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Abstract 

Background:  Mitochondrial DNA (mtDNA) haplogroups have been associated with advanced liver fibrosis and 
cirrhosis in patients coinfected with human immunodeficiency virus (HIV) and hepatitis C virus (HCV). Our aim was 
to determine whether mtDNA haplogroups are associated with liver-related events (LREs) in HIV/HCV-coinfected 
patients.

Methods:  We carried out a retrospective cohort study in HIV/HCV-coinfected patients who were potential can‑
didates for therapy with interferon and ribavirin (IFN/Rib) between 2000 and 2009. The primary endpoint was the 
occurrence of LREs (decompensation or hepatocellular carcinoma). mtDNA genotyping was performed using the 
Sequenom MassARRAY platform. We used Fine and Gray proportional hazards model to test the association between 
mtDNA haplogroups and LREs, considering death as a competitive risk.

Results:  The study population comprised 243 patients, of whom 40 had advanced fibrosis or cirrhosis. After a 
median follow-up of 7.7 years, 90 patients treated with IFN/Rib achieved sustained viral response (SVR), 18 patients 
had LREs, and 11 patients died. Patients with haplogroup H had lower cumulative incidence than patients with other 
haplogroups (p = 0.012). However, patients with haplogroup T had higher cumulative incidence than patients with 
other haplogroups (p = 0.074). In the multivariate analysis, haplogroup T was associated with an increased hazard of 
developing LREs [adjusted subhazard ratio (aSHR) = 3.56 (95% CI 1.13;11.30); p = 0.030]; whereas haplogroup H was 
not associated with lower hazard of LREs [aSHR = 0.36 (95% CI 0.10;1.25); p = 0.105]. When we excluded patients who 
achieved SVR during follow-up, we obtained similar SHR values.

Conclusions:  European mitochondrial haplogroups may influence the natural history of chronic hepatitis C.
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Background
Hepatitis C virus (HCV) infection is the leading cause of 
end-stage liver disease, hepatocellular carcinoma (HCC), 
and liver-related death in developed countries [1]. It is 
estimated that about 10–20% individuals with chronic 
hepatitis C develop cirrhosis around 20 to 30 years after 
acquiring HCV and that those who develop cirrhosis 
have a 1% to 5% annual risk of developing HCC and a 3% 
to 6% annual risk of liver decompensation [2, 3]. How-
ever, chronic hepatitis C is highly variable among indi-
viduals, ranging from minimal histological changes to 
extensive fibrosis and cirrhosis [3].

Although we lack predictive models to estimate the risk 
of fibrosis and clinical progression in individuals early 
on in their HCV infection, several factors are associated 
with increased risk of progression of liver fibrosis, includ-
ing age, male gender, high alcohol intake, obesity, insu-
lin resistance, type 2 diabetes, coinfection with human 
immunodeficiency virus (HIV) hepatitis B virus, and 
immunosuppressive therapy [3]. Host nuclear genetic 
factors also influence the natural history of HCV infec-
tion and include viral clearance, progression of fibrosis, 
and development of cirrhosis and HCC [3, 4].

In the last decade, the role of mitochondrial genetics in 
human disease has been increasingly recognized. Mito-
chondria provide energy to eukaryotic cells via oxidative 
phosphorylation and regulate cellular survival via con-
trol of apoptosis [5]. Mutations in mitochondrial DNA 
(mtDNA) have been acquired throughout history by 
natural selection owing to adaptation to environmental 
conditions [6]. Consequently, the human population can 
be subdivided into several mitochondrial clades or hap-
logroups, which are defined based on specific mtDNA 
polymorphisms [7]. In Europe, macro-haplogroups HV, 
U, and JT are about 90% of the population [8]. Of them, 
50% of the Europeans belongs to the macro-haplogroup 
HV and 45% are haplogroup H. The macro-haplogroups 
U is divided into many sub-haplogroups that comprise 
approximately 20% of the Caucasian population. The 
macro-haplogroup JT is subdivided in haplogroups J (8% 
of the population) and T (9% of Europeans).

