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Abstract 

Background:  Lung cancer has become the most common cancer type and caused the most cancer deaths. Lung 
adenocarcinoma (LUAD) is one of the major type of lung cancer. This study aimed to establish a signature based on 
immune related genes that can predict patients’ OS for LUAD.

Methods:  The expression data of 976 LUAD patients from The Cancer Genome Atlas database (training set) and the 
Gene Expression Omnibus database (four testing sets) and 1534 immune related genes from the ImmPort database 
were used for generation and validation of the signature. The glmnet Cox proportional hazards model was used to 
find the best gene model and construct the signature. To assess the independently prognostic ability of the signature, 
the Kaplan–Meier survival analysis and Cox’s proportional hazards model were performed.

Results:  A gene model consisting of 30 immune related genes with the highest frequency after 1000 iterations was 
used as our signature. The signature demonstrated robust prognostic ability in both training set and testing set and 
could serve as an independent predictor for LUAD patients in all datasets except GSE31210. Besides, the signature 
could predict the overall survival (OS) of LUAD patients in different subgroups. And this signature was strongly associ‑
ated with important clinicopathological factors like recurrence and TNM stage. More importantly, patients with high 
risk score presented high tumor mutation burden.

Conclusions:  This signature could predict prognosis and reflect the tumor immune microenvironment of LUAD 
patients, which can promote individualized treatment and provide potential novel targets for immunotherapy.

Keywords:  Lung adenocarcinoma, Signature, Prognosis, Immune related gene, Tumor immune microenvironment, 
Mutation burden

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/
publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
According to the latest cancer statistics released in 2018, 
lung cancer has become the most frequently diagnosed 
cancer type and the top-ranked reason for cancer death 
in the combined population of women and men world 
widely [1]. In the United States, there were approximately 
234,030 new cases and 154,050 deaths in 2018 [2]. Lung 

cancer mainly has two subtypes, including non-small cell 
lung cancer (NSCLC) and small cell lung cancer. Adeno-
carcinoma (LUAD) and squamous cell carcinoma are two 
main types of NSCLC [3], of which LUAD is the most 
common type [4]. With the decreasing of smoking rates, 
lung cancer cases of never-smoker are increasing, most 
of which comprise LUAD. For those patients, molecularly 
targeted therapies considerably enhance their survival 
outcomes. Tyrosine kinase inhibitors (TKIs) target-
ing epidermal growth factor receptor (EGFR) have been 
observed as the first-line treatment method for advanced 
LUAD patients with sensitizing EGFR mutation [5]. ROS 
proto-oncogene 1 (ROS1) and anaplastic lymphoma 
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kinase (ALK) gene rearrangements are other common 
oncogenes which are somatically activated for the tar-
geted therapies of LUAD [6]. However, a large amount of 
advanced LUAD patients do not have targetable muta-
tions. For these patients, antibodies against immune 
checkpoints like programmed death 1 (PD-1) and cyto-
toxic T lymphocyte-associated antigen-4 (CTLA-4) dem-
onstrate established treatment activity and safety [7, 8]. 
This highlights the importance of tumor immune micro-
environment (TIM) on the clinical outcomes of LUAD 
patients.

The TIM constitutes of a variety of immune cells with 
either immune promoter or immune suppressor ability. 
TIM is able to limit the accumulation of T cells to where 
cancer cells locate [9]. Studies focusing on the impact 
of immune suppression elements like tumor-associated 
macrophages and myeloid-derived suppressor cells on 
LUAD patients’ survival outcomes have achieved tremen-
dous development [10–13]. However, there has been no 
signature that can systematically evaluate the TIM on 
the basis of immune-related genes and predict LUAD 
patients’ overall survival or response to immunothera-
pies. Zheng et  al. [14] recently demonstrated a signa-
ture based on B7-CD28 family that can predict LUAD 
patients’ prognosis. Nevertheless, their investigations 
were limited to B7-CD28 family members, which may 
not represent the status of the entire TIM. Therefore, it’s 
essential to develop an immune signature on the basis of 
a comprehensive list of immune-related genes that can 
stand for the immune status of TIM and be with prog-
nostic ability in LUAD.

