
Hosseini et al. J Transl Med          (2019) 17:383  
https://doi.org/10.1186/s12967-019-02137-6

REVIEW

Current progress in hepatic tissue 
regeneration by tissue engineering
Vahid Hosseini1,2, Nazila Fathi Maroufi2,5, Sepideh Saghati3, Nahideh Asadi4, Masoud Darabi1,2, 
Saeed Nazari Soltan Ahmad2, Hosseini Hosseinkhani6 and Reza Rahbarghazi7* 

Abstract 

Background:  Liver, as a vital organ, is responsible for a wide range of biological functions to maintain homeosta-
sis and any type of damages to hepatic tissue contributes to disease progression and death. Viral infection, trauma, 
carcinoma, alcohol misuse and inborn errors of metabolism are common causes of liver diseases are a severe known 
reason for leading to end-stage liver disease or liver failure. In either way, liver transplantation is the only treatment 
option which is, however, hampered by the increasing scarcity of organ donor. Over the past years, considerable 
efforts have been directed toward liver regeneration aiming at developing new approaches and methodologies to 
enhance the transplantation process. These approaches include producing decellularized scaffolds from the liver 
organ, 3D bio-printing system, and nano-based 3D scaffolds to simulate the native liver microenvironment. The 
application of small molecules and micro-RNAs and genetic manipulation in favor of hepatic differentiation of distinct 
stem cells could also be exploited. All of these strategies will help to facilitate the application of stem cells in human 
medicine. This article reviews the most recent strategies to generate a high amount of mature hepatocyte-like cells 
and updates current knowledge on liver regenerative medicine.
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Background
The liver is the largest gland of the body, which normally 
weighs about 1.5  kg in adults and divided into a large 
right lobe and a smaller left lobe [1]. Each lobe is further 
divided into lobules, which are the functioning units of 
the liver. The lobule is consisting of a hexagonal row of 
hepatocytes. Primary hepatocytes constitute 60–80% of 
the liver mass and play many important functions in our 
body. The main functions played by the liver include (a) 
bile production and secretion; (b) excretion of bilirubin, 
cholesterol, hormones, and drugs; (c) metabolism of fats, 
proteins, and carbohydrates; (d) enzyme activation; (e) 
storage of glycogen, vitamins, and minerals; (f ) macro-
molecules and protein synthesis (i.e. Alb and bile acids); 
and (g) detoxification [2]. Detoxification is a critical 
liver-specific function [3]. Exogenous and endogenous 

substances are detoxified in the liver by two main mech-
anisms, phase I and phase II biotransformation [4, 5]. 
Hepatocyte-based hepatotoxicity testing is useful in 
the rapid screening of chemicals and in the mechanistic 
evaluation of toxicological phenomena. A large amount 
of natural and synthetic chemicals are hepatotoxins. 
In many cases, the hepatotoxicity is due to an impaired 
hepatocyte metabolism and conversion of inert and non-
toxic compounds into highly reactive metabolites. The 
hepatocytes are usually the first cell types that are dam-
aged upon hepatotoxic insult [6]. The loss of liver func-
tions such as detoxification, metabolism, and regulation 
causes life-threatening complications, including kidney 
failure, encephalopathy, cerebral edema, severe hypoten-
sion and susceptibility to infections culminating in mul-
tiple organ failure. Hepatocytes-based screening can be 
used to characterize the metabolic fate of compounds 
and whether metabolism contributes to toxicity. There-
fore, approaches to screen hepatocytes are of great bio-
medical importance. The bioartificial engineering liver 
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constructs have been recently developed [7, 8]. The 
efforts in the modern liver tissue engineering field mainly 
include: (1) creating a whole, implantable, and functional 
tissue-engineered liver constructs; (2) establishing bioar-
tificial liver systems to sustain liver patient’s lives before 
liver transplantation, establishing in  vitro hepatocyte-
based model; (3) establishing a culture model for drug 
metabolism/toxicity screening for drug discovery and (4) 
for basic researchers of liver regeneration, disease, patho-
physiology and pharmacology (Figs. 1, 2).

The liver is an important organ because of criti-
cal metabolic functions such as protein synthesis and 
xenobiotic biotransformation [9]. The liver possesses 
remarkable regenerative capacity but viral infection, 
toxic compounds, and cancer resulted in vast injury 
and liver dysfunction, if continued, leading to end-stage 
liver pathologies and hepatic failure which can threaten 
life. In the case of liver transplantation immunological 
incompatibility between the donor and recipient, how-
ever, limits the application of this procedure [10–12]. 
Transplantation at cell levels such as hepatocyte provides 
several benefits over liver transplantation, can be per-
formed several times and offer a less invasive alternative 
to whole liver transplantation, but it demonstrates low 

levels of engraftments [13]. Therefore, researchers bring 
forward to test novel tissue engineering approaches aim-
ing to fabricate 3D hepatic tissue in microscale size or 
whole bioengineered liver synthesis to restore damaged 
liver function even after massive injury and resolve the 
donor shortage problem. Over the past years, the liver 
bioengineering field has experienced significant progress 
in the area of cell engineering, biomaterials fabrication, 
and tissue architecture to recapitulate transplantable 
microscale liver tissue and whole organ bioengineering 
as well [14]. Genetic engineering strategies and hepatic 
differentiation of stem cells are also under tight investi-
gations [15, 16]. A wide range of cells from hepatocyte 
primary cells to hepatocyte-like cells that generated 
from hiPSCs constitute the promising source of stem 
cells which can be expanded in a high quantity that has 
appropriate compatibility with the host immune system. 
Considerable efforts have been dedicated to evaluat-
ing decellularized liver scaffolds in the construction of 
natural 3D extracellular matrix to better integration of 
mechanical and chemical signals for stem cell differentia-
tion and maturation (Table 1). In addition, as a new 3D 
culture system, the perfusion-based culture approaches 
have been emerged and showed better potential to model 