MtDNA haplogroups have been increasingly recog-
nized as contributors to diseases such as cancer, sepsis, 
diabetes, and degenerative diseases [9, 10]. However, 
there is now clear evidence that mtDNA variants within 
haplogroups may be the trigger of the large number of 
diseases with which mtDNA haplogroups have been 
linked. Functional studies are scarce and technically com-
plicated because the likely biochemical effect of mtDNA 
polymorphisms may be subtle. In addition, many of 
these mtDNA polymorphisms are found in genomes 
that contain other polymorphisms, which may be inter-
acting [11]. Cybrid technology is widely used for the 

study of phenotypical effect of mutations in the mtDNA. 
In this “in vitro” model, it has been observed that hap-
logroup H cybrids contain higher levels of mtDNA and 
mRNA, growing faster, have a higher membrane poten-
tial, and consume more oxygen than haplogroup Uk and 
T cybrids. Other studies have reported that haplogroup J 
cybrids have slower rate of assembly of the mitochondrial 
complexes and lower ATP and ROS production than hap-
logroup H cybrids [11]. In addition, some of these find-
ings have also been described in patients, although the 
article number is smaller.

Preliminary studies have also shown associations 
between mtDNA haplogroups and clinical outcomes 
in patients with HIV infection [12, 13], including clini-
cal progression [14–17], CD4+ T cell recovery after 
combination antiretroviral therapy (cART) [18], meta-
bolic disorders [19, 20], and toxicities due to nucleoside 
reverse-transcriptase inhibitors (e.g., peripheral neu-
ropathy and lipoatrophy) [21, 22]. In previous reports, 
an association between major European mtDNA haplo-
groups and liver fibrosis in HIV/HCV-coinfected patients 
were also found [23, 24], but the design of this studies 
was cross-sectional.

Objective
In the current study, we aimed to determine whether 
mtDNA haplogroups are associated with clinical out-
comes, including liver-related events (LREs) and death, 
in HIV/HCV-coinfected patients through a longitudinal 
study.

Materials and methods
Study population
We carried out retrospective study in a cohort of 243 
HIV/HCV-coinfected patients who had been evaluated 
for interferon and ribavirin therapy at Hospital Gregorio 
Marañón (Madrid, Spain) between 2000 and 2009. The 
patients were negative for hepatitis B surface antigen, and 
a DNA sample was available for each one. The selection 
criteria for anti-HCV therapy at the time were detectable 
HCV RNA by polymerase chain reaction (PCR), no clini-
cal evidence of hepatic decompensation, CD4+ lympho-
cyte count higher than 200 cells/µL, and stable cART for 
at least 6 months or no need for cART according to the 
guidelines used during the study period. Patients with 
active opportunistic infections and severe concurrent 
medical conditions (e.g., poorly controlled hyperten-
sion, heart failure, poorly controlled diabetes mellitus, 
and severely reduced renal function) were excluded. A 
period of at least 6 months of abstinence from heroin and 
cocaine was also required in patients with a history of 
injection drug use. In addition, 162 healthy blood donors 
(negative for HIV, HCV, and hepatitis B virus infection) 
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from the “Centro de Transfusión de la Comunidad de 
Madrid” participated as a control group. Their age and 
gender matched those of the HIV-infected patients.

The study was conducted in accordance with the Dec-
laration of Helsinki and patients gave their informed con-
sent for the study. The Institutional Review Board and the 
Research Ethic Committee of the Instituto de Salud Car-
los III approved the study (# CEI PI 41_2014). Patients 
included in this study signed a written informed consent.

Clinical and laboratory data
Baseline clinical and epidemiological data were recorded 
the day the liver biopsy was performed or the day the 
patients were evaluated for interferon and ribavirin 
therapy if a liver biopsy was not performed. We consid-
ered intake of > 50 g of alcohol per day for ≥ 12 months 
as high. A blood sample was taken from each patient 
before liver biopsy for a complete blood count, coagu-
lation testing, liver panel, basic metabolic panel, CD4+ 
T-cell count, plasma HIV-RNA, and plasma HCV-RNA. 
In addition, a serum sample was immediately frozen and 
stored at − 70 °C for further assays.