Our efforts concentrated on developing an immune sig-
nature with prognostic ability based on the comprehen-
sive list of immune-related genes downloaded from The 
Immunology Database and Analysis Portal (ImmPort) 
database. The RNA sequencing (RNA-seq) data and 
microarray data from The Cancer Genome Atlas (TCGA) 
database and the Gene Expression Omnibus (GEO) data-
base were used for analysis. Then, we evaluated whether 
this signature was associated with the survival outcome 
of subgroups of LUAD patients and clinicopathological 
factors. And finally, we tried to figure out the relation-
ship between the signature and tumor immune-related 
indexes including mutation load and neoantigen in 
LUAD.

Methods
Publicly attainable expression datasets and immune 
related genes
The expression data were downloaded from the TCGA 
database and the GEO database. The RNA-seq data of 
500 LUAD patients were collected from the TCGA data-
base and used as the training set, which were downloaded 

from University of California Santa Cruz (UCSC) 
Genome Browser (https​://xena.ucsc.edu/publi​c-hubs/). 
GSE 81089 was the other RNA-seq data of 108 LUAD 
patients downloaded from the GEO database (http://
www.ncbi.nlm.nih.gov/geo), which was used as one of the 
testing sets for constructing this signature. Fragments per 
kilobase of exon per million fragments mapped (FPKM) 
value was used to measure all of the RNA-seq data. The 
microarray data from GSE30219 (N = 85), GSE31210 
(N = 226), GSE3141 (N = 57) were also collected from 
the GEO database and used as testing sets, respectively. 
A total of 976 patients were included for analysis. The 
clinical and survival information of the included datasets 
were summarized in Table  1. The comprehensive list of 
immune related genes containing a total of 1534 genes 
were downloaded from the ImmPort database (https​://
immpo​rt.niaid​.nih.gov) [15].

Development and validation of the immune signature 
for LUAD
The cases from the TCGA database were used as the 
training set to develop the immune signature. Uni-
variate analysis and logRank test were used to identify 
immune related genes with prognostic ability. For the 
genes with prognostic ability, Cox proportional hazards 
model (iteration = 1000) with an lasso penalty was used 
to find the best gene model utilizing a R package called 
“glmnet” [16]. The best gene model was used to establish 
the immune signature. Then, the concordance (c)-index 
proposed by Harrell et al. [17] was applied to validate the 
predictive ability of the signature in all of the five data-
sets, by using the “survcomp” R package [18]. The larger 
c-index indicated the more accurate predictive ability of 
the model.

Survival analysis
The Kaplan–Meier (K–M) survival curves were gener-
ated to graphically demonstrate the overall survival (OS) 
of the high-risk group and low-risk group which were 
stratified by the immune signature. The univariate and 
multivariate analyses of survival were conducted for both 
the immune signature and clinicopathologic factors. The 
R package called “survival” was utilized to perform the 
survival analysis.

Mutation load and neoantigen analysis
Mutation data that contained somatic variants were 
stored in Mutation Annotation Format (MAF) form and 
were downloaded from Genomic Data Commons (GDC) 
(https​://porta​l.gdc.cance​r.gov/).

Nonsynonymous mutations were used for our investi-
gations, considering the uncertainty of functional conse-
quences of synonymous mutations. And nonsynonymous 

https://xena.ucsc.edu/public-hubs/
http://www.ncbi.nlm.nih.gov/geo
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https://immport.niaid.nih.gov
https://immport.niaid.nih.gov
https://portal.gdc.cancer.gov/
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mutations were potential sources of neoantigen epitopes. 
Nonsynonymous mutations included missense muta-
tion, nonsense mutation, splice site mutation, frameshift 
mutation, and inframe mutation. The total number of 
nonsynonymous mutations were utilized as the mutation 
burden of LUAD patients to investigate the relationship 
between the immune signature and patients’ mutation 
load. The single nucleotide polymorphism (SNP) was 
also analyzed for its association with our signature. The 

number of neoantigens was cited from a published study 
[19] so as to figure out the correlation of the signature 
with the number of neoantigens in LUAD patients.