Fig. 1  Hepatic tissues from various sources such as human, porcine and rat underwent decellularization using detergents. Repopulation of the 
decellularized liver scaffold is performed through various routes. Decellularized liver scaffold is chopped to cubes or thin slices then recellularized 
by microinjection. Whole-organ reseeded by exerting negative pressure suction. Various cell types such as induced pluripotent stem cells (iPSCs), 
mesenchymal stem cells (MSCs) or liver progenitor cells (LPCs) are used for recellularization
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in vivo tissue microenvironment state. In spite of conven-
tional 2D monolayer systems, the cells can pile on top of 
each other in perfusion based culture system which in 
turn leads to improve material exchange and cell to cell 
communication, especially in prolonged culture periods 
[17, 18]. Besides liver tissue engineering, various nano-
materials and nanoparticles are used in in  vitro hepatic 
differentiation of stem cells. Nanomaterials can emulate 
native liver ECM and nanoparticles due to their biodeg-
radability and good biocompatibility are used to direct 
delivery of hepatogenic small molecules, growth factors, 
cytokines and proteins to stem cells [19]. 3D bioprinting 
system, as a sophisticated engineering methodology, has 
been improved to solve the issues related to conventional 
2D culture technique, by providing clues essential for the 
dynamic of distinct cell types in the context of in  vivo 
milieu. Evidence point that cell performance is enhanced 
by promoting the juxtacrine cell-to-cell interaction in the 
massive scale and 3D printing system has the potential 
to fabricate the distinctive constructions applicable to 
target tissues and organs [20–22]. In the 3D printing sys-
tem, a computer identifies a 3D spatial model of the tar-
get organ and cuts it into sequences of 2D slices, which 
is then assembled from bottom to the top. This system 
is able to print and copy any preferred shapes with the 
facility to direct cell distribution, scaffold pore size, 

interconnectivity, and geometry. It is noteworthy that if 
the operator error is reduced, it can contribute to the for-
mation of optimal uniform shapes on a large scale struc-
ture [23–25]. Apart from the mentioned approaches, 
some valuable steps have been taken in the application 
of small molecules and micro-RNAs as well as genetic 
manipulation in hepatic differentiation of stem cells. 
Small molecules have been reported to play significant 
roles in developmental processes through modulation of 
some signaling pathways involved in cell fate determina-
tion such as Wnt, Notch, and FGF during cell differen-
tiation [26]. The application of small molecules in in vitro 
hepatic induction protocols demonstrated promising 
results through the assessment of hepatic markers [16]. 
MicroRNAs are constitutively or transiently expressed 
during differentiation and involved in cell fate determi-
nation programs of stem cells and researchers recently 
investigated the impact of microRNAs alone or in com-
bination with each other as well suppression of some 
of them on hepatic differentiation of stem cells [27, 28]. 
In parallel, it has been shown that transcription factors 
such as FGF, HGF, Wnt, BMP, RA, and TGFβ to correlate 
with effectors influencing liver development. Therefore, 
it has been expected that transferring and integration, 
overexpression or knockdown of one or more than one 
transcription factors in stem cells can be able to enhance 

Fig. 2  The impact of various nanostructures on hepatic differentiation. Nanofibers (high surface area, high porosity), nanoparticles (efficiently 
growth factors delivery) and carbon nanotube (mechanical properties, easily functionalized, aligned as collagen



Page 4 of 24Hosseini et al. J Transl Med          (2019) 17:383 

Ta
bl

e 
1 

D
iff

er
en

t m
et

ho
do

lo
gi

es
 u

se
d 

fo
r r

ec
el

lu
la

ri
za

ti
on

 o
f a

ce
llu

la
r h

ep
at

ic
 ti

ss
ue

 b
y 

us
in

g 
di

ff
er

en
t c

el
ls

M
od

el
D

ec
el

lu
la

ri
za

tio
n 

pr
oc

ed
ur

e
Ev

al
ua

tio
n 

of
 E

CM
Re

ce
llu

la
ri

za
tio

n 
pr

oc
ed

ur
e

Re
ce

llu
la

ri
ze

d 
ce

ll
Re

su
lts

D
ay

 o
f c

el
ls

 s
ur

vi
va

l 
on

 E
CM

Re
fs

H
um

an
PB

S:
 o

ve
rn

ig
ht

0.
01

%
 S

D
S:

 4
 h

0.
1%

, 0
.2

%
 a

nd
 0

.5
%

 S
D

S:
 

1 
h 

fo
r e

ac
h

1%
 tr

ito
nX

-1
00

: 1
5 

m
in

PB
S:

 5
 m

in

99
%

 o
f D

N
A

 re
m

ov
ed

, 6
0%

 
of

 c
ol

la
ge

n 
an

d 
40

%
 o

f 
G

A
G

s 
pr

es
er

ve
d

D
ec

el
lu

la
riz

ed
 s

lic
es

 d
ig

es
-

tio
n 

by
 1

 m
g/

m
l p

ep
si

n 
in

 1
0 

m
M

 H
C

l: 
24

 h
, R

T,
 

ce
nt

rif
ug

e,
 s

up
er

na
ta

nt
 

co
at

ed
 o

n 
pl

at
es

H
ep

at
ic

 d
iff

er
en

tia
tio

n

hi
PS

C
A

lb
 p

ro
du

ct
io

n 
at

 d
ay

 4
, 

hi
gh

er
 e

xp
re

ss
io

n 
of

 
st

ag
e-

sp
ec

ifi
c 

m
ar

ke
rs

 
co

m
pa

re
d 

to
 c

on
tr

ol
 c

el
ls

 
cu

ltu
re

d 
on

 M
at

rig
el

 a
nd

 
co

lla
ge

n 
1

20
 d

ay
s

[1
21

]

Po
rc

in
e

1%
 tr

ito
nX

-1
00

 p
er

fu
si

on
: 

3 
h,

 2
00

 m
l/m

in
1%

 S
D

S 
pe

rf
us

io
n:

 6
 h

, 
20

0 
m

l/m
in

1%
 tr

ito
nX

-1
00

 p
er

fu
si

on
: 

3 
h

20
 l 

D
W

40
 l 

PB
S

Li
ve

r d
is

cs
 ly

op
hi

liz
at

io
n

–
Re

hy
dr

at
io

n 
of

 li
ve

r d
is

k 
w

ith
 IM

D
M

: o
ve

rn
ig

ht
, 

37
0c

Ce
ll 

se
ed

in
g 

on
 d

is
k 

us
in

g 
ne

ga
tiv

e 
pr

es
su

re
 s

uc
tio

n 
an

d 
he

pa
tic

 in
du

ct
io

n:
 

14
 d

ay

H
um

an
 u

m
bi

lic
al

 c
or

d 
m

es
-

en
ch

ym
al

 s
te

m
 c

el
l

N
D

M
or

e 
th

an
 1

4 
da

ys
[2

17
]

Po
rc

in
e

Tr
yp

si
n–

ED
TA

, 1
 h

, 3
70

c
1%

 tr
ito

nX
-1

00
, 0

.1
%

 
am

m
on

iu
m

 h
yd

ro
xi

de
, 

8 
h

D
W

, o
ve

rn
ig

ht
0.

