1b),
ZNF471 (Fig. 1c), and LINC00676 (Fig. 1e) are hyper-
methylated in LUAD patients and hypomethylated
in the normal group, while TUSCS8 (Fig. 1d) is hypo-
methylated in LUAD patients and hypermethylated in
the normal group. A heat map of methylation-driven
mRNAs and IncRNAs is shown in Fig. 2a, b. A flow dia-
gram of the exploration of methylation-driven mRNA
and IncRNA in LUAD is shown in Fig. 1a.

Enrichment analysis of methylation-driven mRNAs in LUAD
Gene ontology analysis showed that there were 5 GO
terms (regulation of transcription, DNA-templated; tran-
scription factor activity, sequence-specific DNA bind-
ing; nucleic acid binding; transcription, DNA-templated;
metal ion binding) with significant differences (P<0.05),
and the highest GO biological process was “G0O:0006355
regulation of transcription, DNA-templated” (Fig. 3a, c).
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The GOChord plot shows the top 30 methylation-driven
mRNAs with their related GO terms (Fig. 3b). Figure 4
shows that 11 pathways (Generic Transcription Path-
way, Benzene metabolism, RNA Polymerase II Tran-
scription, Gene expression (Transcription), Platinum
Pathway, Pharmacokinetics/Pharmacodynamics, Phase
II—Conjugation of compounds, Sulfation Biotransfor-
mation Reaction, Estrogen metabolism, Glutathione-
mediated detoxification, Cytosolic sulfonation of small
molecules, Drug metabolism—other enzymes—Homo
sapiens (human)) were considered statistically significant
(P<0.05). Furthermore, pathway analysis showed that
the methylation-driven mRNAs were most enriched in
the Generic Transcription Pathway, RNA Polymerase II
Transcription and Gene expression (Transcription) path-
ways (P<0.01) (Fig. 4). The pathway analysis is shown in
Table 3.

Construction of a predictive model of six differentially
methylated IncRNAs in LUAD

Univariate Cox regression analysis was performed first
to identify the prognosis associated with differentially
methylated genes in LUAD, incorporating 10 methyla-
tion genes that were conspicuously associated with over-
all survival (P<0.05). Next, multivariate Cox regression
was used and showed that six IncRNAs were eventually
selected to construct a predictive model. We used the
linear combination of the expression of the 6 IncRNAs
to construct the predictive model. The relative coeffi-
cients weighted in the multivariate Cox regression were
as follows: survival risk score=(3.0040 x expression
value of FOXE1 + 1.0226 x expression value of HOXB13-
AS1_2+1.0540 x expressionvalueof VMO1 +1.0050 x expres-
sion value of HIST1H3F + (— 3.0925) x expression value
of AJ003147.8+1.4791 x expression value of ASXL3).
The multivariate Cox analysis is shown in Table 4.

Risk groupings and ROC curve analysis

As shown in the heat map, the expression of six prog-
nostic methylation genes was profiled (Fig. 5a). Based
on the median risk scores, a total of 449 samples of
complete survival information were divided into a high-
risk group (n=224) and a low-risk group (n=225). We
used the Kaplan—Meier curve with a log-rank statisti-
cal examination to perform survival analysis. As shown
in Fig. 5b, patients in the low-risk group had conspicu-
ously better overall survival than those in the high-risk
group (Fig. 5b). The receiver operating characteristic
(ROC) curve was analyzed to test the influence on the
6-IncRNA signature associated with overall survival in
LUAD (Fig. 5¢).



