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Abstract 

Background:  Lifestyle intervention may have a critical effect on the association between genetics and obesity. This 
study aimed to investigate changes in FTO and IRX3 gene expression in obese and overweight male adolescents 
undergoing a lifestyle intervention and the role of FTO genotype in this interaction.

Methods:  This study was a field trial of 62 adolescents from boys’ high schools in Tehran, Iran. Two schools were ran-
domly allocated as the intervention (n = 30) and control (n = 32) schools. The rs9930506 SNP in FTO was genotyped 
at baseline and the level of FTO and IRX3 expression in peripheral blood mononuclear cells (PBMCs). Anthropometric 
measurements were assessed at baseline and after 18 weeks of intensive lifestyle intervention.

Results:  Our results showed that IRX3 expression in the intervention group was significantly up-regulated com-
pared to baseline (P = 0.007) and compared to the control group (P = 0.011).The intervention group had significantly 
up-regulated transcripts of IRX3 only in rs9930506 risk allele carriers of the intervention group compared to risk allele 
carriers of the control group (P = 0.017). Moreover, our data showed that the FTO expression was up-regulated in AA 
genotype carriers and down-regulated in AG/GG genotype carriers (P = 0.017).

Conclusion:  Lifestyle modification may exert its effects on obesity through changes in the expression level of the 
FTO and IRX3 genes. However, FTO genotype plays a role in the extent of the effect of lifestyle changes on gene 
expression. Further studies are crucial to have a better understanding of the interaction between lifestyle, genetics 
and anthropometric measurements.

Trial registration This paper reports a comprehensive intervention study (Interactions of Genetics, Lifestyle and 
Anthropometrics study or IGLA study), which is retrospectively registered in the Iranian Registry of Clinical Trials as 
IRCT2016020925699N2. Date registered: April 24, 2016. (https​://www.irct.ir/searc​hresu​lt.php?id=25699​&numbe​r=2)
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Background
Obesity in young people has been dramatically 
increased in recent years [1]. The prevalence of obe-
sity among young adults in developing countries ranges 

from 2.3 to 12%, with rates of being overweight as high 
as 28.8% [2]. Obese people have a greater risk of many 
chronic diseases such as diabetes, cardiovascular dis-
ease, cancer, psychological conditions and mortality 
[3]. Hence, practical comprehensive interventions are 
needed to mitigate obesity in young individuals.

Obesity is a multifactorial disorder caused by both 
genetic and environmental factors [4, 5]. Recent stud-
ies reported that obesity is 25–40% heritable [5]. Many 
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genetic loci have been associated with obesity, and the 
FTO locus has the greatest effect size [6]. It is reported 
that FTO genotype had a strong association with body 
weight and body composition [6]. This results remained 
significant after adjustments for calorie intake and 
physical activity. It seems that the effects of FTO gen-
otype on anthropometric indices is independent from 
calorie intake and energy expenditure (BMC). However, 
the exact mechanism of these changes has not been 
determined yet, but it’s suggested that FTO exert its 
effects through change the expression level of Iroquois-
related homeobox 3 (IRX3) gene. IRX3 is a member of 
the Iroquois homeobox gene family and plays a role in 
an early step of neural development. The expression 
level of this gene in hypothalamus is reported to be 
related to calorie intake and body composition [7].

On the other hand, environmental factors including 
dietary intake and physical activity have a critical role 
in determining body weight and body mass index (BMI) 
[4]. Recent studies suggest that lifestyle changes can 
modify the magnitude of effect of genetic predisposi-
tion for obesity [7]. For example, over-eating and physi-
cal inactivity have increased obesity in recent decades 
with different mechanisms e.g. increase the level of 
FTO gene expression [8]. Also the dietary changes can 
affect the microbiome and therefore change the host 
methylation which is important in diet-induced obesity 
[8]. Moreover, people with the risk allele at FTO may 
be more vulnerable to diet-related obesity [9]. There-
fore, we need to identify optimal interventions that 
can reduce the prevalence of obesity through direct 
(by reducing intake and increasing calorie expenditure) 
and indirect (through interactions with obesity related 
genes) mechanisms. This study aimed to investigate the 
changes in FTO and IRX3 gene expression in obese and 
overweight male adolescents undergoing an intensive 
lifestyle intervention and the effect of FTO genotype on 
these changes.