Statistical analysis
Student’s t test was conducted to make statistical com-
parison. The “ggplot” R package was used to generate 
boxplots. “ComplexHeatmap” R package was applied to 
generate heatmaps [20]. Two-tailed p values less than 

Table 1  Clinical characteristics of the included datasets

y years, TCGA​ The Cancer Genome Atlas

Features TCGA (n, %) GSE30219 (n, %) GSE31210 (n, %) GSE3141 (n, %) GSE81089 (n, %)

Platform Illumina HiSeq2000 RNA 
sequencing platform

Affymetrix Human 
Genome U133 Plus 2.0 
Array

Affymetrix Human 
Genome U133 Plus 2.0 
Array

Affymetrix Human 
Genome U133 Plus 2.0 
Array

Illumina HiSeq2000 
RNA sequencing 
platform

Age

 ≤ 60 y 157 (31.4%) 43 (50.6%) 108 (47.8%) – 20 (18.5%)

 > 60 y 333 (66.6%) 42 (49.4%) 118 (52.2%) – 88 (81.5%)

 NA 10 (2.0%) 0 (0.0%) 0 (0.0%) – 0 (0.0%)

Gender

 Male 230 (46.0%) 66 (77.6%) 105 (46.5%) – 39 (36.1%)

 Female 270 (54.0%) 19 (22.4%) 121 (53.5%) – 69 (63.9%)

 NA 0 (0.0%) 0 (0.0%) 0 (0.0%) – 0 (0.0%)

Recurrence

 Yes 155 (31.0%) 27 (31.8%) 64 (28.3%) – –

 No 285 (57.0%) 58 (68.2%) 162 (71.7%) – –

 NA 60 (12.0%) 0 (0.0%) 0 (0.0%) – –

AJCC stage

 Stage I 268 (53.6%) – 168 (74.3%) – 62 (57.4%)

 Stage II 119 (23.8%) – 58 (25.7%) – 19 (17.6%)

 Stage III 80 (16.0%) – 0 (0.0%) – 24 (22.2%)

 Stage IV 25 (5.0%) – 0 (0.0%) – 3 (2.8%)

 Stage X 8 (1.6%) – 0 (0.0%) – 0 (0.0%)

T stage

 T1 167 (33.4%) 71 (83.5%) – – –

 T2 267 (53.4%) 12 (14.1%) – – –

 T3 45 (9%) 2 (2.4%) – – –

 T4 18 (3.6%) 0 (0.0%) – – –

 TX 3 (0.6%) 0 (0.0%) – – –

N stage

 N0 324 (64.8%) 82 (96.5%) – – –

 N1–3 165 (33.0%) 3 (3.5%) – – –

 NX 11 (2.2%) 0 (0.0%) – – –

M stage

 M0 332 (66.4%) 85 (100%) – – –

 M1 24 (4.8%) 0 (100%) – – –

 MX 144 (28.8%) 0 (100%) – – –

Survival status

 Alive 318 (63.6%) 40 (47.1%) 191 (84.5%) 26 (45.6%) 59 (54.6%)

 Dead 182 (36.4%) 45 (52.9%) 35 (15.5%) 31 (54.4%) 49 (45.4%)
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0.05 were thought to be statistically significant. All of our 
analyses were conducted using R software version 3.5.1 
(https​://www.r-proje​ct.org/).

Results
Construction of immune signature
To make our investigations clearer, a workflow that illus-
trated the generation of the signature was demonstrated 
in Fig. 1. The univariate analysis was performed in all of 
the 1534 immune related genes for TCGA LUAD data-
sets. There were 144 genes with prognostic ability after 
the univariate analysis and logRank test (P < 0.05). The 
144 immune related genes then underwent the Cox 
proportional hazards regression with tenfold cross-vali-
dation to generate the best gene model. We totally per-
formed 1000 iterations and included 10 gene groups for 
further screening. The gene lists of the 10 gene groups 
were shown in Additional file 1: Table S1. As illustrated 
in Fig.  2a, a gene model with 30 immune related genes 
was with the highest frequencies of 211 compared to 
other nine gene models. Thus, this gene model became 
the most suitable role to generate the immune signature 

for LUAD. Therefore, we utilized the 30 immune related 
genes in this gene model to construct our immune sig-
nature, as listed in Additional file 1: Table S1. The coeffi-
cient value of the 30 genes were listed in Additional file 2: 
Table S2. The prognostic ability of the 30 immune related 
genes in LUAD patients was confirmed in the training set 
(The TCGA dataset, Additional file 3: Figure S1), which 
showed that all of the 30 genes were able to predict sur-
vival outcome of LUAD patients. However, the prognos-
tic ability of the 30 genes was not consistent in the four 
testing sets (The GEO datasets, Additional files 4, 5, 6, 7: 
Figures S2–S5).