Lietal. JTransIMed  (2019) 17:324 Page 4 of 14

Table 1 Methylation-driven mRNAs

mRNA Normal mean Tumor mean logFC PValue Adjusted-P Cor Cor P-value
ECSCR 0.651549745 0.777875207 0.255663395 6.97E—21 1.03E—18 — 0401694346 1.85E—19
TBX4 0.3491894 0.503087408 0526799315 7.58E—21 1.12E-18 —0.353891186 3.64E—15
TIET 0.559830867 0.675047137 0.269997212 1.21E-20 1.79E—18 —0.406629901 6.08E—20
NEFH 0.254444122 0435542374 0.775464224 140E-20 2.07E—18 —0.321798888 1.16E—12
ACVRL1 0.398975345 0.517535129 0375357195 3.26E—20 482E—18 — 0386877674 4.73E—18
USHBP1 0419199887 0.525059456 0324842471 3.63E—20 537E—18 —0.323007247 9.42E—13
ERN2 0.264647925 0387648278 0.550673914 3.92E-20 580E—18 —0.450728621 1.20E—24
COX7A1 0.560388444 0.666059579 0249224026 941E-20 1.39E—17 —0.342569242 3.00E—14
SULT1C4 0.176980042 03113128 0.814778224 245E—-19 3.62E—17 —0.375338318 5.28E—17
ART4 0.531234199 0.652680788 0297029548 2.53E-19 3.75E=17 — 0425340294 744E—-22
HISTTH3E 0.313889479 0456138176 0.539214244 145E-18 2.15E—16 —0.390470196 2.19E—18
ZNF492 0.077650427 0.196364234 133846642 1.18E—17 1.75E—15 —0.378866342 2.55E—17
ZNF728 0.138731042 0290955121 1.068506001 1.32E—17 1.95E—15 —0.346356662 1.50E—14
STPR1 0.33644215 0424456445 0.33525806 4.34E-17 6.43E—15 —0.375495078 511E=17
MUCT3 0.657841786 0.551979674 —0.253125507 4.44E-17 6.57E—15 —0.402604202 1.51E=19
CCDC8 0.360671572 0.480500959 0413853596 8.99E—17 1.33E-14 —0.389064482 2.96E—18
ZNF578 0.281145557 0.394615614 0489130794 1.12E-16 1.66E—14 —0.459621578 1.11E-25
FES 0424918825 049946057 0.233183531 274E-16 4.05E—14 —0.370960412 1.29E—16
ASCL1 0.096716299 0.200703748 1.053236604 2.98E—16 441E-14 —0.331763879 2.08E—13
ALGTL 0461379719 0.287062126 —0.684591589 3.14E-16 4.65E—14 — 0466908378 149E—-26
ELF3 0462412193 0359973363 —0.361289285 447E-16 6.61E—14 — 045067724 1.22E-24
TMEM88 0583625618 0.738189625 0.338948249 7.89E—16 117E-13 —0.390308898 227E—18
GSTM5 0.356896303 0481942079 0433354815 1.13E—15 1.68E—13 —0.353462769 3.95E-15
IRX1 0.098629887 0220552417 1.161024783 1.21E-15 1.79E-13 —0.344157687 224E-14
ZNF454 0.183616121 0.338501411 0.88246912 1.44E-15 2.13E=13 —0.602235321 3.13E—47
TK2 0615291641 0.702921916 0.192094042 1.71E-15 2.52E—13 —0.365352213 3.94E-16
ZSCAN1 0.289768404 0.400355348 0466380783 2.83E—-15 419E—-13 —0.397488998 4.73E—-19
ZNF677 0.220497196 0315626597 0.517458471 2.86E—15 423E-13 —0.527352048 1.21E-34
ZNF582 0.130372053 0.239679107 0.878469505 5.74E-15 849E—13 —0.558968642 143E—-39
DAPP1 0.510432574 0.394016678 —0.373463704 1.29E—14 191E—12 —0.490584559 1.57E—29
SRPX2 0.600591335 0480798168 —0.32095226 142E-14 2.10E—12 —0.383430149 9.83E—18
CCDC181 0.283605585 041823899 0.560441617 323E-14 4.78E—12 —0.319044754 1.84E—12
SULT4A1 0.24652482 0.348099193 0497765567 7.69E—14 1.14E-11 —0.358208198 159E-15
LRRC4 0.321370351 0418618502 0.38139924 1.26E—13 1.87E—-11 —0.421045183 2.10E-21
ZSCAN23 0.12251013 0.209336095 0.772920046 1.57E—13 232E-1 —0.362584137 6.80E—16
F2RL1 0.242790645 0.208656331 —0.218584138 1.74E-13 2.57E-11 —0.35941342 1.26E—15
ZNF334 0.17466699 0256829933 0.556206371 231E—13 343E-11 —0.459451082 1.16E—25
ZNF471 0.130738051 0.279080546 1.094002465 546E—13 8.07E—11 —0.548011494 8.37E—38
HOXB2 0.34354942 0.513088034 0578688733 6.70E—13 991E—-11 — 0491155695 1.32E—29
PRR19 0666407262 0728756031 0.129031796 9.23E—13 1.37E—10 — 0420836129 220E-21
AGR2 0.669953934 0.554274136 —0.273462209 1.68E—12 249E-10 —0.51205684 1.93E-32
NQO1 0.702158099 0.525979398 — 0416789616 2.08E—12 3.08E—10 — 0425444078 7.26E—22
GIPC2 0.179310415 0281572165 0.651045433 3.52E—12 521E-10 —0.36721046 2.73E—16
OXT 0553265288 0.656785573 0.247451026 461E—12 6.83E—10 —0.519344744 1.77E—33
B3GALT2 0.534256964 0.658626901 0.301927631 6.78E—12 1.00E—09 — 0477778193 6.83E—28
EFS 0.197613625 0297157242 0588544115 142E—-11 2.10E—09 —0.391422631 1.78E—18
RAB34 0.295528869 0.254270265 —0.21693631 2.05E-11 3.03E—09 — 0424411453 9.32E-22
ACTRT3 0.391186063 0.353188058 —0.147418408 5.54E—11 8.21E—09 —0.329154572 3.27E-13