Methods
Research context and subject recruitment
The following details are presented in accordance with 
the CONSORT reporting guidelines for randomized tri-
als of non-pharmacologic treatment (Additional file  1). 
This study was a field trial and details of the trial have 
been published elsewhere [10]. In brief, participants were 
overweight or obese adolescent boys. The inclusion cri-
teria were age 12 to 16  years, students’ willingness to 
participate in the study, and reaching the puberty stage, 
BMI ≥  + 1 z-scores, and age 12–16  years. The specific 
exclusion criteria included: suffering from diseases effec-
tive on body weight, treatment with the drugs that effect 
on body weight, fear of blood sampling, implausible data 

on BMI or difficulty in finding the veins. To evaluate 
more accurately the group effect, the a-priori computed 
sample size of 60 students (30 students in each group) 
was required. A randomized stratified sampling was used 
and 540 students in two boys’ high schools (including 
grades 7–9) of a randomly chosen district of Tehran city 
(District 5) attended an information session, of which 246 
were eligible to participate in the parent trial. Of these, 
96 expressed interest in participating in the ancillary 
study, 84 enrolled and consented to the blood sampling 
at baseline and week 18, and 62 provided both baseline 
and week 18 blood samples. Thus, 62 participants were 
included in the analysis. Two schools were randomly 
allocated as the intervention (n = 30) and control (n = 32) 
schools. All measures were taken between morning and 
noon at baseline and after 18 weeks of intervention.

Quantitative real‑time PCR
At baseline and week 18, fasting blood samples (5  ml) 
were collected of all students who participated in the 
study, transferred to EDTA tubes and stored at − 80  °C. 
Total RNA from peripheral blood mononuclear cells 
(PBMCs) was subsequently isolated using the Gene-
All RNA extraction kit (GeneAll, South Korea), cDNA 
synthesis was performed using the GeneAll cDNA syn-
thesis kit (GeneAll, South Korea), and gene expression 
levels were determined using the Optic on real-time 
PCR detection system (Bio-Rad Laboratories, Califor-
nia). Reactions were carried out in duplicate using SYBR 
Green Gene Expression Master Mix (Cat. No. 638317; 
Takara, Japan). Melting curve and gel electrophoresis 
analysis of the amplification products was used to con-
firm that the primers amplified only a single product of 
expected size (data not shown).The HPRT gene was used 
as the reference gene for normalization, chosen because 
of its stable expression in blood cells. Quantification of 
transcripts of interest relative to the internal housekeep-
ing control gene HPRT was performed using the 2−ΔΔCt 
method and expressed as fold change. Changing FTO 
and IRX3 expression was evaluated using the REST (Rela-
tive Expression Software Tool) software. Data on changes 
of gene expression were transferred to SPSS software in 
order to analyze relationships with FTO genotype.

Genotyping
The DNA extraction kit manufactured by GeneAll was 
used to extract and purify DNA samples. The NanoDrop 
device (Thermo Scientific, Wilmington, DE, USA) was 
used to quantify DNA concentration. The optical den-
sity (OD) of the samples was measured at a wavelength 
of 260–280  nm. The quality of the extracted DNA was 
checked by agarose gel electrophoresis. In brief, genomic 
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DNA was amplified by PCR using the Taq DNA Pol 2X 
Master Mix Red (Cat. No. A180301; Ampliqon, Den-
mark). The PCR products were sequenced by GeneAll. 
The rs9930506 SNP in FTO was genotyped in all the sub-
jects and the quality and average length of the sequence 
library for each sample was assessed using the Chromas 
software (version 2.33, https​://www.Techn​elysi​um.com.
au/chrom​as.html).