Outpatient percutaneous liver biopsies were performed 
routinely by PM and JB following widely accepted rec-
ommendations to assess whether patients were can-
didates for therapy with interferon and ribavirin [25]. 
Liver biopsy samples were examined by two pathologists 
who agreed on the scoring of fibrosis following the cri-
teria of the METAVIR Cooperative Study Group [26], 
as follows: F0, no fibrosis; F1, portal fibrosis; F2, peri-
portal fibrosis or rare portal–portal septa; F3, fibrous 
septa with architectural distortion and no obvious cir-
rhosis (bridging fibrosis); and F4, cirrhosis. Fibrosis was 
also staged at baseline using the FIB-4 index, as follows: 
[age (years) × aspartate aminotransferase (AST) (U/L)]/
[platelet count (109/L) × alanine aminotransferase (ALT) 
(U/L)1/2] [27]. In this study, advanced fibrosis was defined 
as a METAVIR stage ≥ F3 or a FIB-4 value ≥ 3.25.

Follow-up information included treatment of HCV 
infection and response, LREs, and mortality. This infor-
mation was recorded retrospectively from hospital clini-
cal records. Sustained virologic response (SVR) was 
defined as undetectable serum HCV-RNA level 24 weeks 
after discontinuation of interferon and ribavirin. The 
LREs analyzed included ascites, hepatic encephalopathy, 
variceal bleeding, and HCC. Paracentesis or ultrasound 
confirmed ascites. Hepatic encephalopathy was estab-
lished based on clinical findings, laboratory parameters, 
and neuroimaging techniques; after the reasonable exclu-
sion of HIV-associated encephalopathy. The gastroesoph-
ageal bleeding was confirmed by endoscopy whenever 
possible. Diagnosis of HCC was based on noninvasive 

imaging tests or pathology findings [28]. The administra-
tive censoring date was June 30, 2013.

mtDNA genotyping
Total DNA was extracted from peripheral blood using 
Qiagen columns (QIAamp DNA Blood Midi/Maxi, Qia-
gen, Hilden, Germany). DNA samples were genotyped 
using the MassARRAY platform (Sequenom, San Diego, 
CA, USA) based on the iPLEX® Gold assay design. All 
individuals were classified within the European macro-
cluster of N and further separated into the most common 
haplogroups or major groups (HV, IWX, U, and JT) and 
haplogroups (H, V, pre-V, J, T, I, W and X) according to 
14 polymorphisms in the mtDNA (see Additional file 1: 
Figure S1), as previously described [18]. All patients were 
of European ancestry because individuals not within the 
N macro-cluster were excluded from the study.

Outcome variables
The primary endpoint was the occurrence of LREs. This 
endpoint was chosen because it is the most appropriate 
outcome in patients with the compensated liver disease, 
whereas death is the most relevant outcome in those with 
the decompensated liver disease [29]. For patients who 
had more than one liver-related event, only the first was 
included in the analysis.

Statistical analysis
All analyses were performed using Stata software (ver-
sion 14.0; Stata Corporation, College Station, TX, USA). 
All p-values < 0.05 were considered significant.