Validation of immune signature
To validate our signature, we firstly calculated the c-index 
for the prediction of OS. The c-index for TCGA data-
set, GSE30219, GSE31210, GSE3141, and GSE81089 
were 0.723, 0.657, 0.7061, 0.641, and 0.619 respectively 
(P < 0.05, Fig.  2b), which indicated the high predictive 
accuracy of the signature for survival. Then, the risk score 
for each patient was calculated according to the coef-
ficient value of the 30 genes. Patients were divided into 

Fig. 1  The workflow of construction and validation of the immune signature. The signature consisted of 30 immune related genes in LUAD which 
was constructed and validated using expression data from the TCGA database (training dataset) and the GEO database (four testing datasets). TCGA​ 
The Cancer Genome Atlas, LUAD lung adenocarcinoma

https://www.r-project.org/
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Fig. 2  a Generation of the ten gene groups after 1000 iteration. The gene model with 30 immune related genes was selected to construct the 
signature as its highest frequencies of 211 compared to other nine gene models. b The c-index of both training and testing sets. The c-index for 
TCGA dataset, GSE30219, GSE31210, GSE3141, and GSE81089 were 0.723, 0.657, 0.7061, 0.641, and 0.619 respectively

Fig. 3  Heatmap of the signature consisting of 30 immune related genes in the TCGA dataset (a) and the GEO datasets, including GSE30219 (b), 
GSE30210 (c), GSE81089 (d), and GSE3141 (e). Patients were divided into high-risk and low-risk groups with the median risk score utilized as the 
cutoff value
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high-risk and low-risk groups with the median risk score 
utilized as the cutoff value, as demonstrated in Fig. 3a–
e. Patients of high-risk were with poor OS compared 
with those of low-risk in both TCGA and GEO datasets 
(Fig.  4a–e, P < 0.05). We further validated the prognos-
tic ability of the signature in subgroups of LUAD, and 
we found the immune signature could also predict the 
survival outcome of patients in clinically important sub-
groups. In TCGA datasets, patients in high risk group 
demonstrated poor prognosis in T1–3 stage, N0–3 stage, 
M0–1 stage, stage I–IV, recurrence, and no recurrence 
(P < 0.05, Additional file 8: Figure S6). In GSE30219 data-
sets, patients in high risk group showed poor prognosis in 
T1 stage, N0 stage (P < 0.05, Additional file 9: Figure S7). 
In GSE31210 dataset, high risk patients in stage I group 
demonstrated poor survival outcome (P < 0.05, Addi-
tional file 10: Figure S8). In GSE81089 datasets, patients 
in stage III exhibited a negative correlation between the 
risk score and patients’ OS (P < 0.05, Additional file  11: 
Figure S9). The univariate Cox analysis of the immune 
signature also indicated the significant association of 
the signature with LUAD patients’ OS in both TCGA 
and GEO datasets (P < 0.05, Fig.  5). Multivariate Cox 

analysis further exhibited that our signature could serve 
as an independent predictor of patients’ survival out-
come after adjusted by clinicopathologic factors includ-
ing age, TNM stage, recurrence, and gender in TCGA 
cohort [Hazard ratio (HR) = 2.1868, 95% confidence 
intervals (95% CI) 1.7612 to 2.7152, P < 0.001], GSE30219 
cohort (HR = 1.6354, 95% CI 1.1632–2.2993, P = 0.0047), 
and GSE81089 (HR = 1.5156, 95% CI 1.1425–2.0106, 
P = 0.0039), as demonstrated in Fig.  6. As for the prog-
nostic ability of clinical factors, we found only tumor 
recurrence and stage IV could serve as independent pre-
dictors for patients’ OS, which indicated the strong prog-
nostic ability of our signature.

