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The role of collagen in cancer: from bench 
to bedside
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Abstract 

Collagen is the major component of the tumor microenvironment and participates in cancer fibrosis. Collagen biosyn-
thesis can be regulated by cancer cells through mutated genes, transcription factors, signaling pathways and recep-
tors; furthermore, collagen can influence tumor cell behavior through integrins, discoidin domain receptors, tyrosine 
kinase receptors, and some signaling pathways. Exosomes and microRNAs are closely associated with collagen in 
cancer. Hypoxia, which is common in collagen-rich conditions, intensifies cancer progression, and other substances in 
the extracellular matrix, such as fibronectin, hyaluronic acid, laminin, and matrix metalloproteinases, interact with col-
lagen to influence cancer cell activity. Macrophages, lymphocytes, and fibroblasts play a role with collagen in cancer 
immunity and progression. Microscopic changes in collagen content within cancer cells and matrix cells and in other 
molecules ultimately contribute to the mutual feedback loop that influences prognosis, recurrence, and resistance in 
cancer. Nanoparticles, nanoplatforms, and nanoenzymes exhibit the expected gratifying properties. The pathophysio-
logical functions of collagen in diverse cancers illustrate the dual roles of collagen and provide promising therapeutic 
options that can be readily translated from bench to bedside. The emerging understanding of the structural proper-
ties and functions of collagen in cancer will guide the development of new strategies for anticancer therapy.
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Background
Cancer continues to receive increasing attention from the 
academic community because it was the third most com-
mon cause of death worldwide in 2018. A total of 18.1 
million new cancer cases and 9.6 million cancer deaths 
were evaluated in 2018 [1], and there are predicted to 
be 1,762,450 additional cancer cases and 606,880 can-
cer deaths in the United States in 2019 [2]. Despite vari-
ous cancer-related guidelines for diagnosis, treatment, 
and follow-up, improving the long-term prognoses of 
certain cancer patients remains difficult. Cancer treat-
ment strategies with highly effective response rates still 
need to be explored. An increasing amount of recent 
research has concentrated on the function of the tumor 

microenvironment in favoring cancer progression. In 
addition, cancer cells exhibit multiple hallmarks of cancer 
progression, including the recruitment of various cells 
to form a tumor microenvironment [3], which consists 
of varying functional stromal cell subtypes and matrix 
protein polymers [4]. The most abundant matrix pro-
tein polymers are collagens, which increase tumor tissue 
stiffness, regulate tumor immunity, and promote metas-
tasis [5, 6]. In addition, extensive collagen deposition is 
the main pathological characteristic of some cancers, 
for which sufficient therapeutic applications are lacking, 
resulting in the poor survival outcomes of patients [7]. 
Herein, we summarize the current understanding of the 
key basic and clinical functions of collagen in cancer and 
provide clues regarding promising treatments for modi-
fying the tumor matrix.
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Physiological and physicochemical properties 
of collagen
Collagen is a type of right-handed helix glycoprotein 
that contains three homologous or nonhomologous 
left-handed helix α chains. These α chain amino acid 
sequences are characterized by glycine–X–Y repeats with 
or without interruptions, with X and Y most likely being 
proline or hydroxyproline, and the hydroxyproline con-
tent of collagen contributes to its thermal stability [8].

Nascent α chains by different genes are encoded first to 
compose the N-terminus. The next step of assembly into 
a three-helix structure begins with the C-terminus of the 
nascent α chains to form procollagen, which is accompa-
nied by certain chaperone proteins including heat shock 
protein 47, prolyl-hydroxylase, and protein disulfide 
isomerase to ensure precise alignment [9]. Hydroxyla-
tion and glycosylation in the endoplasmic reticulum are 
two main modifications that occur after translation, and 
the hydroxylation modification is regulated by vitamin C 
and pyruvate metabolism [10, 11]. Then, procollagen is 
hydrolyzed to form collagen by procollagen N-proteinase 
and C-proteinase within Ca2+ surrounding the endoplas-
mic reticulum along with the chaperone heat shock pro-
tein 47 and protein disulfide isomerase. This important 
hydrolysis reaction is the rate-limiting step of collagen 
biosynthesis. In addition, endopeptidases and metallo-
proteinases can also excise procollagen at both the N-ter-
minus and C-terminus, and the removed propeptides can 
conversely regulate the amount of procollagen, further 
influencing collagen production [12, 13].

Collagen is released into the extracellular matrix (ECM) 
to form a fibril supramolecular assembly that may start in 
Golgi-to-membrane carriers after procollagen excision or 
be localized at the plasma membrane of fibroblasts. The 
stability of collagen assembly is influenced by intramo-
lecular and intermolecular linkages, particularly covalent 
linkages, chiefly including lysyl oxidase (LOX) crosslinks 
[14], glycosylation crosslinks [15], and transglutaminase 
crosslinks [16], which vary across collagen types.

Different collagens in the ECM are finally degraded by 
various matrix metalloproteinases (MMPs) belonging to 
the zinc-dependent endopeptidase family, by proline oxi-
dase, or by sheddases that release the soluble ectodomain 
of membrane collagens [17, 18].

In general, the 28 known collagen types are classified 
into four subfamilies on the basis of their supramolecu-
lar assemblies, including fibril-forming collagens (I, II, 
III, V, XI, XXVI, XXVII); fibril-associated collagens with 
interrupted triple helices (FACITs: IX, XII, XIV, XVI, 
XIX, XX, XXI, XXII, XXIV), which characteristically link 
to the surface of collagen fibrils rather than form fibrils 
by themselves; network-forming collagens (IV, VIII, 
X), which characteristically generate noncollagenous 

C-terminal domain dimers and N-terminal 7S domain 
tetramers; and membrane-anchored collagens (MACITs: 
XIII, XVII, XXIII, XXV) [19]. Among these types, COLI, 
COLIII, and COLV are mainly produced by fibroblasts, 
while COLIV is predominantly expressed by epithelial 
and endothelial cells. Notably, cancer cells and tumor-
associated macrophages also produce collagen under 
some circumstances [20, 21].

Cancer cells influence collagen formation
During the occurrence and development of cancer, the 
ECM undergoes structural changes. In cancer cells, the 
content and distribution of collagen is modified to fur-
ther coordinate cancer cell biological properties, includ-
ing various gene mutations, transcription factors, signal 
transduction pathways, and receptors.

The heterogeneity of mutated genes is one of the major 
promoters for cancer cell behavior and influences the 
interaction between cancer cells and ECM components. 
The mutation of oncogenes, which are mainly divided 
into tumor suppressor genes and proto-oncogenes, also 
alters the collagen conditions in the tumor matrix.

The content and architecture of collagen are strongly 
altered by mutated tumor suppressor genes in cancer 
cells. The p53 pathway regulates the formation of tumor-
associated collagen signature-3, which is referred to as a 
collagen bundle angled 60° to 90° relative to the cancer 
border and is indicated by the proliferation and invasion 
of cancer [22]. Mutated p53 in cancer cells, along with the 
activation of Janus kinase 2-signal transducers and acti-
vators of transcription (STAT) 3 signaling, influences the 
collagen production response to paracrine stimulation 
from pancreatic stellate cells [23]. In addition, the effects 
of collagen resolvents are associated with p53. The extra-
cellular collagen-derived antiangiogenic factor Arresten, 
which is located in the C-terminal noncollagenous 
domain of COL4A1, has been linked to p53 activation 
[24]. The p53 gene upregulated collagen prolyl-hydroxy-
lase to potentiate the production of full-length COL4A1, 
further enhancing the content of Arresten [25]. Collagen 
closely interacts with not only p53 but also other tumor 
suppressor genes associated with cancer processes. Can-
cer progression can be regulated by deleting a single copy 
of the phosphate and tension homology deleted on chro-
mosome ten (PTEN) gene or by completely silencing this 
gene, resulting in the increased recruitment of cancer-
associated fibroblasts (CAFs) and production of COL1A1 
[26, 27].