We used the Fine and Gray proportional hazards 
model (Stata’s stcrreg module) to test the association 
between mtDNA haplogroups and outcomes, consider-
ing non-liver death as a competitive risk [30], in separate 
individual models (each haplogroup separately). SVR 
was analyzed as a time-dependent covariate. Addition-
ally, the analysis was also performed without patients 
who achieved SVR. This test gives the SubHazard Ratio 
(SHR) with 95% confidence intervals (95% CI) as a meas-
ure of risk [31]. The regression tests were adjusted for 
the most significant covariates associated with each of 
the outcome variables (p < 0.05), and over-fitting of the 
regression was avoided. The covariates used initially 
were gender, age, injection drug use, high alcohol intake, 
AIDS diagnosis, nadir CD4+, HCV genotype, HCV viral 
load, FIB-4, cART, HCV antiviral therapy, and SVR. We 
adjusted for FIB-4 instead of biopsy stage (METAVIR) 
because FIB-4 has been shown to outperform liver biopsy 
in the assessment of prognosis (LREs and death) in HIV/
HCV-coinfected patients [32]. Additionally, we used the 
Stata’s stcompet and stpepemori implements to generate 
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cumulative incidence in the presence of competing 
events and p-values, respectively [30].

Results
Characteristics of the study population
A total of 243 HIV/HCV-coinfected patients who self-
identified as “white” and had a western European, or N, 
mitochondrial macro-cluster, were included in the analy-
sis. The demographic and clinical characteristics of the 
patients are summarized in Table 1. In brief, 74.9% were 
male, the median age was 40.7 years, 86% acquired HIV 
by injection drug use, 30.2% had prior AIDS-defining 
conditions, 81.5% were on cART, 12.3% reported a high 
intake of alcohol, the median baseline CD4+ T-cell count 
was 485 cells/mm3, 74.2% had an undetectable HIV viral 
load, 76.9% were infected by genotypes 1 or 4, and 78.4% 
had HCV RNA ≥ 500,000 IU/mL. A total of 19% patients 
had advanced fibrosis or cirrhosis.

Additionally, Table  1 also shows the characteristics of 
the patients without those who achieved SVR.

Liver‑related outcomes
The median follow-up was 93  months (7.7  years). Dur-
ing that period, 18 patients had LREs, including ascites 
(n = 7), ascites plus HCC (n = 3), HCC (n = 3), ascites 
plus variceal bleeding (n = 1), ascites plus variceal bleed-
ing plus HCC (n = 1), ascites plus spontaneous bacterial 
peritonitis plus variceal bleeding (n = 1), hepatic enceph-
alopathy (n = 1), and hepatic encephalopathy plus HCC 
(n = 1). Liver fibrosis stage at baseline in these 18 patients 
was as follows: F4, n = 8; F3, n = 4; and F0 to F2, n = 6. 
The time to LREs during follow-up were 5.46 years (95% 
CI 2.94; 6.68) for all patients, 4.21  years (95% CI 1.48; 
5.70) for cirrhotic patients, 5.77 years (95% CI 3.51; 7.43) 
for non-cirrhotic patients.

A total of 11 patients died during follow-up. The causes 
of death were liver-related death (n = 6), non–liver-
related non–AIDS-related death (n = 4), and AIDS-
related death (n = 1). At baseline, liver fibrosis was staged 
at F4 for 5 patients, F3 for 1 patient, and F0 to F2 for 5 
patients. Non-liver-related non-AIDS-related death 
included non-AIDS-related bacterial infections (n = 2) 
and lung cancer (n = 2). The 2 patients who died from 
non–AIDS-related bacterial infections had F4 fibrosis at 
baseline.

During follow-up, 175 patients were treated with 
pegylated interferon plus ribavirin; of these, 90 achieved 
SVR. The LREs occurred in 15/153 (9.8%) patients with-
out SVR and in 3/90 (3.3%) patients with SVR (p = 0.077). 
Liver fibrosis stage at baseline in these 15 patients was as 
follows: F4, n = 7; F3, n = 3; and F0 to F2, n = 5. The time 
to LREs during follow-up were 5.45 years (95% CI 2.94; 
6.08) for all patients, 2.94  years (95% CI 1.01; 5.70) for 
cirrhotic patients, 5.77 years (95% CI 4.17; 7.05) for non-
cirrhotic patients.