Association with clinicopathologic factors
To further validate the clinical value of the 30-genes 
immune signature, we evaluated the relationship 
between the signature and clinicopathologic factors. In 
TCGA cohort, patients of high-risk were tended to have 
advanced T stage, N stage, M stage, pathological stage 
and were under high risk of recurrence (P < 0.05, Addi-
tional file 12: Figure S10). In GSE30219 cohort, high-risk 
score was associated with higher T stage and N stage 

Fig. 4  The Kaplan–Meier survival analysis of the signature for both training set and testing sets. Patients with high risk score demonstrated poor 
OS than those with low risk score in TCGA dataset (a), GSE30219 (b), GSE31210 (c), GSE81089 (d), and GSE3141 (e), which suggested the robust 
predictive ability for LUAD patients’ survival outcome (P < 0.001). TCGA​ The Cancer Genome Atlas
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(P < 0.05, Additional file  13: Figure S11). In GSE31210 
cohort, the risk score was only positively related to 
advanced pathological stage (P < 0.05, Additional file 14: 
Figure S12). And we did not find the association of the 
risk score and pathological stage in GSE81089 (Addi-
tional file 15: Figure S13).

Association with mutation load and neoantigen
Higher nonsynonymous mutation burden load and neo-
antigen number have shown associations with clinical 
efficacy of immune checkpoint inhibitor therapy [21, 
22]. Therefore, we would like to investigate whether our 
immune signature could affect mutation load and num-
ber of neoantigen of LUAD for the possibility of the risk 

score to be the predictor of response to immune check-
point inhibitor. Patients with high risk score exhibited 
higher nonsynonymous mutation load than those with 
low risk score (P = 0.0112, Fig.  7a). To further explore 
which types of nonsynonymous mutation were the major 
contributors to this relationship, we evaluated the asso-
ciation of the signature with different types of nonsyn-
onymous mutation. High-risk group patients had higher 
missense mutation (P = 0.0098, Fig. 7b), nonsense muta-
tion (P = 0.0166, Fig. 7c), splice site mutation (P = 0.0217, 
Fig.  7d), and inframe deletion (P = 0.0085, Fig.  7g). We 
did not find this relationship in frameshift mutation 
(Fig.  7e, f ), inframe insertion (Fig.  7h), total deletion 
mutation (Fig. 7j), and total insertion mutation (Fig. 7k). 

Fig. 5  The Univariate Cox analysis of the signature and clinicopathological factors for training and testing sets. The HR in TCGA cohort was 2.4852 
with 95% CI from 2.0574 to 3.0019 (P < 0.001). The HR in GSE30219 cohort was 1.9059 with 95% CI from 1.4054 to 2.5846 (P < 0.001). The HR in 
GSE31210 cohort was 1.6388 with 95% CI from 1.1941 to 2.249 (P = 0.0022). The HR in GSE81089 cohort was 1.4334 with 95% CI from 1.1108 to 
1.8496 (P = 0.0056). The HR in GSE3141 cohort was 2.0564 with 95% CI from 1.3037 to 3.2436 (P = 0.0019). TCGA​ The Cancer Genome Atlas, HR 
hazard ratio, 95% CI 95% confidence interval
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Besides, we found there demonstrated a positive cor-
relation between the signature and the number of SNP 
(P = 0.0098, Fig. 7i). However, we did not find correlation 
between the signature and the number of neoantigens in 
LUAD (Fig. 7l).

Discussion
The treatment of LUAD has experienced huge evolve-
ment in the past 30 years, especially with the efficacy of 
immunotherapy. This shades light on the important role 
of TIM in the development and progression of LUAD. 
In this investigation, we established a robust prognos-
tic signature on the basis of TIM in TCGA dataset and 
proved its efficacy in four GEO datasets. Our signature 

may represent the status of TIM for LUAD patients and 
provide potential biomarkers for the response to immu-
notherapy and targets for immunotherapy.

The study found that our signature was significantly 
correlated with LUAD patients’ OS. And their correlation 
showed a high statistical significance in the training set, 
testing sets, and the subgroups of LUAD patients, which 
indicates the signature is able to provide a robust prog-
nostic tool for the total cohort and subgroups of LUAD 
patients. Besides, the signature showed strong correla-
tion with clinicopathologic factors, further highlighting 
the firmly prognostic ability of our signature. In addition, 
we found that some of the 30 immune genes had different 
prognostic ability in different datasets. This indicates the 