Consistently, mutated proto-oncogenes combine with 
collagen to support cancer progression. Mutant Kras 
together with the epithelial-mesenchymal transition 
(EMT) regulator Snail enhanced collagen production 
by pancreatic cancer stellate cells, and silencing Kras 
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expression markedly decreased COLI deposition in renal 
fibrosis [28, 29].

Transcription factors can lead to aberrant target gene 
expression and tumorigenesis, and nuclear factor kappa-
B (NF-κB) and STATs mostly participate in collagen 
expression and organization. For example, COL2A1 was 
shown to be under the transcriptional control of the 
NF-κB subunit p65 in sarcomatous [30]. Collagen fib-
ers showed less parallel alignment, less skewed distribu-
tion, and more direction variation rather than decreased 
numbers following combination treatment with the Janus 
kinase/STAT3 inhibitor AZD1480 and gemcitabine for 
pancreatic cancer [31].

Cancer cells further communicate with collagen via 
signaling pathways during the processes of cellular 
metabolism, proliferation, differentiation, and apoptosis. 
Transforming growth factor-β (TGF-β)/Smad signaling 
is a typical component of serine/threonine kinase signal 
transduction. Accumulating studies have revealed a posi-
tive role of TGF-β/Smad signaling in collagen modifica-
tion. The architecture and mechanics of collagen fibers 
adjacent to epithelial lesions, rather than abundant bulk 
collagen, transformed the pancreatic epithelium into stiff 
fibrotic tissue via nonfunctional Smad4-phosphorylated 
myosin light chain 2 [32]. TGF-β sometimes reverses 
cancer cell functions via collagen. Collagen stiffness 
induced melanoma differentiation through the Yes-asso-
ciated protein (YAP)/pax3/microphthalmia-associated 
transcription factor (MITF) axis, but in the presence of 
fibroblasts, TGF-β suppressed YAP/pax3/MITF expres-
sion and induced YAP/transcriptional enhanced asso-
ciate domain/Smad-driven transcription, leading to 
dedifferentiation [33].

Other signaling pathways also affect collagen within 
cancer cells. Crosstalk between TGF-β and the Ras-
Raf-mitogen-activated protein kinase (MEK)-extracel-
lular signal-regulated kinase (ERK) signaling pathway 
increased collagen synthesis along with p38 activation 
in melanoma cells to promote cancer progression [34]. 
Overexpression of tRNAi

Met increased the production of 
collagens and collagen-processing enzymes, especially 
COLII, forming a protumorigenic ECM [35].

Tyrosine kinase receptors are one category of princi-
ple collagen-related receptors that are expressed in vari-
ous cancers. Fibroblast growth factor receptor (FGFR) 
4-R388, in which Gly388 in the FGFR4 transmembrane 
domain was replaced with arginine, regulated the degra-
dation of COLI, COLII, and COLIV by increasing MMP-
14 protein expression in prostate cancer cells, especially 
within the tumor and in the fibrous capsule around the 
cancer [36]. The effect of epidermal growth factor recep-
tor (EGFR) on collagen remains to be further studied. 
Collagen was reduced in recurrent breast cancer by 

combinatorial treatment with FGFR- and EGFR-specific 
inhibitors, similar to the effect of this treatment on pri-
mary tumors [37]. In contrast, c-Met expression, rather 
than EGFR expression, colocalized with abundant COLI 
in pulmonary adenocarcinoma [38].

The G protein family receptors, especially small G pro-
teins, including Ras and Rho members, are important in 
collagen fiber properties and production. G proteins can 
promote matrix stiffness due to their collagen alignment 
change. The high stiffness increases nuclear localiza-
tion of the transcription factor Twist1 by further reduc-
ing the expression of the cytoplasmic binding partner 
Ras-GTPase-activating SH3 domain-binding protein 2 
to induce cancer EMT, invasion, and metastasis [39]. 
Cell division cycle 42, a member of the Rho family, was 
shown to regulate the thickness and contractility of col-
lagen with the activation of MMP-9 [40]. Rho-associated 
coiled-coil kinase (ROCK)/Rho signaling may commu-
nicate with collagen directly through fibroblasts to 
regulate cancer cell behavior. At least two interconvert-
ible types of cancer cell migratory motility were shown 
to be regulated by adhesion to collagen: mesenchymal 
motility was dependent on integrin and MMPs with Ras-
related C3 botulinum toxin substrate 1 (RAC1) signaling 
and caused cells to appear elongated and bipolar, while 
amoeboid motility was dependent upon the ROCK/Rho 
kinase and caused cells to appear round, further leading 
to myosin-II light chain phosphorylation and actomyosin 
shrinkage [41]. The ROCK/Rho signaling pathway also 
influences collagen by other mechanisms. Acetylation of 
the COL1A1 gene promoter was facilitated by ROCK/
Rho signaling pathways in breast cancer cells [42]. In 
addition, in pancreatic ductal adenocarcinoma (PDAC), 
collagen impairment via ROCK inhibition was independ-
ent of changes in fibroblast proliferation and survival 
[43]. Notably, the three‐dimensional collagen matrix 
was remodeled by PDAC cells, possibly by the fusion of 
ROCK with estrogen receptor (ER) causing increases in 
MMP-10 and MMP-13 [44].

The influence of collagen on cancer cell behavior
Cellular behavior is controlled by cell signal transduction 
pathways. Cells accept external signals through recep-
tors and transmit them by cascade, which then transform 
extracellular signals into intracellular signals, causing 
physiological cellular reactions that regulate biological 
activities. Collagen, a component of the ECM, also influ-
ences cancer cell behavior (Fig. 1). Cancer cells reversely 
reshape collagen to form a reinforcing cell-collagen loop, 
which gradually fosters cancer progression.

Collagen interacts with cancer cells mainly by directly 
connecting to cancer cell receptors. Discoidin domain 
receptors (DDRs) are a subfamily of tyrosine kinases that 
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are divided into homologous DDR1 and DDR2 recep-
tors. Collagens closely associate with preferred DDRs, 
such as COLIV with DDR1 and COLII and COLX with 
DDR2. A COLIV-DDR1-MMP-9-COLIV feed-forward 
loop was shown to promote the migration and adhesion 
of myeloid leukemia cells in bone marrow by activating 
AKT [45]. DDR1b phosphorylated at Tyr513 by COLI, as 
opposed to DDR1a, interacted with the signaling adap-
tor Src homolog 1 to affect focal adhesion kinase (FAK)-
related protein-tyrosine kinase, resulting in N-cadherin 
upregulation in both primary and metastatic PDAC 
cells to induce EMT [46]. Others further reported that 
COLI activated DDR2 rather than integrin or TGF-βR 
to stimulate ERK2 in a Src-dependent manner; activated 
DDR2 then phosphorylated Snail1 at S82 and S104 and 
inhibited glycogen synthase kinase (GSK) 3β activity, 
ultimately contributing to sustained MMP-14 and colla-
gen synthesis in breast cancer [47]. Nevertheless, DDR2 
activated by collagen was not conducive to Src homolog 
2 domain phosphorylation [48]. Notably, the binding of 
COL11A1 to both α1β1 integrin and DDR2 to activate 
the Src-phosphatidylinositol 3-kinase (PI3K)/AKT-NFκB 
signaling pathways induced the expression of three cispl-
atin-induced apoptosis inhibitors in ovarian cancer [49].