European haplogroups and liver‑related events
We did not find significant differences in the frequencies 
of mtDNA haplogroups between HIV/HCV-coinfected 
patients and healthy controls (Fig. 1), and the distribution 
of mtDNA haplogroups across the HIV-infected patients 
was similar to that reported by other authors studying 
HIV infection in a Caucasian population [16, 20, 22]. In 
HIV-infected patients, the haplogroups Pre-V, IWX, I, X, 
and W had frequencies of less than 5% (Fig. 1) and were 
excluded from the association analysis to minimize type 
II errors in the statistical analyses. The genetic associa-
tion tests were performed on haplogroups H, V, U, J, and 
T. However; haplogroup J did not have a viable value 
because in one of the cells of Table 2 × 2 there was a value 
of zero.

The frequencies of LREs according to the different hap-
logroups are shown in Table  2. The most outstanding 

Table 1  Clinical and  demographic characteristics 
of the study cohort

Values are expressed as median (IQR) and absolute count (percentage)

HCV hepatitis C virus, HIV-1 human immunodeficiency virus type 1, HIV-RNA 
plasma HIV load, cART​ combination antiretroviral therapy, CDC Centers for 
Disease Control and Prevention, SVR sustained virologic response

Demographic/clinical variable All patients Excluding 
patients 
with SVR

No. 243 153

Male sex 182 (74.9%) 118 (77.1%)

Age—year 40.7 (37.7–44.8) 41.6 (38.2–45)

Prior injection drug use 209 (86%) 132 (86.3%)

Current alcohol intake > 50 g/d 30 (12.3%) 21 (13.7%)

CDC category C 73 (30.2%) 56 (36.8%)

CD4+ T cells nadir—n/mm3 189 (77–306) 169 (59–273)

cART​ 198 (81.5%) 122 (79.7%)

Undetectable HIV viral load 178 (74.2%) 110 (73.3%)

Baseline CD4+ T cells—n/mm3 485 (346–679) 468 (340–667)

HCV genotype

 1.4 180 (76.9%) 129 (87.8%)

 2.3 54 (23.1%) 18 (12.2%)

HCV-RNA ≥ 500,000 IU/mL 174 (78.4%) 113 (81.5%)

METAVIR fibrosis stage (n = 210)

 F0 or F1 109 (45.9%) 77 (50.3%)

 F2 61 (25.1%) 35 (22.9%)

 F3 20 (8.2%) 11 (7.2%)

 F4 21 (8.6%) 11 (7.2%)

N/A 32 (13.2%) 19 (12.4%)

FIB-4 − median (IQR) 1.46 (1.03–2.06) 1.43 (1.08–1.92)

FIB-4 ≥ 3.25 24 (9.9%) 14 (9.2%)
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cumulative incidence of LREs according to mtDNA hap-
logroups in HIV/HCV-coinfected patients are shown 
in Fig.  2. Patients with haplogroup H had lower cumu-
lative incidence than patients with other haplogroups 
(p = 0.012), whereas patients with haplogroup T had 
higher cumulative incidence than patients with other 
haplogroups (p = 0.074). When patients with SVR dur-
ing follow-up were excluded, we found patients with 
haplogroup H remained with lower cumulative incidence 
(p = 0.012) than patients with other haplogroups.

The results of the Fine and Gray competing-risks 
regression analysis for LREs in HIV/HCV-coinfected 
patients considering death as a competitive risk are 
shown in Table  3. The covariates selected for adjusting 
multivariate models were high alcohol intake, FIB-4, and 
SVR because had a significant association with LREs in 
univariate analysis (p < 0.05; data not shown). Thus, in the 
multivariate analysis, haplogroup T was associated with 
an increased hazard of developing LREs [adjusted SRH 
(aSHR) = 3.56 (95% CI 1.13; 11.30); p = 0.030]; whereas 
haplogroup H was not associated with lower hazard of 
LREs [aSHR = 0.36 (95% CI 0.10;1.25); p = 0.105]. When 
we excluded patients with SVR during follow-up, we 
obtained similar values. Haplogroup T remained asso-
ciated with an increased hazard of developing LREs 
[aSHR = 4.26 (95% CI 1.15; 15.80); p = 0.030], and hap-
logroup H was not protected against the risk of LREs 
[aSHR = 0.44 (95% CI 0.12; 1.61); p = 0.214].