CLDN8 0.727830255 0.618464903 —0.234910297 9.70E—11 1.44E—-08 —0.328690081 3.55E-13
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Table 1 (continued)

mRNA Normal mean Tumor mean logFC PValue Adjusted-P Cor Cor P-value
AQP1 0.366569984 0501482299 0452110121 234E—-10 3.46E—-08 —0.597245937 2.74E—46
SP8 0.202841356 0.297916967 0.554558466 2.69E—10 3.98E—08 —0.317009628 258E—12
HORMAD?2 0.350476203 0461146819 0.395909658 3.14E—10 4.65E—08 — 0457907737 1.76E—25
GALM 0.255948625 0.226747119 —0.174770041 6.86E—10 1.02E—-07 —0.356239606 233E-15
RABGGTB 047835678 0385164319 —0.312612985 6.89E—10 1.02E-07 —0.3330019 1.67E—13
KCNE3 0.256671142 0314316199 0.292295525 7.52E—-10 1.11E-07 —0.350037722 7.53E-15
ZNF879 0.147629821 0.2000367 0438280535 1.01E—09 1.50E—07 — 0453856587 5.23E-25
ZNF257 0.157589016 0.245609973 0.640202155 1.28E—09 1.89E—07 —0.359120932 1.34E-15
ZNF382 0.101492 0.295488981 1.541738316 1.35E—09 1.99E—-07 —0.391566521 1.73E—18
GSTM1 0.156396431 0.253910031 0.699109797 2.76E—09 4.08E—-07 —0.563212162 2.84E—40
PLAU 0.62150196 0.702145935 0.176011973 4.00E—09 5.92E-07 —0.570934425 141E—-41
PIGR 0.667952501 0.708575582 0.085176236 5.52E—09 8.16E—07 —0.658618149 3.68E—59
CFTR 0.282943087 0.394972666 0.481240926 9.95E—09 147E-06 —0.42150843 1.88E—21
SPDYC 0.704147468 0.724837107 0.041779213 1.76E-08 2.60E—06 — 047588325 1.18E=27
ZNF418 0.242511045 0.347906619 0520649675 2.19E—08 3.23E-06 —0.60435923 1.23E—-47
KLHDC9 0218223326 0.21602453 —0.014610182 2.63E—-08 3.90E—-06 —0.324984031 6.72E—13
ZNF69 0.117564379 0.142619404 0.278719274 2.66E—08 3.94E-06 —0.321104504 1.30E-12
FAM84A 0212175332 0.283041565 0415757 3.53E—-08 5.23E—06 —0.335916441 9.96E—14
PPP1R14D 0.554947827 0.482097369 —0.203027589 6.64E—08 9.82E—06 —0.560710402 740E—40
TCP1 0.624104627 0.659912943 0.080487807 7.18E—08 1.06E—-05 —0.651746879 143E-57
ZNF300 0.328409005 0415250076 0.338486746 9.38E—-08 1.39E—-05 —0472110183 3.46E-27
MPV17L 0.092385716 0.163253978 0.821376431 1.86E—07 2.75E—05 — 0441792534 1.23E-23
KRT20 0.790374237 0.804070021 0.02478522 2.92E—-07 4.33E-05 —0.571800235 1.00E—41
GKN2 0.599299248 0.671212935 0.163493955 4.56E—-07 6.76E—05 —0.340697654 4.22E—-14
ZNF502 0.329208879 0.402697069 0.290691725 6.68E—07 9.88E—05 —0.663271171 291E-60
C170rf98 0.545496557 0.602566194 0.143549644 1.03E—06 0.000151843 —0.529865333 5.12E-35
ZNF880 0.140875018 0.238786926 0.76130805 1.04E—06 0.000154315 —0.560715099 7.38E—40
ZNF701 0.240700225 0.290476188 0.271182411 1.55E-06 0.000229592 — 0408643207 3.83E—20
NROB1 0.283614274 0392651776 0469320279 1.59E—-06 0.000235507 —0.320709703 1.39E—-12
ZNF43 0.067179039 0.115788942 0.78541442 1.79E—06 0.000265629 —0.375124186 552E—-17
HCAR?1 043400231 0.376162376 —0.206347167 1.93E—06 0.000285658 —0401199574 2.07E—19
IRX2 0.289887257 040281496 0474625351 3.59E—-06 0.000530859 —0.539421825 1.83E—36
TMEM63A 0.188744901 0.177446694 —0.089051973 4.10E—06 0.000607535 —0.345096982 1.89E—-14
[TPRIPL1 0.294502802 0.374069204 0.345023839 4.14E-06 0.000613146 —0.44960488 161E-24
Lyz 0.699231698 0.73368279%4 0.069385864 4.77E—06 0.000705417 — 0424840466 840E—22
IFNLR1 0246226199 0232227751 —0.084443891 9.60E—06 0.001421224 — 0420673159 229E-21
TUSC1 0.13659181 0.18296341 0421684184 9.60E—06 0.001421229 —0.395587597 7.19E—19
MAGEB2 0.842482835 0.77366049 —0.122946694 1.08E—05 0.001598591 —0.352008819 5.20E—-15
BVES 0.191406638 0.252664551 0.400582407 1.12E-05 0.001655808 —0.321449081 1.23E-12
LRRIQ4 0.704379076 0.645150221 —0.126716926 1.21E-05 0.001791741 —0.38912631 293E-18
RASSF10 0.120420032 0.181039038 0.588225416 5.00E—05 0.007400364 —0.328252794 3.83E—-13
PRICKLE4 0.605330662 0.686379771 0.181283603 8.15E—05 0.012068682 —0.318883347 1.89E—12
SYCP2 0.665037997 0.675303689 0.022099668 0.000123074 0.018214969 —0.655943521 1.55E—-58
WBP2NL 0524579367 0489275744 —0.1005133 0.000184004 0.027232614 —0.343246032 2.65E—14
BST2 0422881206 0.380549863 —0.152166944 0.000187292 0.027719241 —0.589617095 7.07E—-45
PLSCR4 0.17571366 0.196664014 0.162506649 0.000241916 0.035803514 —0.365149084 4.10E-16
GBP4 0.149941894 0.137445221 —0.125546784 0.000249246 0.036888372 —0.316476516 2.82E—12
RPL7A 0.801995847 0.754500966 —0.088072019 0.000275207 0.040730644 —0319271372 1.77E=12
ARHGDIB 0327607353 0313354218 —0.064173323 0.000282085 0.04174863 —0.552243 1.77E-38