1%
 P

A
A

, 4
%

 e
th

an
ol

, 2
 h

98
%

 d
sD

N
A

 (<
 5

0 
ng

 D
N

A
 

fra
gm

en
t <

 2
00

 b
p)

, a
ll 

ce
ll 

nu
cl

ei
 re

m
ov

ed
, 

G
A

G
s 

pr
ot

ei
ns

, H
G

F, 
bF

G
F 

an
d 

EG
F 

pr
es

er
ve

d,
 lo

w
 

ch
em

oa
tt

ra
ct

io
n

Ti
ss

ue
 p

ow
de

r s
ol

ub
ili

za
tio

n 
by

 A
ce

tic
 a

ci
d 

an
d 

ge
la

-
tio

n 
by

 p
ep

si
n,

 c
oa

tin
g 

on
 p

la
te

H
ep

G
2,

 li
ve

r p
rim

ar
y 

ce
lls

Th
e 

hi
gh

 a
m

ou
nt

 o
f u

re
a,

 
al

b 
pr

od
uc

tio
n 

co
m

pa
re

d 
to

 c
on

tr
ol

 c
el

ls
 c

ul
tu

re
d 

on
 C

ol
la

ge
n 

1

M
or

e 
th

an
 7

 d
ay

s
[1

20
]

H
um

an
H

ep
aR

G
 c

el
l

D
E 

in
du

ce
d 

ce
lls

 w
er

e 
di

f-
fe

re
nt

ia
te

d 
to

 th
e 

he
pa

tic
 

lin
ea

ge
Ce

ll 
cu

ltu
re

 p
la

te
 w

as
hi

ng
 

w
ith

 D
W

In
cu

ba
tio

n 
w

ith
 D

W
: 

45
 m

in
, 3

70
c

W
as

h 
w

ith
 D

W
: 1

 ti
m

e

D
A

PI
 a

nd
 fi

la
m

en
to

us
 a

ct
in

 
st

ai
ni

ng
 c

on
fir

m
ed

 c
el

l 
re

m
ov

al

Ce
ll 

lin
es

 c
ul

tu
re

d 
on

 a
ce

l-
lu

la
r m

at
rix

 in
 h

ep
at

ic
 

in
du

ct
io

n 
w

as
 d

on
e 

us
in

g 
gr

ow
th

 fa
ct

or
s

ES
C

-W
A

07
, E

SC
-H

9,
 h

iP
SC

Re
sp

on
se

 to
 d

iff
er

en
tia

tio
n 

w
as

 v
ar

ie
d 

am
on

g 
ce

lls
, 

m
or

e 
th

an
 9

0%
 o

f W
A

07
 

an
d 

H
9 

de
m

on
st

ra
te

d 
th

e 
liv

er
 fu

nc
tio

n

A
ro

un
d 

20
 d

ay
s

[1
23

]

Ra
t

D
W

: 5
 m

l/m
in

, 4
0 

tim
es

 o
f 

liv
er

 v
ol

um
e

1%
 T

rit
on

X-
10

0 
an

d 
0.

1%
 

am
m

on
iu

m
 h

yd
ro

xi
de

: 5
0 

tim
es

 o
f l

iv
er

 v
ol

um
e

D
W

98
.9

%
 o

f D
N

A
 re

m
ov

ed
, 

85
%

 o
f G

A
G

s, 
52

%
 o

f 
pr

ot
ei

ns
 a

nd
 7

1%
 o

f 
co

lla
ge

n 
w

as
 c

on
se

rv
ed

, 
60

%
 o

f E
C

M
 c

om
po

ne
nt

 
co

ns
er

ve
d 

af
te

r 2
8 

da
ys

 
tr

ea
tm

en
t w

ith
 P

BS
 

so
lu

tio
n

A
ce

llu
la

r l
iv

er
 p

ow
de

r d
ig

es
-

tio
n 

by
 tr

yp
si

n 
an

d 
H

C
l, 

th
e 

co
at

in
g 

on
 2

4 
w

el
l 

pl
at

es
, o

ve
rn

ig
ht

 g
el

at
io

n
Ce

ll 
se

ed
in

g,
 h

ep
at

ic
 in

du
c-

tio
n 

by
 g

ro
w

th
 fa

ct
or

H
um

an
 B

M
-M

SC
A

ft
er

 2
8 

da
ys

 th
e 

tr
ea

te
d 

ce
ll 

ex
hi

bi
t h

ep
at

oc
yt

e 
ph

en
ot

yp
e 

re
su

lte
d 

ce
lls

 
co

ul
d 

up
ta

ke
 L

D
L 

an
d 

w
er

e
A

FP
, H

N
F4

, C
YP

, a
nd

 A
lb

 
po

si
tiv

e

M
or

e 
th

an
 2

8 
da

ys
[2

18
]



Page 5 of 24Hosseini et al. J Transl Med          (2019) 17:383 

Ta
bl

e 
1 

(c
on

ti
nu

ed
)

M
od

el
D

ec
el

lu
la

ri
za

tio
n 

pr
oc

ed
ur

e
Ev

al
ua

tio
n 

of
 E

CM
Re

ce
llu

la
ri

za
tio

n 
pr

oc
ed

ur
e

Re
ce

llu
la

ri
ze

d 
ce

ll
Re

su
lts

D
ay

 o
f c

el
ls

 s
ur

vi
va

l 
on

 E
CM

Re
fs

Po
rc

in
e

0.
01

%
 S

D
S 

pe
rf

us
io

n:
 1

50
 l

0.
1%

 S
D

S 
pe

rf
us

io
n:

 1
50

 l
1%

 S
D

S 
pe

rf
us

io
n:

 5
0 

l
1%

 tr
ito

nX
10

0:
 5

0 
l

D
W

: 1
00

M
es

h 
st

ru
ct

ur
es

 w
er

e 
pr

es
er

ve
d,

 n
o 

re
m

ai
ni

ng
 

of
 th

e 
nu

cl
eu

s 
an

d 
in

ta
ct

 
ce

lls
, t

he
 s

ca
ffo

ld
 w

as
 ri

ch
 

in
 G

A
G

s

Th
e 

EC
M

 p
ow

de
r h

om
og

-
en

iz
ed

 in
 P

BS
 a

nd
 tr

ea
te

d 
w

ith
 c

ol
la

ge
na

se
 1

 to
 

fo
rm

 a
 g

el
. 1

 m
l o

f t
he

 
re

su
lti

ng
 g

el
 m

ix
ed

 w
ith

 
1 

* 1
06

 c
el

ls
 a

nd
 h

ep
at

ic
 

in
du

ct
io

n 
ca

rr
ie

d 
ou

t i
n 

th
e 

ab
se

nc
e 

of
 g

ro
w

th
 

fa
ct

or
s

Bo
ne

 m
ar

ro
w

-d
er

iv
ed

-M
SC

s
G

ly
co

ge
ne

si
s 

an
d 

A
lb

 
pr

od
uc

tio
n

14
 d

ay
s

[1
24

]

Fe
rr

et
D

W
: 2

 l,
 6

 m
l/m

in
Tr

ito
nX

-1
00

, 0
.1

%
 a

m
m

o-
ni

um
 h

yd
ro

xi
de

: 4
 l

D
w

: 8
 l

–
A

ce
llu

la
r t

is
su

e 
m

in
ce

d 
in

 
sm

al
l d

is
cs

 w
ith

 8
 m

m
 

di
am

et
er

 a
nd

 p
la

ce
d 

in
 

48
 w

el
l p

la
te

s. 
3–

5 
* 1

05
 

ce
lls

 s
us

pe
nd

ed
 in

 s
ee

d-
in

g 
so

lu
tio

n 
an

d 
th

en
 

tr
an

sf
er

re
d 

on
 to

p 
of

 d
is

cs
. 

H
ep

at
ic

 in
du

ct
io

n 
us

in
g 

gr
ow

th
 fa

ct
or

s

H
um

an
 li

ve
r p

ro
ge

ni
to

r 
ce

lls
Ex

pr
es

si
on

 p
at

te
rn

 s
im

ila
r 

to
 h

ep
at

oc
yt

es
 (A

lb
+

, 
C

K1
9−

 a
nd

 E
pC

A
M
−

) 
an

d 
du

ct
 (A

lb
−

, C
K1

9+
, 

an
d 

Ep
C

A
M
+

). 
Th

e 
ce

lls
 

w
er

e 
ne

ga
tiv

e 
fo

r A
lb

 
an

d 
po

si
tiv

e 
fo

r G
N

F4
α 

in
di

ca
tin

g 
th

e 
m

at
ur

at
io

n 
of

 h
ep

at
oc

yt
e-

lik
e 

ce
lls

, 
de

to
xi

fic
at

io
n 

ac
tiv

ity

3 
w

ee
ks

[1
22

]

Po
rc

in
e

H
ep

ar
in

iz
ed

 P
BS

: 6
 h

SD
S 

0.
1%

: 7
2 

h
PB

S:
 1

2 
h

0.
1%

 P
A

A
: 0

.5
 h

99
.4

%
 o

f D
N

A
 re

m
ov

ed
, 

65
%

 o
f c

ol
la

ge
n 

an
d 

G
A

G
s, 

as
 w

el
l a

s 
m

or
e 

th
an

 4
0%

 o
f g

ro
w

th
 fa

c-
to

rs
, w

as
 p

re
se

rv
ed

D
ec

el
lu

la
riz

ed
 c

ub
ic

 li
ve

r 
po

w
de

r s
ol

ub
ili

za
tio

n 
in

 
3 

m
g 

pe
ps

in
/0

.1
 M

 H
C

l: 
72

 h
, R

T,
 1

20
 rp

m
, t

he
 

re
su

lti
ng

 s
ol

ut
io

n 
w

as
 

co
nc

en
tr

at
ed

 te
nf

ol
ds

 b
y 

ad
di

tio
n 

of
 1

/1
0 

of
 th

e 
to

ta
l v

ol
um

e 
of

 1
 M

 N
aC

l 
an

d 
PB

S1
0X

.
Pr

ep
ar

at
io

n 
of

 0
%

, 2
%

, 5
%

, 
10

%
 a

nd
 2

0%
 o

f E
C

M
 in

 
he

pa
tic

 d
iff

er
en

tia
tio

n 
m

ed
ia

Po
rc

in
e 

IP
SC

s
A

lb
 p

ro
te

in
 e

xp
re

ss
io

n 
an

d 
se

cr
et

io
n 

in
to

 th
e 

m
ed

ia
 

in
cr

ea
se

d 
fo

ur
fo

ld
 a

nd
 

tw
of

ol
d,

 re
sp

ec
tiv

el
y,

 in
 

co
m

pa
ris

on
 to

 c
on

tr
ol

 
gr

ou
ps

20
 d

ay
s

[1
4]

Ra
t

H
ep

ar
in

iz
ed

 s
al

in
e:

 2
0 

m
l

0.
1%

 S
D

S:
 3

 m
l/m

in
, 1

5 
h

PB
S:

 1
2 

h
0.

1%
 P

A
A

: 1
5 

m
in

Th
e 

am
ou

nt
 o

f D
N

A
 w

as
 

be
lo

w
 a

 d
et

ec
ta

bl
e 

le
ve

l, 
m

or
e 

th
an

 6
0%

 o
f c

ol
-

la
ge

n 
an

d 
al

l o
f t

he
 G

A
G

s 
m

ai
nt

ai
ne

d,
 m

et
hy

le
ne

 
bl

ue
 s

ta
in

in
g 

re
ve

al
ed

 n
o 

va
sc

ul
ar

 tr
ee

 d
es

tr
uc

tio
n

Th
e 

re
ce

llu
la

riz
at

io
n 

ca
rr

ie
d 

ou
t 4

 ti
m

es
 th

ro
ug

h 
in

je
c-

tio
n 

of
 5

 * 
10

6 
ce

ll/
0.