Intervention
An 18-week comprehensive lifestyle modification was 
prescribed to the intervention group. At this level, the 
personalized diet and physical activity intervention were 
implemented for each participant. In addition, parents 
were provided an educational session regarding healthy 
meals and creating a supportive environment at home for 
healthy diet and physical activity for adolescent boys. The 
method of appropriate implementation of diet has been 
instructed to parents and students through a face-to-face 
training, followed by booklets and phone calls. A person-
alized diet for weight management for each participant 
was adopted. Free healthy snacks were also offered in 
school days by researchers. Furthermore, a high-intensity 
interval training was carried out for improving the physi-
cal activity at the schools. In this method, students were 
involved in high-intensity exercise for a minimum of 
30 min 3 days per week. Moreover, three education ses-
sions focused on healthy lifestyle were held. The control 
subjects were allowed to continue their usual daily activi-
ties and diet. Details of the intervention was published 
elsewhere [10].

Assessment of other variables
Usual dietary intakes of participants were examined by 
a validated 168-item semi-quantitative FFQ. The FFQ 
consisted of 168 food items with standard portion sizes 
commonly consumed by Iranian people. Daily intakes of 
food groups and calorie for each person were analyzed. 
The International Physical Activity Questionnaire (IPAQ) 
was used for measuring physical activity of participants 
through the face-to-face interview. All results of the 
IPAQ were expressed and analyzed as metabolic equiva-
lents per minute (MET-minutes per week).

Statistical analysis
All values are reported as mean ± S.E.M. A paired t-test 
analysis was performed to identify the genes whose 
expression levels changed significantly in each group. 
Independent t-test was used to compare the mean of cal-
orie intake and calorie expenditure between two groups.

We compared pre- and post-intervention values using 
the REST software and analyzed means of two groups 

using independent t-test. Due to the relatively small 
number of homozygous risk allele carriers, only domi-
nant models were used in the genotype analysis. Graphs 
were made using GraphPad Prism (GraphPad Prism 
version 7.0 for Windows, GraphPad Software, Inc). Kol-
mogorov–Smirnov test was used to see if the data were 
normally distributed. Data were analyzed with SPSS for 
Windows (version 16.0, SPSS Inc., Chicago, IL, USA). A P 
value of < 0.05 was considered significant in all cases.

Ethics approval and consent to participate
This study was approved by the Ethics Committee of 
Shahid Beheshti University of Medical Sciences (Refer-
ence Number: Ir.sbmu.nnftri.rec. 1394.22), Tehran, Iran. 
The schools that were involved in this study were asked 
permission to be part of this trial and consented for their 
students to participate. The details of the study were 
explained to students and their parents with an explana-
tory letter and written informed consent was obtained 
from both parents and students prior to joining the 
project.

Results
All measurement data were normally distributed 
(P > 0.05). No significant differences were found between 
two groups in terms of dietary intake physical activity 
at baseline. To investigate whether exposure to inten-
sive lifestyle counseling can affect the expression of obe-
sity-associated genes in overweight adolescent males, 
mRNA levels of the FTO and IRX3 genes were analyzed. 
IRX3 expression was significantly up-regulated in the 
PBMCs of the intervention group compared to baseline 
(P = 0.007), but remained at the same level in the control 
group. Moreover, the intervention group had significantly 
up-regulated transcripts of IRX3 gene (P = 0.011) com-
pared to the control group (Fig. 1). The FTO gene expres-
sion level did not differ significantly between the baseline 
and at the end of the study or between the intervention 
and control groups.

We next tested the relationship between SNP 
rs9930506 of the FTO gene with the change in the FTO 
and IRX3 gene expression levels, regardless of the inter-
vention. We found significant association between the 
FTO genotype and FTO gene expression in PBMCs. The 
risk allele of rs9930506 (G) was negatively associated 
with change in expression of FTO (P = 0.001), but not 
IRX3 (Fig. 2).