CYB5A 0.127300153 0.141309476 0.150624055 0.000302943 0.044835593 —0.371106098 1.25E-16
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Table 2 Methylation-driven IncRNAs

IncRNA Normal mean Tumor mean logFC P-value Adjusted-P Cor Cor P-value
HOTAIRM1 0.250463518 044338384 0.823955709 2.68E—19 6.44E—18 —0.326878646 4.85E—-13
HOXB-AS3 0.319686633 0449195438 0490684853 5.50E—18 1.32E—16 — 0412913672 143E-20
HOXB-AST 0.335041907 0484121893 0.531028779 1.17E=17 2.80E—16 —0459143798 1.26E—25
AF186192.1 0.153517115 0.289865274 0.916983002 1.36E—16 3.26E—15 — 0432033057 144E-22
WASIR2 0.67568 0534227796 —0.33888511 3.03E-16 7.26E—15 —0.38041164 1.85E—-17
HOXC-AS3 0.180457648 0.304425709 0.754429909 3.10E-15 745E—14 —0.33684433 8.44E—14
LINCO1354 0.507119955 0.656977352 0373516594 2.20E—14 5.28E—13 —0.491825621 1.08E—29
BARX1-AS1 0469474928 0.571905661 0.284729072 1.61E-13 3.87E—12 —0.485400012 7.36E—29
AC005498.3 0.077393911 0.150762843 0.96198894 9.66E—11 2.32E—09 —0.347615295 1.18E—14
AC147651.4 0.545827883 0.59134957 0.115565122 9.66E—11 2.32E—-09 —0.35424262 341E-15
LINCO0676 0.65637148 0.770329464 0.230963053 2.88E—10 6.92E—09 —0.652305415 1.07E=57
LINCO1460 0.232370826 0.19315723 —0.266653276 457E-09 1.10E—07 —0.364997272 423E-16
AC023824.1 0646522945 0.703429803 0.121704887 7.06E—09 1.69E—07 —0.365841735 3.58E—16
LINCO1535 0.227839948 0.292001828 0.357956684 4.99E—-07 1.20E—05 —0.371976592 1.05E—16
LINC00506 0.141670097 0.203560361 0.522921383 3.03E-05 0.000726506 —0.330461443 261E-13
TUSC8 0.806078873 0.749074143 —0.105812488 9.91E-05 0.002378923 —0.713080072 2.02E-73
LINC00847 0.820916916 0.824558907 0.006386348 0.001130654 0.027135699 —0.35046797 6.95E—15