15
 m

l/
m

in
 w

ith
 3

0 
m

in
 in

te
rv

al
s. 

H
ep

at
ic

 in
du

ct
io

n 
w

ith
ou

t 
us

in
g 

gr
ow

th
 fa

ct
or

s

H
ep

at
oc

yt
e 

in
du

ce
d 

po
r-

ci
ne

 IP
SC

s
A

lb
 a

nd
 u

re
a 

se
cr

et
io

n
5 

da
ys

[1
4]



Page 6 of 24Hosseini et al. J Transl Med          (2019) 17:383 

Ta
bl

e 
1 

(c
on

ti
nu

ed
)

M
od

el
D

ec
el

lu
la

ri
za

tio
n 

pr
oc

ed
ur

e
Ev

al
ua

tio
n 

of
 E

CM
Re

ce
llu

la
ri

za
tio

n 
pr

oc
ed

ur
e

Re
ce

llu
la

ri
ze

d 
ce

ll
Re

su
lts

D
ay

 o
f c

el
ls

 s
ur

vi
va

l 
on

 E
CM

Re
fs

Ra
t

Sa
lin

e:
 2

0 
m

l
D

W
: 5

 m
l/m

in
, 4

0 
tim

es
 o

f 
liv

er
 v

ol
um

e
1%

 tr
ito

nX
-1

00
 a

nd
 0

.1
%

 
N

aO
H

: 5
0 

tim
es

 o
f l

iv
er

 
vo

lu
m

e
D

W
: w

as
h 

ou
t t

he
 d

et
er

-
ge

nt

98
.9

%
 o

f D
N

A
 w

as
 d

ec
lin

ed
, 

47
%

 o
f H

G
F, 

48
%

 o
f b

FG
F 

as
 w

el
l a

s 
fib

ro
ne

ct
in

 a
nd

 
la

m
in

in
 p

re
se

rv
ed

Th
e 

tis
su

e 
m

in
ce

d 
to

 8
 m

m
 

di
sk

s 
an

d 
pl

ac
ed

 o
n 

24
 

w
el

l p
la

te
s. 

O
ve

rn
ig

ht
 

in
cu

ba
tio

n 
by

 H
ep

at
oc

yt
e 

m
ed

ia
, 1

0 
* 6

 c
el

ls
 in

 2
0 

µl
 

m
ed

ia
 p

ip
et

te
d 

to
 s

ca
ffo

ld
 

an
d 

af
te

r 2
0 

m
in

 1
0 

of
 

sc
aff

ol
ds

 tr
an

sf
er

re
d 

to
 t2

5 
fla

sk
 p

la
ce

d 
on

 a
 s

ha
ke

r

H
um

an
 iP

SC
-d

er
iv

ed
 

he
pa

to
cy

te
Th

e 
ce

ll 
pr

ol
ife

ra
tio

n 
w

as
 

in
cr

ea
se

d,
 a

ve
ra

ge
 g

en
e 

ex
pr

es
si

on
 o

f C
YP

2C
9,

 
C

YP
3A

4 
an

d 
H

M
G

C
R 

5 
tim

es
 in

cr
ea

se
d,

 fe
ta

l l
iv

er
 

m
ar

ke
rs

 A
FP

 a
nd

 C
YP

3A
7 

de
cr

ea
se

d 
du

rin
g 

th
e 

cu
ltu

re
 p

er
io

d

14
 d

ay
s

[1
18

]

Po
rc

in
e

1%
 S

D
S:

 3
6 

l, 
20

0 
m

l/m
in

, 
3 

h
D

W
: 2

00
 m

l/m
in

, 3
 h

1%
 S

D
S:

 3
 l,

 2
00

 m
l/m

in
, 3

 h
D

W
: 2

00
 m

l/m
in

, 3
 h

Re
pe

tit
io

n 
of

 p
re

vi
ou

s 
st

ep
s

1%
 T

rit
on

-1
00

: 3
6 

l
D

W
: 3

6 
l, 

20
0 

m
l/m

in
PB

S:
 3

6 
l, 

20
0 

m
l/m

in

Ce
llu

la
r c

om
po

ne
nt

s 
an

d 
nu

cl
ei

 w
er

e 
re

m
ov

ed
, 

re
tic

ul
ar

 c
ol

la
ge

n 
fib

er
s 

w
er

e 
ob

se
rv

ed

Th
e 

10
0 

µl
 o

f M
SC

s 
sp

he
-

ro
id

s 
su

sp
en

si
on

 p
ip

et
te

d 
on

 to
p 

of
 D

LS
s 

un
de

r 
ne

ga
tiv

e 
pr

es
su

re
 s

uc
tio

n 
fo

llo
w

in
g 

ov
er

ni
gh

t i
nc

u-
ba

tio
n 

in
 c

ul
tu

re
 m

ed
iu

m
 

at
 3

70
c.

 h
ep

at
ic

 in
du

ct
io

n 
w

as
 d

on
e 

by
 g

ro
w

th
 

fa
ct

or
s

Bo
ne

-m
ar

ro
w

-d
er

iv
ed

 
M

SC
s

Effi
ci

en
t e

xp
re

ss
io

n 
of

 
A

lb
p-

Zs
G

re
en

, A
lb

, d
ru

g-
m

et
ab

ol
iz

in
g 

en
zy

m
es

, 
an

d 
en

zy
m

es
 re

la
te

d 
to

 fa
t a

nd
 a

m
in

o 
ac

id
 

m
et

ab
ol

is
m

 a
s 

w
el

l a
s 

hi
gh

er
 s

ec
re

tio
n 

of
 u

re
a 

th
an

 2
D

 c
ul

tu
re

s

23
 d

ay
s

[2
19

]

Ra
t

2%
 s

od
iu

m
 d

eo
xy

ch
ol

at
e:

 
2 

m
l/m

in
, 4

 h
D

W
: d

et
er

ge
nt

 w
as

hi
ng

3%
 tr

ito
n-

10
0:

 4
 h

D
W

 c
on

ta
in

in
g 

0.
02

%
 

so
di

um
 a

zi
de

 a
nd

 5
 m

M
 

ED
TA

: 7
2 

h
1%

 P
A

A
: 1

 h
PB

S:
 5

00
 m

l

99
.3

%
 o

f D
N

A
 is

 re
m

ov
ed

, 
th

e 
am

ou
nt

 o
f c

ol
la

ge
n 

an
d 

el
as

tin
 w

er
e 

m
or

e 
th

an
 th

at
 a

ss
es

se
d 

fo
r 

w
et

 ti
ss

ue
, 6

0 
an

d 
15

%
 

re
sp

ec
tiv

el
y.