Discussion
In this article, with a cohort of HIV/HCV-coinfected 
patients who were followed up for a median of approxi-
mately 8  years, we found that the presence of mtDNA 

Fig. 1  Frequencies of mtDNA haplogroups in 162 healthy controls and 245 HIV/HCV-coinfected patients

Table 2  Frequency of  liver-related events in  HIV/HCV-
coinfected patients according to  mitochondrial DNA 
haplogroup

LRE liver-related event, SVR sustained virological response

* p < 0.05

mtDNA 
haplogroup

With 
haplogroup

All patients Excluding 
patients 
with SVR

H No 15/134 (11.2%)* 12/82 (14.6%)*

Yes 3/109 (2.8%) 3/71 (4.2%)

V No 17/227 (7.5%) 14/144 (9.7%)

Yes 1/16 (6.3%) 1/9 (11.1%)

pre V No 17/238 (7.1%) 14/149 (9.4%)

Yes 1/5 (20%) 1/4 (25%)

HV No 13/113 (11.5%)* 10/69 (14.5%)

Yes 5/130 (3.8%) 5/84 (6%)

U No 10/179 (5.6%) 9/115 (7.8%)

Yes 8/64 (12.5%) 6/38 (15.8%)

J No 18/228 (7.9%) 15/145 (10.3%)

Yes 0/15 (0%) 0/8 (0%)

T No 13/218 (6%)* 11/137 (8%)*

Yes 5/25 (20%) 4/16 (25%)

JT No 13/203 (6.4%) 11/129 (8.5%)

Yes 5/40 (12.5%) 4/24 (16.7%)

I No 18/238 (7.6%) 15/149 (10.1%)

Yes 0/5 (0%) 0/4 (0%)

X No 18/240 (7.5%) 15/151 (9.9%)

Yes 0/3 (0%) 0/2 (0%)

W No 18/242 (7.4%) 15/152 (9.9%)

Yes 0/1 (0%) 0/1 (0%)

IXW No 18/234 (7.7%) 15/146 (10.3%)

Yes 0/9 (0%) 0/7 (0%)

Total 18/243 (7.4%) 15/153 (9.8%)
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haplogroup T was related to an increased hazard of LREs. 
We also found that the presence of mtDNA haplogroup 
H was related to a reduced hazard of LREs in the com-
peting-risks regression analysis, which did not achieve 
statistical significance in the adjusted regression analysis. 

To our knowledge, this is the first time mtDNA haplo-
groups have been found to be associated with LREs in 
HIV/HCV coinfected patients with chronic hepatitis C. 
Moreover, since there have been recently reported that 
the incidence of HCC has increased even after treatment 
of chronic hepatitis C [33–36], the results of this study 
also highlight the importance of mitochondrial genetics 
in patients with chronic hepatitis C in the future.

Several aspects of mitochondrial function are affected 
during HCV infection, such as the alteration of mito-
chondrial membrane potential, excessive production 
of reactive oxygen species (ROS), the significant fall in 
the level of adenosine triphosphate (ATP), and bioen-
ergetic failure [37, 38]. Also, HCV-induced mitochon-
drial dysfunction may contribute to viral persistence by 
attenuating apoptosis of infected cells [39]. The mtDNA 
haplogroups tend to be associated with subtle differences 
in oxidative phosphorylation capacity and the generation 
of ROS [9]. Therefore, it is conceivable that the chronic 
oxidative stress due to HCV infection can be modulated 
by the DNA genetic. Of note, mtDNA haplogroup H has 
been associated with higher activity in the electron trans-
port chain, leading to more significant quantities of ATP 

Fig. 2  Cumulative incidence of liver-related events according to mtDNA haplogroups in HIV/HCV-coinfected patients

Table 3  Competing-risks regression analysis for  liver-
related events in HIV/HCV-coinfected patients considering 
death as a competitive risk