We also assessed the role of FTO genotype on change 
in IRX3 and FTO expression for the intervention and 
control group separately. The frequency of AA, AG, 
and GG genotypes in the intervention group were 32%, 
38%, 30% and in the control group were 23%, 42%, 35%, 
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respectively. 63 percent of the intervention subjects 
(n = 19) and 78 percent of the control subjects (n = 25) 
had at least one risk allele (AG 42% and GG 35%). No 
significant differences were found between two groups. 
FTO expression was significantly down-regulated in G 
allele carriers in the intervention group (P = 0.017). Inter-
estingly, the FTO expression was up-regulated in AA 
genotype carriers and down-regulated in AG/GG geno-
type carriers in the control group. No significant asso-
ciation was found, neither between FTO genotype and 
IRX3 expression nor in FTO expression of control group 
(Fig.  3a, b). Taken together, our data showed that the 
effect of intervention on FTO, but not IRX3, expression 
depends on FTO genotype.

Next, we analysed the effect of intervention separately 
in AA and AG/GG carriers. The intervention group had 
significantly up-regulated transcripts of IRX3 gene in the 
PBMCs (P = 0.017) only in risk allele carriers of the inter-
vention group compared to risk allele carriers of the con-
trol group (Fig. 4a, b).

Discussion
To our knowledge, the present study report has, for 
the first time, characterised changes in gene expression 
of FTO and IRX3 in PBMCs after a intensive lifestyle 
intervention. We observed that IRX3 expression in the 

intervention group was significantly up-regulated com-
pared to baseline and compared to the control group. The 
intervention group had significantly up-regulated tran-
scripts of IRX3 gene in the PBMCs only in rs9930506 risk 
allele carriers of the intervention group compared to risk 
allele carriers of the control group. Moreover, our data 
showed that the effect of intervention on FTO, but not 
IRX3, expression depends on FTO genotype.

Several previous reports failed to demonstrate asso-
ciation of the FTO polymorphism with the level of FTO 
gene expression [11–13]. For example, Barton et al. inves-
tigated the relation of FTO gene variants to FTO expres-
sion and reported that FTO genotype was not associated 
with placental FTO expression. However, Villalobos-
Comparán et al. [14] investigated the differences in rela-
tive FTO gene expression levels in human subcutaneous 
adipose tissue biopsies according to FTO rs9939609 
genotypes under a dominant model and identified that 
FTO gene expression was higher for “TA/AA” risk geno-
types than those with “TT” wild genotype in very obese 
(BMI ≥ 40 kg/m2) subjects. The hypothesis may be raised 
that a potential effect of genotype on tissue FTO gene 
expression levels may be unmasked in obesity.

Landgraf et al. [15] showed that FTO obesity risk vari-
ants are linked to adipocyte IRX3 increased expression 
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in lean children, whereas it was unaffected by risk vari-
ants in obese peers. In our study, IRX3 expression in the 
intervention group was significantly up-regulated only in 
rs9930506 risk allele carriers of the intervention group 
compared to risk allele carriers of the control group. It 
is possible that weight reduction can up-regulate IRX3 
expression. However, Smemo et al. [11] reported a direct 
link between IRX3 expression and regulation of body 
mass and composition. It has also been reported that Irx3 
knockout mice were protected against obesity. Moreo-
ver, human adipocytes overexpressing IRX3 showed 
decreased thermogenesis [16]. Up-regulation of IRX3 
may act as a defense mechanism for protecting current 
body weight. Recent studies reported that the partial 
inhibition of hypothalamic IRX3 exacerbates obesity [11, 
17]. It is possible that IRX3 acts as a modifier of lifestyle 
changes and the helps body adapt to different situations 
of calorie intake and expenditure. In line with the present 
study, Dankel et  al. [18] found that IRX3 was upregu-
lated in subcutaneous adipose tissue after fat loss. These 
authors proposed that increased expression of homeobox 
transcription factors, such as IRX3, may improve adipose 
tissue functioning after its reduction. On the other hand, 
Ronkainen et al. [19] reported the effect of diet on IRX3 
expression in adipose tissue and found that high fat diet 
led to 1.8-fold increase of Irx3 in Fto-knockout mice and 
prevented adipocytes from becoming hypertrophic after 
high-fat diet. Nowacka-Woszuk et  al. [20] reported the 
importance of duration of diet regimen on the transcrip-
tion of both FTO and IRX3 in white adipose tissue. They 
reported that the transcript levels of both FTO and IRX3 
genes decreased after 60  days and then continuously 
increased up to 120  days. We observed statistically sig-
nificant up-regulation of IRX3 gene after about 126 days.