 1
7%

 o
f G

A
G

s, 
0.

1%
 o

f c
yt

ok
in

es
 w

er
e 

pr
es

er
ve

d,
 th

e 
in

ta
ct

 c
el

ls
 

an
d 

nu
cl

ei
 w

er
e 

re
m

ov
ed

Pr
et

re
at

m
en

t o
f w

ho
le

 li
ve

r 
sc

aff
ol

ds
 w

ith
 c

ol
la

ge
n 

an
d 

G
A

G
s 

fo
r 6

0 
m

in
 fo

l-
lo

w
ed

 b
y 

ov
er

ni
gh

t t
re

at
-

m
en

t b
y 

D
M

EM
. D

M
EM

 
w

as
 e

xc
ha

ng
ed

 w
ith

 li
ve

r 
fe

ta
l c

el
l m

ed
iu

m
 a

nd
 th

e 
re

ce
llu

la
riz

at
io

n 
of

 li
ve

rs
 

w
ith

 4
4 

an
d 

73
*1

06
 c

el
ls

 
w

as
 c

om
pl

et
ed

 fo
r 7

 d
ay

s 
an

d 
st

op
pe

d 
at

 d
ay

 1
1

H
um

an
 fe

ta
l l

iv
er

 p
ro

ge
ni

-
to

r c
el

ls
: h

FL
4T

ER
T 

an
d 

SV
40

Th
e 

re
ce

llu
la

riz
ed

 c
el

ls
 

w
er

e 
vi

ab
le

 in
 fo

ur
 o

f 
si

x 
liv

er
s 

un
til

 th
e 

en
d 

of
 e

xp
er

im
en

ts
. A

 lo
w

 
ex

pr
es

si
on

 o
r l

ac
k 

of
 li

ve
r 

fu
nc

tio
n 

m
ar

ke
rs

 s
uc

h 
as

 A
lb

, C
YP

45
0,

 a
nd

 C
Ks

. 
Th

e 
ce

lls
 w

er
e 

po
si

tiv
e 

fo
r 

hu
m

an
 m

ito
ch

on
dr

ia
 a

nd
 

en
do

th
el

ia
l m

ar
ke

rs

11
 d

ay
s

[1
31

]



Page 7 of 24Hosseini et al. J Transl Med          (2019) 17:383 

expression hepatic commitment markers [29]. In this 
review, the authors attempt to discuss the most recently 
addressed approaches aiming to improve the hepatic dif-
ferentiation rate by different tissue engineering modali-
ties as a new avenue for transplantation after hepatic 
failure or as therapy for liver regeneration and replace-
ment (Figs. 3, 4).

Cell sources for liver regeneration
To generate donor-free and expandable hepatocyte cells 
source, several types of cells are exploited in liver tissue 
engineering. Based on previous studies in this area, these 
cells include a primary culture of hepatocytes, ESCs, 

iPSCs, and MSCs. ESCs are originated from the inner 
cell mass of blastocysts. To obtain iPSCs, adult somatic 
cells are genetically manipulated and reprogramed. For 
this propose, expression of pluripotency factors such as 
Oct4, Sox2, c-Myc, and klf4 is stimulated in the target 
cells [30]. It should be noted that MSCs are commonly 
isolated from almost all connective tissues mainly bone 
marrow medullary niche and adipose tissue. Using pri-
mary cell culture strategy, expanded hepatocytes retain 
and preserve specific functions such as drug metabolism 
activity and etc. which are comparable to the in vivo con-
dition; however, prolonged in vitro expansion may lead to 
cell survival decrease and cell-specific function removal. 

Fig. 3  Schematic overviews of multi-material 3D bioprinting approach. Sequential 3D bioprinted hepatic lobule-like structures (a). Simultaneous 
deposited and dual fabricated 3D structures (b)



Page 8 of 24Hosseini et al. J Transl Med          (2019) 17:383 

In addition, it should not be forgotten that In addition, 
these cells should be freshly prepared from the patients 
to prevent immune cell reactivity and transplant rejec-
tion. To circumvent these pitfalls, great efforts have been 
devoted to improving functional behavior in the primary 
culture of hepatocytes. For instance, the application of 
2D, 3D culture models, and perfusion-based microfluidic 
systems are at the center of attention [31, 32].

Perfusion-based systems are able to simultaneously 
replace fresh medium with the exhausted medium and 
continuously eliminate metabolic byproducts from the 
culture condition. Several experiments have highlighted 
an enhanced of hepatic cells function expanded in 2D, 3D 
culture models and perfusion-based systems, indicated 
by the up-regulation of liver function factors. ESCs and 
iPSCs possess high self-renewal capability that facilitates 
trans-differentiation into multiple cell lineages under 
specific conditions. It has been shown that the presence 
of specific growth factors, cytokines, and small molecules 
could increase differentiation properties. For instance, 
in a recent study, it was shown that ESCs could differ-
entiate into hepatocyte-like cells in a stepwise manner 
using small molecules LY294002, touted as definitive 
endoderm inducer, bromo-indirubin-3′-oxime, odium 
butyrate, dimethyl sulfoxide and growth factor activin A. 