Fig. 6  Multivariate Cox analysis evaluating independently predictive ability of our signature for OS. The signature was able to independently 
predict patients’ OS in TCGA cohort [Hazard ratio (HR) = 2.1868, 95% confidence intervals (95% CI) 1.7612 to 2.7152, P < 0.001], GSE30219 cohort 
(HR = 1.6354, 95% CI 1.1632–2.2993, P = 0.0047), and GSE81089 (HR = 1.5156, 95% CI 1.1425–2.0106, P = 0.0039). However, this relationship could 
not find in GSE31210 (P = 0.4298). TCGA​ The Cancer Genome Atlas, HR hazard ratio, 95% CI 95% confidence interval
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instability of a single gene in predicting the OS of LUAD 
patients, while the signature which integrates the efficacy 
of all the 30 immune related genes showed a consistent 
predictive ability of OS in all of the datasets. Therefore, 
this immune signature has a greater value than a single 
gene in predicting patients’ survival outcome.

More importantly, our signature was on the basis of 
immune related genes and demonstrated a positive asso-
ciation with nonsynonymous mutation load and differ-
ent types of nonsynonymous mutation. Considering the 
importance of tumor mutation load in predicting the 
response to immunotherapy [23], we could confer there 

may be a connection between our signature and response 
to immunotherapy. The NF-κB is a key participant in 
both immune response and human cancer initiation and 
progression [24–26]. Therefore, NF-κB is a crucial part 
linking immunity and cancer. Interestingly, there was a 
study demonstrating that inhibition of NF-κB c-Rel could 
impair regulatory T cells mediated immunosuppression 
and potentiate anti-PD-1 therapy efficacy [27]. Among 
the 30 immune related genes in our signature, RELA is 
a subunit of NF-κB that is essential for NF-κB activation 
[28]. Hence, this further indicates that our signature may 
be related to response to immunotherapy. Considering 

Fig. 7  The relationship between the risk signature and nonsynonymous mutation burden, different nonsynonymous mutation types, and 
neoantigen. a High-risk group patients had higher nonsynonymous mutation burden (P = 0.0112). b Patients in high-risk group were associated 
with higher number of missense mutation (P = 0.0098). c Patients in high-risk group were associated with higher number of nonsense mutation 
(P = 0.0166). d Patients in high-risk group were associated with higher number of splice site (P = 0.0217). e There was no association of the risk score 
with the number of frame shift deletion. f There was no association of the risk score with the number of frame shift insertion. g Patients in high-risk 
group was associated with higher number of inframe deletion (P = 0.0085). h There was no association of the risk score with the number of inframe 
insertion. i Patients in high-risk group was associated with higher number of SNP (P = 0.01). j There was no association of the risk score with total 
number of deletion mutation. k There was no association of the risk score with total number of insertion mutation. l There was no association of the 
risk score with the number of neoantigen. Del deletion, Ins insertion, SNP single nucleotide polymorphism, NeoAgs neoantigens, TCGA​ The Cancer 
Genome Atlas
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the neoantigen have also shown its ability to predict 
the response to immunotherapy in cancer patients, we 
investigated the relationship between the signature and 
the neoantigens. However, we did not find the correla-
tion between the signature and number of neoantigens. 
Therefore, further validations are needed to evaluate 
this immune signature in LUAD patients treated with 
immune checkpoint blockade.

Nonetheless, there were several limitations in our 
investigation. First, the signature was developed using 
retrospective data. Therefore, clinical validation, or 
even gene expression data of the thirty genes in enough 
number of LUAD samples are needed to prove the effi-
cacy of the signature. And we did not find the indepen-
dently prognostic ability of the signature in all of the 
datasets, which may be caused by the diversity of dif-
ferent platforms, batch effects and limited number of 
samples. Besides, in some subgroups of LUAD patients, 
there was no correlation between the signature and OS, 
which was also caused by the limited sample number 
in subgroups. Finally, lacking in patients treated with 
immune checkpoint inhibitors, we are unable to confirm 
relationship between the signature and the response to 
immunotherapy.

Conclusions
In conclusion, this study generates a signature that can 
not only predict LUAD patients’ survival outcome but 
also reflect the immune status of LUAD. This signature 
can be clinically used for the improvement of patients’ 
OS, individualized therapy methods based on the risk 
score and possible response to immunotherapy.

Additional files

Additional file 1: Table S1.  The gene lists of the 10 gene groups.

Additional file 2: Table S2. The coefficient value of 30 immune related 
risk genes.