Adhesion between collagen and cancer cells, such 
as the adhesion of COLI and COLIV to cancer cells, 
impacts cancer progression [50]. The cadherin fam-
ily represents one typical cell adhesion molecule. COLI 
stimulated E-cadherin upregulation to facilitate the 
migration of PDAC cells [51]. However, other studies 
on PDAC have reported the opposite effect of COLI on 
E-cadherin via different signaling pathways; Smad-inter-
acting protein 1, a member of the small Zfh-1 family that 
acts as a transcriptional repressor, was induced by COLI 
to downregulate E-cadherin by simultaneously binding 
to two defined DNA target sites at E-boxes of the E-cad-
herin promoter through two zinc-fingers clusters [52]. 
The COLIV-regulating chemokine (C-C motif ) ligand 

(CCL) 5 and CCL7 were associated with the alteration 
of E-cadherin to influence EMT, further promoting liver 
metastasis [53]. COLIV not only promoted a decrease in 
E-cadherin expression, an increase in N-cadherin expres-
sion, and upregulation of Snail1, Snail2, and Sip1 (E-cad-
herin transcriptional repressors that bind at E-boxes 
of the E-cadherin promoter) but also induced FAK and 
ERK1/2 activation in affiliation with TGF-β during EMT, 
resulting in increased MMP-2 secretion and enhanced 
cell migration [54]. In addition, the mediation of prostate 
cancer metastasis by COLXXIII corresponds to changes 
in OB-cadherin, α-catenin, β-catenin, γ-catenin, vimen-
tin, and galectin-3 protein expression [55].

Integrin, a typical adhesion molecule in cancer cells, 
often mediates cancer cell behavior, especially when 
combined with collagen. Integrin comprises two units: 
α and β. Different types of collagen bind to various inte-
grins in numerous signaling pathways in cancer cells. 
The binding of integrin to collagen led to the activa-
tion of AKT/PI3K signaling, mitogen-activated protein 
kinase (MAPK) signaling, and Rho family signaling, and 
the MEK/ERK signaling pathway especially regulated 
αv integrin subfamily members such as αvβ3 and αvβ5, 
inducing the proliferation and invasion of squamous cell 
carcinoma (SCC) cells [56]. Additionally, the deposition 
of collagen through integrin-regulated ROCK, FAK, and 
AKT activation inactivated GSK3β and increased the 
nuclear localization of the mechanotranscription coac-
tivator β-catenin to promote cutaneous SCC progres-
sion [57]. Various experiments have further revealed the 
effects of specific types of collagen in combination with 
integrin on cancer. COLI is a typical interstitial matrix 
collagen via integrin to induce cancer cell behavior. 
Remodeled COLI affected the invasion of ovarian cancer 
cells by mediating the integrin-PTEN/PI3K/AKT signal-
ing pathway [58]. COLI and α2β1 integrin-promoting 
cathepsin B-mediated invasiveness were associated 
with secreted acidic and cysteine-rich proteins in mela-
noma [59]. The mediation of COLI by α2 integrin led to 
EMT-like changes, such as downregulated E-cadherin 
and β-catenin expression, decreased differentiation, 
increased clonogenicity, and increased colorectal cancer 
stem cells [60]. The expression of αv integrin response to 
COLI was enhanced by melanoma cells to promote the 
upregulation of protein kinase C (PKC) α, thereby relo-
cating endogenous p53 protein [61]. During its adhesion 
to COLI, mda-9/syntenin at the plasma membrane facili-
tated processes in the formation of β1 integrin signaling 
complexes, including the assembly of the integrin-linked 
kinase (ILK)-PINCH1-α-parvin complex and its translo-
cation to the cell membrane, leading to the activation of 
AKT, RAC1, and ERK1/2 to promote cancer metastasis 
[62]. The linearization and matrix compaction of COLI, 
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Fig. 1  The contribution of collagen to cancer cells
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via β1 integrin-FAK signaling modulated myosin IIA, was 
exhibited by most radiation-induced breast cancer cells 
[63]. COLIV accounts for the basement membrane. The 
high-density COLIV matrix induced the formation of 
cancer cell invadopodia and actin-rich proteolytic pro-
trusions, which locally degraded collagen via αvβ3 inte-
grin [64, 65]. The COLIV/β1 integrin signaling pathway 
significantly stimulated Src and ERK phosphorylation, 
reducing cell stiffness and accelerating cell motility [66]. 
Ras GTPases, Rac GTPases, PI3K, and PKC participated 
in melanoma cell migration mediated by COLIV/β1 inte-
grin [67]. In soft-tissue sarcoma, the interplay of COLVI 
and NG2 triggered PI3K activation through α2β1 integ-
rin, which was associated with adhesion, survival, aggre-
gation, and migration and did not directly influence cell 
mitosis [68]. Both matrix collagen and basement mem-
brane collagen communicate with integrin to impact 
cancer cell behavior, and numerous other collagens also 
bind to integrin to regulate cancer progression. COLXIII 
in breast cancer [69], COLXVI in glioblastoma [70], and 
COLXVI in OSCC [71] induce β1 integrin to promote 
cancer stemness, invasion, and drug resistance. Even col-
lagen glycosylation modulates integrin binding. Galac-
tosylation occurred on the periphery of α2β1 integrin, 
where it interacted with α1(IV)382–393 but occurred 
in the middle of α3β1 integrin, where it interacted with 
α1(IV)531–543 in melanoma cell adhesion [72].

Collagen can stimulate additional signaling pathways 
in cancer cells to exert various functions. The increased 
expression of COL1A1 affected the caspase-3/PI3K/AKT 
pathways to inhibit cell apoptosis in cervical cancer tis-
sues [73]. After the withdrawal of rapamycin treatment, 
mutated COL1A1 reinforced PI3K–AKT-mammalian 
target of rapamycin (mTOR) signals in cancer stem cells 
to sustain the metastatic burden of ERα-positive breast 
cancer cells; however, lung metastases were independ-
ent of mTOR signaling [74]. In addition, increased COLI 
did not alter primary tumor growth and ERα expression 
but enhanced circulating cancer cells and metastasizing 
cancer cells with decreased phospho-STAT5 expression, 
increased phospho-ERK1/2, and increased phospho-
AKT expression; this phenomenon coincided with the 
formation of invasive protrusions of the primary tumor 
harboring collagen fibers angled perpendicularly to the 
tumor mass [75]. However, COLI in non-small cell lung 
cancer (NSCLC) induced mTOR activation through an 
AKT-independent pathway, leading to EGFR-tyrosine 
kinase inhibitor resistance [76]. The Notch3-COL4A2 
loop promoted anoikis resistance with a reduction in 
phosphorylated AKT and ERK 1/2 in ovarian cancer cells 
[77]. Although both collagen glycation and carbamylation 
affected the metastasis of cancer cells, glycation caused 
a more obvious delay in cell adhesion time and deficient 

actin stress fibers and inhibited the mean cell speed and 
FAK phosphorylation state more than carbamylation 
[78]. However, increased collagen in fibrosarcoma tis-
sue inhibited tumor growth and metastasis because the 
tumor necrosis factor (TNF) receptor 2/p38 MAPK sign-
aling pathway activated collagen expression via gadolin-
ium-containing fullerenol [79]. This distinction implies 
that different cancer cells facilitate collagen expression to 
exert inverse effects on cancer progression.