Among these factors, bromo-indirubin-3′-oxime, odium 
butyrate could dictate cells to acquire hepatoblast-like 
phenotype while dimethyl sulfoxide could accelerate ori-
entation of progenitor cells toward mature hepatocyte-
like cells. Differentiated cells have the ability to express 
hepatic cells specific factors and products such as urea, 
Alb and cytochrome p450 enzymes. In addition drug 
detoxification activity was similar to the human primary 
hepatocytes [33]. Scientific reports have pointed that 
iPSCs have some advantages over the ESCs. The use of 
iPSCs does not provoke immune cell activity and there 
are ethical issues exist surrounding the transplantation 
of ESCs. Recently, Rashidi et  al. differentiated human 
iPSCs cells, lines FSPS13B and P106, into definitive endo-
derm cells by using activin A and bFGF followed by cell 
maturation into hepatocytes in the presence of HGF and 
OSM in a spheroid culture system. These spheroids were 
functional for more than 1 year and showed hepatic cells 
function and expressed maturation markers. It was found 
that these spheroids can partially support liver function 
in hepatectomized animal model after subcutaneous or 
intraperitoneal transplantation [34]. Similar to iPSCs 
and ESCs, MSCs also have shown a high hepatic differ-
entiation potential either in  vivo or in  vitro model [35]. 
Bone marrow-derived MSCs demonstrated an enhanced 

Fig. 4  A summary of methods used to hepatic differentiation of stem cells using intracellular signaling pathway. DMSO dimethyl sulfoxide, DKK-1 
Dikkopf-related protein-1, HNF-3β hepatocyte nuclear factor 3-β, PrP-1 poly-ADP-ribose polymerase-1
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expression of hepatocyte-specific markers and exhibited 
hepatocellular function after introduction to the liver 
decellularized scaffold in the presence of EGF and HGF 
(Fig. 5).

In another study, iPSCs-derived MSCs and iPSCs were 
successfully transplanted into a hepatectomized rat to 
reduce hepatic injury. The cells were successful tracked in 
the rat hepatic tissue even after 2 months. The reduction 
of systemic bilirubin and increase of liver-specific mark-
ers such as Alb, cytokeratin-18, and α-fetoprotein were 
reported [36]. All these findings highlight the potency of 
ESCs, iPSCs, and MSCs to differentiate into hepatocyte-
like cells. It seems that an inherent capacity of stem cells 
to circumvent problems related to post-transplantation 
hosts makes these cells superior to hepatocyte primary 
cells in the regeneration of hepatic tissue. Nevertheless, 
we must not forget that stem cells are not a magic bullet 
for the regeneration of hepatic tissue. Establishing pre-
cise criteria and measurement of differentiation capacity 
in the hepatic tissue must be carefully monitored after 
stem cell introduction.

Multicellular interactions in the hepatic tissue
Although in  vitro culture models demonstrate hepatic 
tissue function, but these models could not completely 
restore the vital organ function such as metabolism and 
synthesis. All these systems mainly concentrate on the 

hepatocyte cells expansion. To achieve fully functional 
liver tissue, we need all cell types to exist in the liver, 
including PCs and NPCs cells [37]. Liver tissue is com-
posed of NPCs such as Kupffer cells, endothelial cells 
and hepatic stellate cells that perform liver functions in 
collaboration with hepatocytes. The space between the 
liver NPC and hepatocyte is filled with a protein-rich 
material so-called Space of Disse. This space plays an 
important role in liver function through the regulation 
of materials and nutrients exchanging between endothe-
lial cells and hepatocytes [38]. The conventional culture 
models of hepatocytes expansion are unable to mimic 
normal hepatic tissue microarchitecture. The function 
of hepatocytes correlates with the promotion of hepato-
cyte–hepatocyte, hepatocyte–ECM and hepatocyte–
NPCs interaction. The lack of reciprocal interactions, as 
seen in conventional culture systems, leads to hepatocyte 
rapidly lose hepatocyte-specific bioactivities [37]. Due 
to the important role of NPC in liver function, recently 
magnificent efforts are ongoing to develop culture sys-
tems that incorporate multiple cell types including PCs 
and NPCs in hepatocyte culture [39]. It has shown that 
the co-culture system consisted of hepatocytes and NPCs 
promoted hepatocytes function through the initiation of 
hepatocyte-different cell interaction both in juxtacrine 
and paracrine manners. Calling attention, each cell of 
liver tissue plays vital roles in maintaining liver function 

Fig. 5  Some of the chemical structures related to small molecules are used commonly for hepatic-like phenotype induction from progenitor cells
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[40]. By using a culture system composed of three rat 
liver cells including hepatocytes, Kupffer and endothelial 
cells on a polymer surface, A Space of Disse-like struc-
ture was reconstructed. It was shown that all these cells 
proliferated and preserve their morphologies in a 3D 
system compared to the conventional 2D culture. The 
expression of Alb and Cytochrome 450 was higher when 
stiffness of the scaffold was similar to the normal liver 
[41]. In another study, the hepatic differentiation was 
shown in a co-culture system using human iPSCs and 
adipose microvascular endothelial cells at a ratio of 3:1. 
Endothelial cells were used ad supporting cells in hepatic 
differentiation. Differentiated cells in co-culture sys-
tem exhibited higher hepatocyte-like function in a wide 
range compared to single human iPSCs cultured either 
in vitro or in vivo. Enzymes related to the detoxification, 
ammonia synthesis and the level of Alb and coagulation 
factors were higher using multicellular culture compared 
to the single-cell model [42]. All these findings point that 
the application of multicellular differentiation strate-
gies could be a novel technique in the restoration of liver 
function.

Tissue engineering strategy
Diabetes, heart failure, and hepatic failure are diseases of 
an enormous burden to the world, and current therapies 
for these often-lethal diseases are clearly inadequate. Tis-
sue engineering holds great promise for the treatment of 
these diseases [43]. Millions of people currently suffer 
from the effects of chronic disease. Due to the limited 
availability of donors, only a fraction of individuals who 
could benefit from organ transplantations actually receive 
them. One possible avenue for remedying this situation is 
to artificially engineer human tissues [44–51]. One of the 
central themes of tissue engineering is to reproduce the 
body’s architectural and geometric intricacies, including 
vital cell–cell interactions. Tissue engineering techniques 
have been successfully applied to engineer many types of 
tissues; however, many challenges regarding their devel-
opment still remain [44]. Numerous strategies have been 
developed to engineer tissues, with the most commonly 
used technique exploiting transplanted biofactors, such 
as cells, genes or proteins, into a porous degradable mate-
rial called a scaffold. These scaffolds serve as synthetic 
ECM that organize the embedded cells into a 3D archi-
tecture and present them with stimuli for their growth 
and maturation. The ideal scaffold (1) contains properties 
that facilitate cell attachment, (2) contains a nutrient-rich 
environment to maintain cell viability and (3) biologically 
degrades overtime at a rate similar to the rate at which 
cells deposit matrix and proliferate in their new envi-
ronment. One of the most commonly used approaches 
to tissue engineering is to seed cells on biodegradable 