Recent studies examining association between FTO 
genotype and IRX3 gene expression have reported 
various results. For example, Ragvin et  al. [21] showed 
that non-coding regions of the FTO gene affect obe-
sity through effects on IRX3 gene transcription factors 
in pancreas. Moreover, Smemo et  al. [11] found that 
obesity-associated single nucleotide polymorphisms 
are associated with expression of IRX3, but not FTO, in 
human brains. However, the present study was done on 
PBMCs and not adipose tissue or brain. Given the ubiq-
uitous expression of FTO, the role of FTO in each tissue 
may be different from other tissues. Thus, it is expected 
that FTO gene expression in different tissues can be influ-
enced by different factors and the different metabolic and 
secretion activity of these tissues.

We did not observe an effect of lifestyle changes on 
FTO gene expression in PBMCs. However, after consid-
ering FTO genotype, FTO expression was up-regulated 

in AA genotype carriers and down-regulated in AG/
GG genotype carriers only in the intervention group. 
Moreover, Landgraf et al. [15] reported that the associa-
tion between FTO risk variants and IRX3 expression was 
restricted to lean children and IRX3 gene expression was 
unaffected by FTO risk variants in obese children. In our 
study of overweight and obese adolescents, we observed 
that IRX3 gene expression was affected by FTO risk vari-
ants only in the intervention group. It was not surprising 
that no SNP association was seen in the control group 
because genes expression did not change significantly in 
the control group.

We suggest that the expression levels of FTO and 
IRX3 genes depend on various factors and can undergo 
changes in short periods of time. Gulati et  al. [22] 
reported that FTO acts as a cellular sensor for some 
nutrients and has a role in the coupling of amino acid lev-
els to mammalian target of rapamycin complex 1 signal-
ing. Thus, it is possible that the expression level of FTO 
may change several times even in one day. If this hypoth-
esis is correct, future efforts should identify all genes and 
signaling pathways affected by FTO, as well as dietary 
factors that affect FTO gene expression. These results 
strongly emphasize the importance of lifestyle modifica-
tions in FTO risk allele carriers. This study had some lim-
itations. The extensive tissue-specific expression pattern 
of juvenile FTO and IRX3 genes is not possible to study 
in human, but it is plausible that lifestyle modifications 
affect the expression of FTO and IRX3 genes in brain and 
adipocytes. It is plausible that the effects of lifestyle mod-
ification on the expression of these genes can be different 
in different tissues. Our sample was limited to adolescent 
boys, which make it difficult to generalize results to other 
age and sex groups.

Conclusion
FTO and IRX3 genes are suggested to have a crucial 
role in determining weight and BMI in adolescent boys. 
Lifestyle modification may exert its effects on obesity 
through changes in the expression level of the FTO and 
IRX3 genes. However, FTO genotype plays a role in the 
extent of the effect of lifestyle changes on gene expres-
sion. Different alleles of the FTO gene affect the expres-
sion of the genes which might lead to a different outcome 
of the lifestyle modification. Further studies are needed 
to increase our understanding of the interaction between 
lifestyle, genetics, body weight and body composition.

Additional file

Additional file 1. CONSORT 2010 Flow Diagram.
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