The relationship among exosomes, microRNAs 
and collagen in cancer
Recent studies have highlighted the relationship among 
exosomes, microRNAs (miRNAs) and collagen in cancer 
[80–82].

MiRNAs are a class of small, noncoding RNAs that act 
as epigenetic regulators of various physiological and path-
ological processes [83, 84]. The deregulation of miRNAs 
is associated with the initiation and progression of many 
diseases, such as cardiovascular diseases, infectious dis-
eases, diabetes, central nervous system-related diseases, 
and cancer [85–88]. MiRNAs exert their regulatory activ-
ity by affecting a variety of physiological and pathologi-
cal processes in cancer. Several studies have documented 
the roles of miRNAs in tumor growth, angiogenesis, 
and metastasis [89, 90], as well as their utility as diag-
nostic and therapeutic biomarkers [91–93]. Regarding 
the influence of miRNAs on collagen, various miRNAs 
are regulated in cancer cells to affect distinct functions. 
Breast cancer cells downregulate miR-196b-5p, which 
decreases COL1A1 levels, to induce growth and metasta-
sis [94]. Intestinal gastric cancer cells suppress COL1A2 
via miR-25 to promote EMT and angiogenesis [95]. MiR-
27b-3p and miR-455-3p enhance cancer cell quiescence 
in response to activated p53 to increase drug resistance 
and recurrence [96]. The miRNA let-7d inhibits pancre-
atic stellate cell activation [97] and macrophage infiltra-
tion by targeting COL3A1 in renal cell carcinoma [98]. 
Collagen-related enzymes are also differentially regu-
lated by miRNAs in cancer cells. MiRNA-29a targets heat 
shock protein 47 in cervical SCC [99], and miR-26a/b 
affects lysyl oxidase-like (LOXL) 2 and procollagen-
lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) levels in 
renal cancer cells [99]. Losartan improves the efficacy of 
chemotherapy in ovarian cancer partly by inducing antifi-
brotic miRNAs to normalize the ECM [100].

Exosomes are membrane-enclosed structures that 
facilitate communication between cancer cells and 
the ECM to influence cancer cell survival, growth, and 
metastasis and the immune system [101]. Cancer-derived 
exosomes induce the formation of CAFs in the collagen 
matrix to promote EMT [102] and increase the secre-
tion of MMP-14 to regulate collagen [103]. In addition, 
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collagen enhances exosome secretion [104]. Collagen and 
exosomes form a mutually beneficial feedback loop to 
promote cancer progression.

The reciprocity between collagen and cancer cells 
under hypoxic conditions
Hypoxic conditions, a common condition in collagen-
rich ECM, intensify cancer progression based on the 
interaction between cancer cells and collagen. Hypoxia-
inducible factor (HIF)-1, LOX, and MMP participate 
in the process. COLI fibers are reduced in the hypoxic 
microenvironment via increased expression of LOX in 
renal cell carcinoma, decreased expression of MMP-3 
in breast cancer, or decreased expression of MMP-1 and 
MMP-16 in prostate cancer [105, 106]. Collagen can be 
remodeled by HIF-1 regulating LOXL1, LOXL2, and 
LOXL4 [107].

Other substances, such as hepatitis transactivator 
protein X in liver cancer [108], LKB1 via COLIV and 
β1 integrin in lung cancer [109], and HIF1α-dependent 
PLOD2 in primary sarcomas and pulmonary metastasis 
[110], participate with collagen in the HIF/LOX path-
way. Hypoxia increased the expression of procollagen-
lysine as collagen crosslinker to further enhance collagen 
fiber size and thus promote cancer metastasis [111]. 
COLI fibers exhibited covalent crosslinking with pro-
lyl 4-hydroxylase alpha 1 and prolyl 4-hydroxylase alpha 
2 in differentiated cell types of triple-negative breast 
cancer, and the prolyl 4-hydroxylase alpha 1/HIF-1 axis 

increased chemoresistance [112, 113]. Even mutant p53 
regulated the expression of COL7A1 in NSCLC, not by 
influencing HIF-1 binding to DNA, but rather by inhibit-
ing its transcriptional activity [114].

Hypoxic conditions are closely associated with vessels 
in cancer. Matrix collagen stiffness, rather than collagen 
density, alters vascular growth and integrity. Moreover, 
increased fibril density decreased vessel network forma-
tion, while increased interfibril branching improved ves-
sel volume density and formation, which were markedly 
dependent on the changed temporal and spatial deposi-
tions of COLIV [115]. In addition, neovessel branching 
is associated primarily with collagen crosslinking rather 
than with collagen content [116]. Notably, the von Hip-
pel–Lindau protein directly regulated COL4A2 assembly 
independent of HIF-α to restrain cancer angiogenic for-
mation [117]. Further reflecting the relationship between 
collagen and cancer cells with regard to treatment, 
improved tumor stromal pO2 levels and the recovery of 
blood flow were associated with the content and diam-
eter of collagen fibril under imatinib treatment [118].

Interaction between collagen and tumor matrix 
components
The complex interactions among collagen and matrix 
proteins within ECM cells contribute to cancer initiation 
and progression, as shown in Fig. 2.

Collagen in cancer tissue accompanies various cat-
egories and degrees of myeloid-lineage immune cells, 

Fig. 2  The complexity between collagen and the extracellular matrix. Multiple stromal cells and the extracellular matrix play important roles in 
stimulating or inhibiting collagen functions via different pathways in cancer progression. Collagen-rich extracellular matrices can bind to other 
molecules to form dense fibrosis, which induces an anoxic environment and changes the condition of new blood vessels. The behavior of cancer 
cells is also closely related to collagen. This process also affects the activity and localization of innate and adaptive immune cells
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including mast cells, macrophages, and neutrophils, and 
lymphocytes, including T cells and B cells, to reflect dif-
ferent cancer progression stages [119]. For example, pan-
creatic cancer stromal compositions were classified as 
inert, dormant, fibrogenic, or fibrotic based on α-smooth 
muscle actin (SMA) and COLI expression; these differing 
stromal compositions individually influenced the levels 
of CD4+ T cells, CD8+ T cells, macrophages, and neu-
trophils [120]. Increased infiltration of macrophages and 
lymphocytes was also observed in subcutaneous adipose 
collagen in gastrointestinal cancer patients with cachexia 
[121]. However, increased stromal COL10A1 was accom-
panied by low numbers of total tumor-infiltrating lym-
phocytes in ER-positive/EGFR2-positive breast cancer 
[122].

The location and quantity of collagen with lymphocytes 
reinforce discrepant cancer progression via distinct sign-
aling pathways. A high-density collagen matrix, rather 
than a low-density matrix, decreases T cell abundance 
and cytotoxic T cells but upregulates regulatory T cells 
[123, 124]. Aligned fibers and collagen density around 
vascular regions and epithelial cancer cells restricted 
the migration of T cells and limited their entry into 
the tumor mass [125]. Moreover, others have further 
reported that the distribution of collagen with lympho-
cytes affects cancer progression, but the effects on dif-
ferent cancers remain distinct. COLI was not associated 
with T cell deficiency in PDAC [126]. However, others 
noted that the metastatic urothelial cancer response to 
programmed death-1 and programmed death-ligand 1 
treatment involved the movement of CD8+ T cells from 
the cancer parenchyma to the collagen-rich peritumoral 
stroma [127]. Nevertheless, contact between infiltrating 
T cells, Tregs and antitumor T cells with collagen was 
inhibited by members of the TGF-β pathway to provide 
antimelanoma-immunity [128, 129].