Combined methylation and gene expression survival
analysis in LUAD

The combined Kaplan—Meier curve analysis revealed that
the combination of methylation and expression of IncR-
NAs AC023824.1, AF186192.1, LINCO01354 and WASIR2
had a conspicuous correlation with the prognosis of
LUAD patients (Fig. 6a—d). The hypermethylation and
low-expression survival rate of AC023824.1 was high,
while the hypermethylation and low-expression survival
rate of AF186192.1, LINC01354 and WASIR2 were low.
The combined Kaplan—Meier curve analysis showed that
the combination of methylation and mRNA expression
of mRNAs CCDCI181, EFS, F2RL1, GKN2, ITPRIPL],
KLHDC9, MPV17L, and S1PR1 were associated with
overall survival of LUAD (P<0.05) (Fig. 6e-1). The hyper-
methylation and low-expression survival rate of F2RL1
was high. However, the hypermethylation and low-expres-
sion survival rates of EFS, CCDC181, GKN2, ITPRIPLI,
KLHDC9, MPV17L, and S1PR1 were low (Fig. 6).

Discussion

In recent years, with the increasing numbers of advanced
diagnoses and poor prognoses in lung adenocarcinoma, it
is pivotal to find more effective prognostic biomarkers to

predict survival in LUAD. LncRNA-related studies have
attracted the attention of various cancer fields. Accu-
mulating studies show that cancer-related IncRNAs may
serve as diagnostic or predictive biomarkers of cancer
and have a significant effect on the therapeutic treatment
of cancer [27]. Emerging evidence shows that studies on
the molecular mechanisms and prognostic biomarkers of
LUAD associated with methylation-driven IncRNA and
mRNA are still lacking.

In recent years, epigenetic alterations in DNA meth-
ylation, noncoding RNA expression, chromatin modeling
and post-transcriptional regulators have been found to
play significant roles in the regulation and development
of lung cancer pathogenesis [28—-32]. Some studies have
shown that epigenetic changes in DNA methylation cause
changes in the expression of IncRNA, which might provide
a novel insight to explore new biomarkers for predicting
the prognosis of human cancer [33-36]. For instance, anal-
ysis of microarray data on gene expression and methyla-
tion showed that the expressions of IncRNAs LOC146880
and ENST00000439577 were regulated by DNA methyla-
tion, which might provide a new horizon to predict the
diagnosis and prognosis of NSCLC [37]. Lu et al. indi-
cated that MEGS3 is significantly downregulated in NSCLC

(See figure on next page.)

Fig. 1 Identification of top hypermethylated and hypomethylated mRNAs and IncRNAs in LUAD. a A flow diagram of the exploration of
methylation-driven mRNA and IncRNA in LUAD. b—e The methylation degree when comparing cancer patients to normal patients in LUAD. The red
curve indicates the methylation degree from the cancer group, the green curve indicates the methylation degree from the normal group, and the
black line above the figure is the distribution of methylation levels in normal patients. f-i The correlation between methylation and gene expression

in methylation-driven mRNAs and IncRNAs
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Fig. 2 Heat map of methylation-driven mRNAs and IncRNAs in LUAD. a The hierarchical clustering heat map of LUAD-specific methylation-driven
mRNAs. b The hierarchical clustering heat map of LUAD-specific methylation-driven IncRNAs. In the figure, red represents highly methylated genes