SVR Sustained virologic response, SHR sub-hazard ratio, aSHR adjusted sub-
hazard ratio (covariates selected: alcohol intake, FIB-4, and SVR*), 95% CI 95% 
confidence interval, NA not available

* Sustained viral response was considered a time-dependent variable

All patients* Excluding patients 
with SVR

aSHR (95% CI) p aSHR (95% CI) p

Haplogroup H 0.36 (0.10; 1.25) 0.108 0.44 (0.12; 1.61) 0.214

Haplogroup V 0.20 (0.01; 3.95) 0.289 0.17 (0; 5.86) 0.325

Haplogroup J NA NA NA NA

Haplogroup T 3.56 (1.13; 11.3) 0.030 4.26 (1.15; 15.8) 0.030

Haplogroup U 1.81 (0.69; 4.76) 0.229 1.51 (0.48; 4.74) 0.480
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and ROS than other haplogroups, such as mtDNA haplo-
group J and T, which exhibits lower energy efficiency [40, 
41].

In a previous biopsy-based cross-sectional study of 
HIV/HCV-coinfected patients using the same cohort 
of patients [24], we found that mtDNA haplogroup H 
was strongly associated with reduced likelihood of hav-
ing advanced fibrosis, cirrhosis, and fibrosis progression 
rates. In the present study, we have found haplogroup T 
was related to the development of LREs, whereas that 
haplogroup H was protective against LREs in Fine and 
Gray competing-risks regression analysis, but it did not 
achieve significant p-value in multivariate regression 
analysis. As discussed above, haplogroup T has a bio-
chemical and energetic effect opposite to haplogroup H 
[40, 41]; and in our experience, we found opposing asso-
ciations for other outcome variables, in other studies, 
when we compared haplogroup T versus haplogroup H 
in HIV infected subjects [18, 19].

The relevance of our findings for clinical practice can 
be limited by the fact that the data are from an era in 
which anti-HCV therapy was interferon-based rather 
that based on all oral direct-acting antivirals. However, 
our findings expand the knowledge about the patho-
genesis of chronic hepatitis C in HIV-infected patients. 
Viewed from a broader perspective, our results suggest 
that mtDNA haplogroups may influence the natural his-
tory of chronic liver diseases of various etiologies; a 
notion that is supported by two recent studies. In the first 
study, the presence of mtDNA haplogroup L was found 
to exercise a protective effect against the development 
of non-alcoholic steatohepatitis and pericellular fibrosis 
in patients with non-alcoholic fatty liver disease [42]; in 
the second study, carried out in Chinese population with 
HCC, patients with haplogroup M8 had a lower survival 
rate than patients with haplogroup D4 [43]. The fact that 
a large proportion of the participants were treated with 
interferon could also limit the study’s implications on the 
natural history of HCV infection. However, we analyzed 
the SVR as a time-dependent covariate, and we also per-
formed a sub-analysis discarding patients who achieved 
SVR, finding equivalent results in both cases. Non-
responders to interferon therapy were kept in the study 
because this fact does not protect against the progression 
of chronic hepatitis C in the long term [44]. Another lim-
itation is the small sample size, which may have impaired 
the ability to detect less robust associations, as we did not 
perform detailed analyses on some of the less common 
mtDNA haplogroups. Finally, our study was retrospec-
tive and consequently cannot prove causality. However, 
it must be considered that patients included in the study 
were highly selected and met a set of restrictive criteria 
for starting HCV treatment. Besides, they were followed 

in our institution by the same physicians throughout their 
disease, with clinical and laboratory assessment every 3 
to 6  months according to standard practice with HIV-
infected patients in Spain [45]. Furthermore, complica-
tions of cirrhosis were prevented or managed following 
protocols based on current clinical practice guidelines.

Conclusions
In conclusion, our data suggest that mitochondrial hap-
logroups could influence the natural history of hepatitis 
C and may warrant further confirmatory longitudinal 
studies.
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