Furthermore, both adaptive immunity and innate 
immunity affect collagen. Collagen deposition and lin-
earization are positively related to macrophage activity 
[130]. Additionally, denatured collagen acts as a strong 
chemoattractant for macrophages that mediate the pro-
motion of cancer [131]. The possible reasons for these 
functions of collagen are described below. Macrophages 
closely interact with stellate cells to influence the collagen 
matrix [132]. Tumor-associated macrophages orchestrate 
the deposition, crosslinking, and linearization of col-
lagen fibers, specifically COLI, VI, and XIV, at areas of 
tumor invasiveness [133]. Although macrophages do not 
exhibit efficient collagen internalization of mesenchymal 
origin, those originating from circulating CCR2 mono-
cytes internalize collagen in an MMP-dependent man-
ner, which is mediated by the mannose receptor rather 
than by β1 integrin [134–136]. In the collagen-rich breast 

cancer environment, coexpression of fibroblast activation 
protein and heme oxygenase-1 in macrophages resulted 
from an early innate regenerative response to IL-6 to 
directly facilitate transendothelial migration [137]. 
Cyclooxygenase-2 also induced overall collagen deposi-
tion and macrophages in early-stage breast cancer [138]. 
Notably, in the context of an αvβ3 integrin-specific colla-
gen hydrogel, M2-like immunosuppressive macrophages 
promoted angiogenesis in glioblastoma, while M1-like 
proinflammatory macrophages suppressed angiogenesis, 
which was regulated by Src-PI3K-YAP signaling associ-
ated with TGF-β1 [139]. IL-10 induces M2 differentiation 
in heterospheroid macrophages [140]. In contrast, colla-
gen degradation is enhanced not by M2 macrophages but 
rather by M1 macrophages, as endogenous macrophages 
are recruited, modified and activated to produce MMPs 
and hepatic growth factors, thereby enhancing hepato-
cyte proliferation and the release of TNF-related apop-
tosis-inducing ligands by natural killer cells, leading to 
hepatic stellate cell apoptosis [141]. Moreover, there are 
other important innate immune cells in the ECM that 
exhibit anticancer immunity or immunosuppressive 
effects. Collagen deposition can be induced by neurofi-
bromatosis type 1-recruited mast cells, which mediate 
stem cell factor/c-kit signaling in neurofibromas [142]. 
Collagen-dense tumors increased granulocyte monocyte-
colony stimulating factor, which was associated with 
neutrophil signaling [143]. However, COLXVII overex-
pression in cancer cells by activated leukocyte-associated 
immunoglobulin-like receptor-1 diminished natural 
killer cell cytotoxic activity [144]. By interaction with 
collagen in ovarian and breast cancer, tumor-associated 
dendritic cells expressed the highly receptor CD305/leu-
kocyte-associated immunoglobulin-like receptor-1 [145].

Fibroblasts are another important cell type in the ECM. 
CAFs cause various collagen deposits to develop into 
intratumoral fibrosis, resulting in cancer occurrence, 
differentiation, and invasion [4]. These CAFs can even 
originate from adipose tissue-derived stromal cells [146]. 
CAFs are classified as tumor-restraining, tumor-promot-
ing, secretory, or ECM-remodeling cells [147], which 
also exhibit CAF functions via mutated genes [148], the 
secreted cytokines IL-1β, TNF-α and NF-κB, inflamma-
tory signals, epigenetic regulation, etc. [6]. Cancer cells 
can invade collagen with fibroblasts, which are character-
ized by cell cycle phases and small cancer cell nest for-
mation [149]. Additionally, CAFs exert anticancer and 
cancer-induced effects to show dual influences for cancer 
progression [150].

Some ECM proteins, mainly including MMPs, hya-
luronic acid, fibronectin, and laminin, regulate cancer 
cell invasion and migration with collagen. The functions 
of MMPs with collagen are summarized in Table 1, and 
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MMP activity with contractility necessarily establish the 
ECM stiffness associated with collagen bulk and dis-
tribution [151]. The collagen gel storage modulus with 
glycosaminoglycans chondroitin sulfate and hyaluronic 
acid was dependent on both the fiber diameter and net-
work mesh size [152]. When cancer cells encountered 
stiff collagen fibers at fibronectin-rich invasive fronts, 
they engaged αvβ1 integrin to recruit vinculin and zyxin 
to focal adhesions sites in a tension-dependent manner 
to induce PI3K signaling [153]. Similarly, with increased 
COLI in the laminin-rich ECM regarded as an early 
tumor microenvironment, cancer stem cells maintained 
their endothelial-like gene signatures and secreted high 
levels of VEGFR-2 in a paracrine and autocrine man-
ner to simulate progression [154]. In contrast, unlike 
the laminin-rich microenvironment, a COLI Matrigel 
was sufficient to induce colon cancer mesenchymal gene 
expression, suppressing hepatocyte nuclear factor 4α 
and its target genes [155]. Additionally, CAFs initially 
constructed the ECM network by depositing fibronec-
tin, followed by the preferential interaction of COLI with 
relaxed fibronectin, which, in turn, limited the stretching 
and mechanical unfolding of fibronectin, leading to col-
lagen superseding fibronectin [156, 157]. Other types of 
collagen also have functions. The expression of COLIV 
was associated with the expression of fibronectin and 
laminin during central nervous system metastasis [158]. 

The binding of COLXV, rather than I, III, IV, and V, to 
fibronectin, laminin, and vitronectin inhibited the adhe-
sion and migration of fibrosarcoma cells [159].

Collagen and clinical applications
Various experiments and clinical data have revealed col-
lagen to be a prognostic factor correlated with cancer 
differentiation, cancer invasion, lymph node metasta-
sis, and clinical stage in cancer patients (Table 2). Lower 
COLI and COLIV content is a biomarker of differentiated 
tumors and proliferation potency of cancer cells [160, 
161]. The increased expression of COLIV and COLVI 
and the collagen structure reflect tumor angiogenesis and 
glioblastoma progression [162]. Even hypomethylation 
of the COL17A1 promoter is associated with advanced 
stage, increased invasion of breast cancer, lung adenocar-
cinoma, cervical cancer, neck SCC, and lung SCC [163].

Factors other than collagen content are correlated with 
clinical outcome [164], such as collagen alignment and 
distribution, which also affect cancer. During tumor pro-
gression, collagen exhibits different signatures. Tumor-
associated collagen signature 1 (TACS-1) indicates the 
presence of dense collagen near the cancer, TACS-2 rep-
resents collagen fibers parallel to the tumor edge, and 
TACS-3 depicts radially aligned collagen fibers [165]. 
TACS-3 was related to cancer cell invasion and poor 
survival in breast carcinoma and in  situ breast ductal 

Table 1  Pathological functions of MMPs associated with collagen in cancer

Subtype of MMPs Associated collagen Pathological functions of collagen References

MMP-1 COLI Regulated to facilitate melanoma cell growth and invasion [227, 228]

COLIV Regulated to foster breast cancer cell invasion in response to prolactin [229]

MMP-2 COLI Modulating MMP-2 activation in osteosarcoma [230]

COL4A2 Modulating MMP-2 activation and activity in liver cancer [231]

COLI and COLIV Regulated by the knockdown of MMP-2 to induce cancer metastases [232, 233]

Collagen organization Regulated to enhance malignant glioma recurrence and resistance to vemurafenib [234, 235]

MMP-3 COLI Regulated to induce mammary epithelial cells invasion and morphogenesis with chaperone 
heat-shock protein 90

[236]

COL11A1 Regulated to promote ovarian cancer progression [237]

MMP-7 COLI Both to predict the prognosis of opisthorchiasis-associated cholangiocarcinoma [238]