and green represents low methylated genes between LUAD and adjacent tissues
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Fig. 3 Functional enrichment analysis of methylation-driven mRNAs in LUAD. a The outer circle represents the expression (logFC) of
methylation-driven mRNAs in each enriched GO (gene ontology) term: red dots on each GO term indicate upregulated methylation-driven mRNAs
and blue dots indicate downregulated methylation-driven mRNAs. The inner circle indicates the significance of GO terms (log10-adjusted P values).
b The circle indicates the correlation between the top 30 methylation-driven mRNAs and their gene ontology terms. ¢ The distribution of the
methylation-driven mRNAs in significant GO terms

tissues that could be affected by DNA methylation [38].
Previous studies have shown that survival-associated,
methylation-driven IncRNAs might serve as novel prog-
nostic biomarkers for predicting the prognosis of LUAD.

Recent studies have shown that the roles of IncRNA in
tumorigenesis and metastasis can indicate that IncRNA
may function as a novel biomarker for the diagnosis and
prognosis of cancer [39—-44]. LncRNA TUBA4B has been
reported to serve as a new predictor for prognosis and
modulate cell viability in non-small-cell lung cancer [45].
IncRNA AFAP1-AS1 may act as an oncogenic to facilitate
the migration of non-small-cell lung cancer (NSCLC)
[16]. Long noncoding RNA ANRIL acts as an oncogene
by silencing KLF2 and P21 expression to promote the
development of NSCLC [46]. LncRNA PANDAR acts as
a cancer suppressor gene by regulating Bcl-2 to affect cell
apoptosis in NSCLC [47].

In the present study, we retrieved methylation and
IncRNA and mRNA expression from the TCGA data-
base by using bioinformatics analysis and obtained
methylation-driven IncRNAs and mRNAs to predict
the prognosis of LUAD. First, we obtained differentially
expressed methylation and IncRNA and mRNA using
the MethylMix R package to obtain methylation-driven
IncRNA and mRNA. Functional enrichment analysis was
performed to analyze the methylation-driven mRNA
to identify its biological functions in the regulation and
development of LUAD. Furthermore, univariate and
multivariate Cox regressions were performed to con-
struct a predictive model for predicting the prognosis
of LUAD. Finally, a combined methylation and IncRNA
expression survival analysis was carried out, which
might provide novel insight to predict the diagnosis and
prognosis of LUAD.
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Table 3 Pathway analysis

ID Pathway Count P-value g-value
R-HSA-212436 Generic transcription pathway 15 0.000169248 0.01031453
WP3891 Benzene metabolism 2 0.000338181 0.01031453
R-HSA-73857 RNA polymerase Il transcription 15 0.000564162 0.011471298
R-HSA-74160 Gene expression (transcription) 15 0.001668004 0.020896371
PA150642262 Platinum pathway, Pharmacokinetics/pharmacodynamics 2 0.001720726 0.020896371
R-HSA-156580 Phase ll—conjugation of compounds 4 0.002055381 0.020896371
WP692 Sulfation biotransformation reaction 2 0.002963269 0.025340686
WP697 Estrogen metabolism 2 0.003323369 0.025340686
PWY-4061 Glutathione-mediated detoxification 2 0.005884846 0.035982304
R-HSA-156584 Cytosolic sulfonation of small molecules 2 0.006376838 0.035982304
path:hsa00983 Drug metabolism—other enzymes—Homo sapiens (human) 3 0.006488612 0.035982304

In the present study, we combined methylation and
IncRNA and mRNA expression data with survival anal-
ysis to identify 4 IncRNAs and 8 mRNAs that act as

independent prognostic factors for predicting the diagno-
sis and prognosis of LUAD. LINC01354 acts as a ceRNA
to predict the early diagnosis and prognosis of colorectal
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Table 4 Multivariate Cox regression analysis of 6 IncRNAs
associated with overall survival in LUAD patients

coef exp(coef) se(coef) z P
FOXE1 3.004  20.1665 1.018 295 0.0032
HOXB13-AS1_2 1.0226 2.7804 0.5657 1.81 0.0706
VMOI1 1.054 2.869 0.5992 1.76  0.0786
HISTTH3F 1.005 27319 0.3872 26 0.0094
AJ003147.8 —3.0925 0.0454 0.6695 —462 3.80E—06
ASXL3 14791 4.3888 0.7969 1.86 0.0635