Additional file 3: Figure S1. The Kaplan–Meier survival analysis for the 
30 immune related genes in TCGA dataset. The 30 immune related genes 
used to construct the immune signature demonstrated strong prognostic 
ability for LUAD patients’ OS in TCGA dataset (P < 0.001).

Additional file 4: Figure S2. The Kaplan–Meier survival analysis for the 
30 immune related genes in GSE30219 dataset. Some of the 30 immune 
related genes used to construct the immune signature demonstrated 
strong prognostic ability for LUAD patients’ OS in GSE30219 dataset, while 
others did not exhibit prognostic ability.

Additional file 5: Figure S3. The Kaplan–Meier survival analysis for the 
30 immune related genes in GSE31210 dataset. Some of the 30 immune 
related genes used to construct the immune signature demonstrated 
strong prognostic ability for LUAD patients’ OS in GSE31210 dataset, while 
others did not exhibit prognostic ability.

Additional file 6: Figure S4. The Kaplan–Meier survival analysis for the 
30 immune related genes in GSE81089 dataset. Some of the 30 immune 
related genes used to construct the immune signature demonstrated 

strong prognostic ability for LUAD patients’ OS in GSE81089 dataset, while 
others did not exhibit prognostic ability.

Additional file 7: Figure S5. The Kaplan–Meier survival analysis for the 
30 immune related genes in GSE3141 dataset. Some of the 30 immune 
related genes used to construct the immune signature demonstrated 
strong prognostic ability for LUAD patients’ OS in GSE3141 dataset, while 
others did not exhibit prognostic ability.

Additional file 8: Figure S6. The Kaplan–Meier survival analysis of the 
signature for LUAD subgroup patients in TCGA dataset. Patients of high-
risk exhibited poor prognosis in T1 stage cohort, T2 stage cohort, T3 stage 
cohort, N0 stage cohort, N1–3 stage cohort, M0 stage cohort, M1 stage 
cohort, stage I cohort, stage II cohort, stage III cohort, stage IV cohort, 
recurrence cohort, and no recurrence cohort (P < 0.05). There was no asso‑
ciation of the risk score with patients of T4 stage cohort. Abbreviations: 
The Cancer Genome Atlas (TCGA).

Additional file 9: Figure S7. The Kaplan–Meier survival analysis of the 
signature for LUAD subgroup patients in GSE30219 dataset. Patients of 
high-risk exhibited poor prognosis in T1 stage cohort and N0 stage cohort 
(P < 0.05). There was no association of the risk score with patients of T2 
stage cohort, recurrence cohort, and no recurrence cohort.

Additional file 10: Figure S8. The Kaplan–Meier survival analysis of the 
signature for LUAD subgroup patients in GSE31210 dataset. Patients of 
high-risk exhibited poor prognosis in stage I cohort (P < 0.05). There was 
no association of the risk score with patients of stage II cohort, recurrence 
cohort, and no recurrence cohort.

Additional file 11: Figure S9. The Kaplan–Meier survival analysis of the 
signature for LUAD subgroup patients in GSE81089 dataset. Patients of 
high-risk exhibited poor prognosis in stage III cohort (P < 0.05). There was 
no association of the risk score with patients of stage I cohort, stage II 
cohort, and stage IV cohort.

Additional file 12: Figure S10. Correlation of the risk signature with 
clinicopathologic factors in TCGA datasets. The signature was positively 
correlated with T stage, N stage, M stage and pathologic stage in TCGA 
datasets (P < 0.05). Abbreviations: The Cancer Genome Atlas (TCGA).

Additional file 13: Figure S11. Correlation of the risk signature with clin‑
icopathologic factors in GSE30219 datasets. The signature was positively 
correlated with T stage and N stage in GSE30219 datasets (P < 0.05). But 
there was no correlation of the signature and recurrence.

Additional file 14: Figure S12. Correlation of the risk signature with clin‑
icopathologic factors in GSE31210 datasets. The signature was positively 
correlated with pathologic stage in GSE31210 datasets (P < 0.05). But there 
was no correlation of the signature and recurrence.

Additional file 15: Figure S13. Correlation of the risk signature with 
clinicopathologic factors in GSE81089 datasets. There was no correlation 
of the signature and pathologic stage in GSE81089, which may be caused 
by the small number of stage IV patients.
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