MMP-9 COLI Degraded in invasive melanoma fronts [239]

COLI Potentiated in Opisthorchis viverrini-induced cholangiocarcinogenesis [240]

COLIV Degraded to facilitate venous invasion in PDAC [241]

MMP-10 COLI Regulated by TGF-β in keratinocytes to promote invasion [242]

MMP-14 COLI Increased to promote fibrosis by TGF-β signaling in PDAC [243]

COLI Modulating MMP-2 and MMP-14 activation via β1 integrin [244]

COLI Regulated to prevent apoptosis to promote luminal-like breast cancer progression [245]

COLI Sustained activation of MMP-14 with EGFR at the cell surface enhances invasion, whereas 
growth within three-dimensional collagen is inhibited

[246]

MMP-16 COLI Supported around melanoma cells to enhance lymphatic invasion [247]

MMP-28 COLII interacted to more adhesion and less migratory [248]
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carcinoma [166, 167]. TACS-3 was shown to be driven 
by increased plasminogen activator inhibitor 1 via ERK 
signaling and promoted the migration of triple-negative 
breast cancer cells [168]. The elevated density and depth 
of collagen deposition showed high proliferation and 
invasion of cancer cells [169, 170]. Although COLI and 
COLIV are expressed in different tumor stroma compart-
ments in pancreatic cancer tissue, they stimulate prolif-
eration, migration, and antiapoptosis. The main form of 
COLI was generated by pancreatic stellate cells attributed 
to cancer cells in an indirect contactable desmoplas-
tic area to activate TGF-β, while COLIV was produced 
by cancer cells themselves to form an autocrine loop in 
direct proximity to cancer cells, causing discontinuous 
basement membrane-like structures that interacted with 
the COLIV CB3 region and β1 integrin of the cancer 
cells [171]. However, another study showed that COLV 

was expressed by pancreatic stellate cells via paracrine 
loops in PDAC [172]. The desmoplastic reactions in pri-
mary cancer were divided into mature, intermediate, 
and immature based on the presence of keloid-like col-
lagen and myxoid stroma; immature desmoplastic reac-
tions were associated with higher T and N stages, more 
extensive liver metastasis, and higher recurrence rate 
than other reaction types [173]. Furthermore, COLVII 
positively regulates the abundance of the cell polarity 
markers E-cadherin and B-catenin [174]. The mecha-
nisms underlying these important collagen properties are 
described below. Among five collagen parameters (align-
ment, density, width, length, and straightness), increased 
collagen width is the most powerful parameter for pre-
dicting cancer prognosis [175]. The elasticity of the col-
lagen matrix is controlled by fibril bending stiffness 
rather than by fibril diameter or intrafibrillar crosslinking 

Table 2  Collagen as a prognostic factor for cancer patients

Subtype Condition Cancer Associated clinical significance References

COLI Intactness Colorectal cancer Changes dynamically at stages I to IV, peaking at stage II [249]

Intactness Prostate cancer Metastasis [250]

COL1A1 Breast cancer Development and progression along with COL3A1 and 
COL4A1

[251]

COL1A2 Colorectal cancer Proliferation, migration, and invasion [252]

COL1A2 Hepatocellular cancer Metastasis [253]

N-terminal telopeptide NSCLC Overall survival [254]

N-terminal telopeptide Head and neck SCC Overall survival along with N-terminal telopeptide of 
COLIII

[255]

Pyridinoline crosslinked 
C-terminal telopeptide 
(serum)

Breast cancer Recurrence [256]

N-terminal telopeptide (urine) Breast cancer with bone metastases Survival prognosis with zoledronic acid treatment for 
3 months

[257]

COLII COL2A1 High-grade serous ovarian cancer Recurrence [258]

COL2A1 Chondrosarcoma Frequent mutations [259]

COLIII COL3A1 Breast cancer Irregular margin status and mitotic activity [260]

COLIV Intactness Advanced gastric carcinoma The depth of wall penetration and stage [261]

Intactness Oral SCC Positive lymph node status [262]

Intactness Colorectal cancer Liver metastases [263]

7S domain (serum) Hepatocellular carcinoma Intractable ascites [264]

COL4A1 PDAC Aggressive progression [265]

COL4A1 (urine) Bladder cancer Recurrence [266]

COL4A3 Gastric carcinomas Cancer size, lymphatic invasion, venous invasion, TNM 
stage, and histologically distinction

[267]

COLV Intactness Resected NSCLC Overall survival [268].

COLVI COL6A1 Cervical cancer Overall and recurrent-free survival [269]

COLXI COL11A1 Esophageal SCC Advanced clinical stage and lymph node metastases [270]

COLXIII COL13A1 (urine) Bladder cancer Recurrence [266]

COLXVII Intactness Colorectal cancer Invasion and metastasis [271]

Intactness SCC Invasion [272]

Intactness Colon cancer Metastasis [273]

COLXXIII Intactness (tissue and urine) NSCLC Recurrence [274]
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[176]. Increased collagen fiber alignment, elevated levels 
of immunoreactive glycosaminoglycans such as heparan 
sulfate and chondroitin sulfate, and decreased levels of 
the proteoglycan decorin enhance the stiffness of car-
cinoma tissues [177]. In contrast, others have notably 
reported that the distribution of collagen had no effect in 
the regenerated cervical tissue following excisional cervi-
cal intraepithelial neoplasia [178].

Collagen plays an important role in therapy resistance. 
In esophageal SCC, increased collagen content was asso-
ciated with chemotherapy resistance via the MAPK and 
PI3K/AKT pathways [179]. Even at metastatic sites, col-
lagen crosslinking increases tissue stiffness to promote 
resistance to treatment [180]. Furthermore, increased 
collagen content was accompanied by increased hyalu-
ronan accumulation, contributing to doxorubicin drug 
resistance in pancreatic cancer [181]. Specifically, differ-
ent collagen types exhibit distinct treatment resistances. 
COLI induced resistance to drugs, such as cisplatin and 
mitoxantrone, by activating β1 integrin followed by the 
FAK/PI3K/AKT pathway in ER-positive cancer cells, the 
MAPK pathway in triple-negative cancer cells, the coex-
pression of LOX with COL1A2 in ovarian cancer, and 
the TGF-β1/Smad3-mediated expression of COLI and 
COLIII in bromocriptine-resistant prolactinoma cells 
[182–184]. Other mechanisms of drug resistance include 
COLI-induced tau upregulation, resulting in paclitaxel 
resistance in ovarian carcinoma [185]. The resistance to 
radiation of renal cancer cells with intact COLI rather 
than micronized COLI was mediated by apoptosis atten-
uation rather than cell cycle redistribution via the PI3K/
AKT pathway [186]. In addition, other collagens also play 
important roles in therapy resistance. COL3A1 optimally 
predicted the absence of a response to neoadjuvant treat-
ment in rectal cancer and the resistance of ovarian cancer 
cells to topotecan and paclitaxel [187, 188]. High COLVI 
expression promoted anoikis resistance and affected the 
response of salivary gland cancer to radiotherapy and 
colorectal cancer to adjuvant chemotherapy [189–191]. 
The reactions of cancers to antiangiogenic therapy have 
also been closely associated with COLIV. The reduced 
binding of collagen to PDAC cell surface receptors pro-
moted resistance to VEGF therapy via TGF-β signaling 
[192], but antiangiogenic therapy increased intratumoral 
adenovirus distribution by decreasing COLIV [193]. 
Another study showed that the correlation of beva-
cizumab with elevated tumor stiffness was driven by 
hypoxia, leading to increased hyaluronic acid and sul-
fated glycosaminoglycan contents without significantly 
changing collagen deposition [194]. COL11A1 induced 
chemoresistance and exerted antiapoptosis effects in 
ovarian cancer cells by mediating the transcriptional acti-
vation of NF-κB to upregulate the Twist family [195].