cancer [48]. The combined survival analysis showed
that the low expression of AC023824.1 with hypermeth-
ylation, compared to the high expression of AC023824.1
with hypomethylation, had a higher survival rate. (P=0).
The combined hypermethylation and low-expression sur-
vival rate of AF186192.1 was lower than the hypometh-
ylation and high-expression survival rate of AF186192.1.
(P=0.01). The low expression and hypermethylation
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survival rate of LINC01354 was low. (P=0.038). The high
expression and hypomethylation survival rate of WASIR2
was high. The survival analysis showed that IncRNA
AF186192.1, LINCO01354 and WASIR2 might act as can-
cer suppressor genes regulated by DNA methylation
to play significant roles in predicting the prognosis of
LUAD. LncRNA AC023824.1 might act as an oncogene
regulated by DNA methylation to have a pivotal effect
on predicting the prognosis of LUAD. The survival rate
of hypermethylation and low expression of CCDC181,
EFS, GKN2, ITPRIPL1, KLHDC9, MPV17L, and S1PR1
were low. However, the hypermethylation and low-
expression of the survival rate of F2RL1 was high. F2RL1
might act as an oncogene for predicting the prognosis
of LUAD. Previous studies have shown that CCDC181,
KLHDCY, and S1PR1 act as methylation-driven genes
to reveal prognostic biomarkers in LUAD [19]. GKN2
may contribute to the homeostasis of gastric epithelial
cells by inhibiting GKN1 activity [49]. F2RL1 may act as
novel acute myeloid leukemia subsets that are meaning
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Fig. 5 Prognostic value of 6-methylation INncRNAs in LUAD. a A risk heat map established from 6 IncRNAs from 449 LUAD patients. b Kaplan-Meier
curve analysis for OS (overall survival) of LUAD patients using the 6 IncRNA signatures. ¢ ROC curve analysis of the prognostic 6-IncRNA signature
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for treatment guidance [50]. MPV17L acts as a unique
interacting protein and regulator of HtrA2 protease,
mediating antioxidant and antiapoptotic functions in
mitochondria [51]. Compared with previous studies, our
study first obtained differentially expressed mRNA and
IncRNA using the edge R package and aberrant methyl-
ated genes using the limma R package, and then we fil-
tered low expression genes and intersected mRNA and
IncRNA expression data with DNA methylation data to
obtain methylation-driven genes by using the MethylMix
R package. The MethylMix (https://bioconductor.riken
jp/packages/3.1/bioc/html/MethylMix.html) is an algo-
rithm implemented to integrate DNA methylation with
RNA expression to identify methylation-driven genes in
cancers [52]. In summary, MethylMix provides a tool that
contributes to the analysis of methylation-driven IncR-
NAs and mRNAs in cancer studies from TCGA [17, 18].
However, the MethylMix focuses on identifying cis-reg-
ulatory effects of DNA methylation on gene expression
and does not currently model trans-regulatory effects
[18]. Further studies are needed to solve the multiple
testing challenge on identifying trans-regulatory effects
of DNA methylation on gene expression. Our study may
provide a novel method for determining disease-specific
prognostic biomarkers in LUAD and may play a signifi-
cant role in predicting the diagnosis and prognosis of
LUAD.

Our study subjects were retrieved from the TCGA
database, which is a significant tool for analyzing prog-
nostic biomarkers. It is not known whether our results
are applicable to other groups. The predictive prognos-
tic IncRNA and mRNA signature needs to be verified by
molecular biologic experiments on clinical samples in
future studies. Eventually, large-scale samples and experi-
mental studies could validate the biological function of
prognostic biomarkers in LUAD.

Conclusion

In conclusion, our study identified methylation-driven
mRNA and IncRNA by using bioinformatics analysis
from the TCGA database. A Cox predictive model was
performed to identify independent prognostic factors.
Methylation and gene expression data combined with
survival analysis was used to identify LUAD-specific,
methylation-driven IncRNAs and mRNAs for predicting
the diagnosis and prognosis of LUAD.

Abbreviations

LncRNA: long noncoding RNA; LUAD: lung adenocarcinoma; GO: gene ontol-
ogy; NSCLC: non-small-cell lung cancer; FC: fold change; FDR: false discovery
rate; TCGA: The Cancer Genome Atlas Project; DAVID: The Database for Anno-
tation, Visualization and Integrated Discovery; ROC: receiver operating curve;
AUC: area under the ROC curve.
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