Collagen can also be used for the imaging of targeted 
sites. Imaging of the collagen content and arrangement is 
conducive to the assessment of tissue stiffness, metabo-
lism, and drug resistance [196–198], and technology to 
utilize these data is currently under development [199]; 
for instance, magnetic resonance apparent diffusion 
coefficient values were used to indicate a negative cor-
relation of collagen with esophageal SCC cells [200]. The 
label-free Raman spectroscopic measurements used to 
distinguish radiation-sensitive tumors were based on dif-
ferences in collagen content [201].

Because collagen is closely associated with clini-
cal outcome, it can also be used in clinical applications 
(Fig. 3). Collagen can be utilized as a predictor of prog-
nosis and recurrence, in diagnosis, as a therapy resistance 
biomarker, as a targeted-therapy strategy, and as a drug 
carrier.

Collagen‑related therapy
Cancer resistance has substantially hindered the ability 
to control cancer. Therefore, both cancer cells and tumor 
microenvironment must be treated, and collagen is a 
potential target. Moreover, collagen has obvious genetic 
stability, and its spatial structure remains relatively stable. 
As collagen is basically present in various types of cancer, 
the treatment value of modifying collagen conditions in 
cancer is worth exploring.

Collagen can be regulated by different types of inhibi-
tors against biosynthesized processes and distribution 
arrangements by interfering with collagen biosynthe-
sis enzymes, disturbing cancer cell signaling pathways, 
mediating ECM components, or directly utilizing col-
lagenases (Table  3). Although many types of inhibi-
tors exist, most have been investigated in only cell 

collagen

diagnosis 
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recurrence 
prediction

targeted-therapy 
strategy
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Fig. 3  The value of collagen in clinical applications
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and animal experiments. These indirect methods of 
modifying collagen are also partially attributed to other 
intricate related molecular mechanisms and signal-
ing pathways. The treatment of collagen in the current 
study is mainly to target the function of CAFs. While 
quiescent CAFs are characterized by the presence of 
lipid droplets loaded with vitamin A in the cytoplasm, 
these perinuclear lipid droplets disappear and express 
the activation marker α-SMA after CAF activation 
[202]. Moreover, low expression of retinoid receptors 
is associated with poor survival of pancreatic cancer 
[203]. Therefore, the vitamin A analog all-trans reti-
noic acid in the treatment of PDAC induces CAF to be 
at quiescent status and inhibits cancer cell migration 
and EMT; however, the relevant clinical trials are only 
stage I in the recruitment state (NCT03307148) [204]. 
In addition, some studies focus on the interaction of 
cancer cells with collagen, which regulates collagen by 
targeting cancer cells. For instance, the development of 

PDAC is also associated with vitamin D, which affects 
insulin synthesis and secretion via reduced CYP24A1 in 
islets but impairs the anti-proliferation in transformed 
duct cells via increased CYP24A1 [205]. The vitamin D 
signaling pathway has the functions of anti-prolifera-
tion, pro-differentiation, anti-inflammation, pro-apop-
tosis, and immune regulation. There is also a stage III 
clinical trial recruiting to study the influence of high-
dose vitamin D3 intake on pancreatic cancer surgery 
outcomes (NCT03472833). Moreover, vitamin D recep-
tor ligand calcipotriol regulates CAFs to reprise the 
quiescent state [206], and paricalcitol was selected to 
participate in ongoing clinical trials on PDAC therapy 
(NCT03883919, NCT03415854). Hydroxychloroquine 
can also effectively inhibit the proliferation and meta-
bolic activity of fibroblasts for cancerous interstitial 
fibrosis and inhibit cancer cells autophagy. However, 
the combination of gemcitabine hydrochloride and nab-
paclitaxel plus hydroxychloroquine did not increase 

Table 3  Typical inhibitors and  drugs that  regulate collagen biosynthesized processes and  collagen distribution 
arrangement in cancer studies

Effects of inhibitors Targeted sites of inhibitors Typical inhibitors and drugs References

Interfering collagen biosynthesis enzymes Collagen genes MiR-129-5p, MiR-29b, MiR-384 [275–277]

Prolyl 4-hydroxylase Budesonide, catechol, N-oxalylglycine, coumalic acid, ethyl 
dihydroxybenzoic acid

[278–280]

Heat shock protein 90 1G6-D7, dipalmitoyl-radicicol, 17-DMAG, ganetespib [281–284]

Heat shock protein 47 MiR-29, 1,3-dimethylol-5-FU, AK778, pirfenidone, terutroban [285, 286]

Matrix metalloproteinases Gallium complex GS2, isoflavonoids, bisphosphonates [287, 288]

Lysyl oxidases Beta-aminopropionitrile [289]

Disturbing cancer cell signaling pathways Snail transcription factors Toosendanin, ponicidin, ferulic acid [290]

Hypoxia‐inducible factor Tamoxifen, 28-O-propynoylbetulin [291, 292]

STAT3 signaling pathway VS-4718, stattic, ruxolitinib, S3I-201 [293, 294]

TGF‐β signaling pathway LY2157299 monohydrate, trabedersen, fresolimumab, 
galunisertib

[295, 296]

NF‐κB signaling pathway Honokiol, aspirin, ormeloxifene [297–299]

AKT signaling pathway Quetiapine, pirfenidone [300]

Notch signaling pathway Rovalpituzumab tesirine, taladegib, crenigacestat, MiR-148a [301]

Hedgehog signaling pathway Itraconazole, sonidegib, vismodegib [302]

RAS signaling pathway Perindopril, losartan [100, 303]

Tyrosine kinase receptor Bevacizumab, imatinib, ponatinib, dasatinib [304, 305]

Discoidin domain receptor WRG-28, 7rh, AZD0156 [306–308]

G protein family receptor AT13148, KD025, Azaindole 1, chelerythrine [309]

Integrin Cilengitide, volociximab, intetumumab, LM609 [310]

Mediating tumor matrix components Macrophage Bone-marrow-derived macrophages infusion [141]

T cell Tumor-targeted trimeric 4-1BB-agonistic antibody [311]

Cancer-associated fibroblasts ABT-199, 5-AZA, ismodegib, metformin, Nab-paclitaxel [312, 313]

Hyaluronic acid Halofuginone [314]

Directly utilizing collagenase Collagen antibody Collagen-binding EGFR single-chain Fv antibody fragment [224]

Nanoparticle Poly-lactic-co-glycolic acid nanoparticle, Lipid-bilayer 
mesoporous silica nanoformulations

[222, 315]

Oncolytic adenovirus oH(E)mT-DCN, LOAd703 [316, 317]
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overall survival for metastatic pancreatic cancer; thus, 
the clinical effect still needs to be further explored 
[207]. Notably, although MMPs degrade collagen, they 
also induce cancer angiogenesis; thus, they have com-
plex and paradoxical effects on cancer progression. 
The combination of an anti-MMP-9 antibody and nab-
paclitaxel-based standard cytotoxic therapy was shown 
to decrease COLI and the metastatic burden compared 
with that achieved with nab-paclitaxel-based standard 
cytotoxic therapy in PDAC mouse models [208]. More-
over, collagen-targeted treatments have paradoxical 
effects on drug delivery and treatment efficacy within 
the same cancer type. In particular, collagenases mono-
therapy for cancer may have obvious side effects, and 
it may even exert opposite effects than those intended. 
Addition of the sonic hedgehog antagonist vismodegib 
to gemcitabine did not improve the survival outcomes 
of metastatic pancreatic cancer patients in a phase Ib/
II trial [209]; in contrast, halofuginone disrupted colla-
gen barriers to effectively deliver the drug and promote 
anticancer immunity [210]. While the antifibrotic drug 
pirfenidone was effective in early-stage liver fibrosis, it 
did not influence advanced liver fibrosis and initiation-
promotion liver cancer [211].

Combining collagen inhibitors and standard thera-
peutics, such as chemotherapy and radiotherapy, is 
a promising anticancer strategy. Collagenase com-
bined with trastuzumab via thermosensitive hydrogels 
exerted an anticancer effect on animals [212]. Nitric 
oxide activated endogenous MMP-1 and MMP-2 to 
deplete collagen, and it significantly improved antican-
cer efficacy while exerting no overt toxicity in animal 
models [213]. Under hypoxic cancer conditions, hyper-
baric oxygen therapy decreased collagen deposition 
to enhance chemotherapy efficacy and photodynamic 

upconversion nanophotosensitizer cancer therapy 
[214].

Preclinical studies on collagen-related therapy partly 
demonstrated encouraging outcomes. However, few clin-
ical trials have been conducted, and most have focused 
on signaling pathways or receptors. These indirect col-
lagen-related treatments remain controversial due to 
the potential effects of other mechanisms. For example, 
cilengitide inhibiting αvβ3 and αvβ5 integrins to influ-
ence the connection with cancer cells and collagen did 
not show evident clinical benefits [215]. There are major 
drugs of direct collagen depletion or collagen align-
ment changes, but their effects are not clear and need 
to be further explored (Table 4). Confusing and conflict-
ing results for anti-collagen therapy suggest complex 
collagen properties. As revealed herein, physiological, 
pathological and clinical analyses reveal the dual roles 
of collagen. Collagen has essential functions in normal 
tissues but also plays important roles in cancer progres-
sion and clinical outcomes. Collagen depletion results 
in the activation of residual cancer cells and incomplete 
ECM and microvessels. Collagen can function as a bar-
rier for certain stages of cancer, but it can also enhance 
other stages of cancer. In addition, although collagen can 
be degraded, its decomposition products can continue 
to function and thus promote cancer angiogenesis and 
invasion. The interaction of collagen with other com-
ponents in the ECM also shows dual effects on cancers. 
CAFs, which mainly produce stromal collagen, express 
anti-tumor and tumor-promoting effects; epithelial and 
endothelial cells, which mainly produce the collagen of 
basement membrane, can not only maintain vascular 
stability but also promote cancer angiogenesis and con-
tribute to cancer cells penetration into blood vessels. 
The individual differences, genetic heterogeneity, and 

Table 4  Collagen-targeted agents directly influencing collagen content and distribution in clinical trials for cancers

Drug Combination drugs Cancer Phase Status Result Reference number

LDE225 Gemcitabine, Nab-
paclitaxel

Locally Advanced or 
Metastasized Pancreatic 
Cancer

I/II Unknown NCT02358161

EN3835 None Uterine Leiomyoma I Completed Enough safety and 
efficacy, and decreased 
tumor bulk

NCT02889848

EN3835 None Lipoma II Completed dose escalation study NCT01613313

Losartan Proton beam radiation, 
FOLFIRINOX

Locally Advanced Pancre-
atic Cancer

II Active, not recruiting NCT01821729

TRC093 None Locally Advanced or 
Metastatic Solid Tumors

I Completed Dose escalation study NCT00492830

Halofuginone 
hydrobro-
mide

None Human immunodefi-
ciency virus-related 
Kaposi’s sarcoma

II Completed No clear clinical benefits NCT00064142
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epigenetic heterogeneity of cancer patients can also affect 
the efficacy of drugs in clinical trials. Therefore, balanc-
ing the content, crosslinking, alignment, and distribution 
of collagen may be a reasonable strategy for cancer treat-
ment. Nanoparticles, nanoplatforms, and nanoenzymes 
exhibit the expected gratifying properties.

Nanoparticles influence the use of collagen for antican-
cer therapy in animal models, including combinations 
with other chemotherapy drugs and treatment regimens 
[216]. Losartan nanoparticles significantly decrease col-
lagen content to improve tumor penetration and tumor 
treatment efficiency [217], and losartan in combination 
with photodynamic nanoplatforms suppressed tumor 
volume in a breast cancer mouse model [218]. The 
implantation of nanoparticle/losartan-loaded hydrogel 
enhanced the intratumoral distribution and anticancer 
effect of nanoparticles in mice [219]. In addition, supple-
mentation with other nanoparticles further orchestrated 
collagen normalization rather than destruction, thereby 
improving the survival rates of cancer patients [220]. A 
near-infrared light irradiation-activated semiconducting 
polymer nanoenzyme efficiently digested collagen, lead-
ing to nanoparticle accumulation in cancer tissue and 
the consequential improvement of photothermal therapy 
[221, 222].

Collagen can also act as a drug carrier or a drug tar-
geted site. Hybrid collagen-cell penetrating peptide car-
riers improved resistance to enzymatic degradation 
[223]. Treating cancer with the single-chain fragment of 
cetuximab along with its collagen-binding domain dem-
onstrated effective results [224]. Collagen affinity can 
also be used to mediate targeted immunotherapy anti-
bodies. Fusion of the collagen-binding protein lumican 
and cytokines increased the efficacy of systemic immu-
notherapies in a melanoma model [223]. The therapeutic 
use of immune checkpoint inhibitors and interleukin-2 
by conjugation (for antibodies) or recombinant fusion 
(for cytokine) to the von Willebrand factor A3 domain (a 
collagen-binding domain) eradicated tumors and exhib-
ited obvious safety and efficacy in a breast cancer model 
[225]. Cancer-collagen-targeting immunoconjugate ther-
apy was evidently applicable to anticancer therapy [226].

Conclusions
Cells and molecules in the tumor microenvironment have 
dual effects on cancer progression. The role of collagen is 
a double-edged sword in cancer. On the one hand, colla-
gen, cancer cells, other cells, and other matrix molecules 
mutually form an inter-reinforcing loop. This loop con-
tributes to the development of cancer by inducing can-
cer cells proliferation, migration, and metastasis. On the 
other hand, preclinical and clinical studies have demon-
strated that collagen may slow the development of cancer 

cells to some extent under some conditions. In summary, 
the association of collagen with cancer is only partially 
understood, and future studies are needed to elucidate 
detailed collagen biological mechanisms in cancer tissue 
that can be applied to precisely regulate collagen balance 
to achieve the maximum benefit of treatment. This new 
strategy combined with other treatment modalities can 
ultimately improve patient survival and quality of life.
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mTOR: mammalian target of rapamycin; MMP: matrix metalloproteinase; 
NF-κB: nuclear factor kappa-B; NSCLC: non-small cell lung cancer; PDAC: 
pancreatic ductal adenocarcinoma; PI3K: phosphatidylinositol 3-kinase; PKC: 
protein kinase C; PLOD2: procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2; 
PTEN: phosphate and tension homology deleted on chromosome ten; RAC1: 
Ras-related C3 botulinum toxin substrate 1; SCC: squamous cell carcinoma; 
SMA: smooth muscle actin; STAT​: signal transducers and activators of transcrip-
tion; TACS: tumor-associated collagen signature; TGF-β: transforming growth 
factor-β; TNF: tumor necrosis factor; YAP: Yes-associated protein.
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