scaffolds. These scaffolds bring cells in close proximity 
to each other and enable the formation of cell–cell con-
tacts that mimic cells in the body. Ideally, the scaffold 
degrades at a rate similar to the rate of cell growth and 
matrix deposition, eventually completely replacing the 
synthetic scaffold with natural cells and matrix. How-
ever, challenges remain with this approach. For example, 
lack of vascularity in most tissue engineering constructs 
results in cell necrosis and loss of function, thus limit-
ing the maximum size of tissue engineering constructs. 
For more detailed information on bioengineered tissue 
vascularization, readers may refer to the review paper of 
Kottamasu et al. [52]. In addition, difficulties in uniformly 
seeding cells throughout the various scaffolds prevent 
high initial cell seeding densities and finally the inability 
to mimic the complex cell–microenvironmental interac-
tions, such as 3D orientation and architecture of cells, as 
well as homotypic and heterotypic cell–cell contact with 
microscale resolution [53].

Three‑dimensional tissue constructs
Over the years much has been attempted in generating 
hepatic tissue-engineered organs. One strategy for engi-
neering 3D hepatic tissues is to cultivate cells within bio-
degradable scaffolds made from either natural [54, 55] or 
synthetic [56–58] materials. The scaffolds function as a 
3D structure on which the hepatic tissue may be induced 
to grow. These scaffolds aim to mimic in vivo conditions 
and facilitate the delivery of nutrients, oxygen, and other 
factors [57–60]. The addition of specific microenviron-
mental factors can be used to enhance the function of 
these engineered organs. For example, by co-culturing 
non-parenchymal cells such as endothelial cells and 
fibroblasts, hepatocyte function can be prolonged [60]. 
A major challenge in liver tissue engineering is that the 
liver cells quickly lose their differentiated function. This 
is in contrast to the behaviors of hepatocytes in the body 
which have the capability to regenerate. Thus, it is desira-
ble to formulate alternative approaches to more precisely 
control the organization of cells and vascularization of 
engineered hepatic tissues.

Traditional 3D scaffolding approaches are not suitable 
for generating such complex structures due to a lack of 
control of the tissue architecture and cell–cell interac-
tions. In particular, hepatic cells in 2D culture as well as 
within traditional 3D scaffolds simply do not organize as 
they do in normal tissue; their metabolic properties are 
therefore unsuitable for liver tissue engineering applica-
tions. Hepatic cells or liver tissues are usually cultured 
in vitro in diagnostic applications or before implantation 
in therapeutic applications, where they interact directly 
within different natural or synthetic biomaterials or 
scaffolds for growth and functional liver maintenance. 
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Biomaterials technology aims to make an advance in 
hepatic tissue engineering by developing the basis for 
fabricating tissues made from soft materials such as 
hydrogels with engineered microvasculature. Although 
engineering microscale features into tissue engineering 
scaffolds have been attempted before [53, 61–65], there 
are still several approaches that will eliminate the difficul-
ties associated with other micro-fabricated tissue engi-
neering scaffolds such as uniform cell-seeding.

Hydrogels
Hydrogels have attracted great interest as scaffolding 
materials for tissue engineering because of their high 
water content, biocompatibility, and mechanical prop-
erties, which resemble those of natural tissues [66, 67]. 
Hydrogels have been used for tissue engineering of bone 
[68–70], cartilage [71–73], vascular [74] and other tissues 
[75, 76]. By adding cells to a hydrogel precursor prior to 
the gelling process, cells can be distributed homogene-
ously throughout the gel. In addition, hydrogels can be 
used to deliver soluble or immobilized signaling mol-
ecules to cells, act as support structures for cell growth 
and function, and provide space-filling for future tis-
sue ingrowth [66, 67, 77, 78]. In general, hydrogels from 
natural sources can be derived from polymers such as 
collagen, HA, fibrin, alginate, agarose or chitosan [66]. 
Depending on their origin and composition, various 
natural polymers have specific utilities and properties. 
Many natural polymers, such as collagen, HA and fibrin, 
are derived from various components of the mamma-
lian ECM. The advantages of natural polymers include 
low toxicity and biocompatibility. Collagen and other 
protein-based polymers are effective matrices for cellu-
lar growth, as they contain many cell signaling domains 
present in the in  vivo ECM. Collagen gels can be natu-
rally created without chemical modifications. However, 
in many cases, these gels are mechanically weak. To 
synthesize gels with enhanced mechanical properties 
various methods have been developed such as chemi-
cal crosslinking [79, 80], crosslinking with UV or tem-
perature [79, 81], or in mixture with other polymeric 
agents [79, 82]. Hydrogels can be used to deliver soluble 
or immobilized signaling molecules to cells, act as sup-
port structures for cell growth and function, and provide 
space-filling for future tissue ingrowth [66, 67, 77, 78]. 
For example, growth factors, such as TGF-β have been 
tethered to PEG hydrogels to regulate smooth muscle cell 
function [83] and BMP-2 has been covalently attached 
to alginate to regulate osteoblast migration and calcifi-
cation into the gels [84]. Also, differentiated cardiac tis-
sues have been engineered by casting neonatal rat cardiac 
myocytes into collagen gels and subsequently subjecting 
them to cyclic mechanical stretch [85]. Another type of 

hydrogels has been used extensively in tissue engineer-
ing approaches [47, 86–101]. The most abundant het-
eropolysaccharides in the body are the GAGs. They are 
long unbranched polysaccharides containing a repeating 
disaccharide unit that contains either of two modified 
sugars: N-acetylgalactosamine or N-acetylglucosamine 
and a uronic acid such as glucuronate or iduronate. 
GAGs are located primarily on the surface of cells or in 
the ECM. HA is a GAG that is particularly prevalent dur-
ing wound healing and in joints. Covalently crosslinked 
HA hydrogels can be formed by multiple chemical modi-
fication means [102–105]. HA can be degraded by cells 
through the release of enzymes such as hyaluronidase. 
HA is particularly appealing for tissue engineering as it 
is naturally present in great abundance in a variety of tis-
sues [106–108]. Previously, HA scaffolds have been used 
for tissue engineering of various tissues [55, 104, 109]. In 
addition, composite HA-PEG scaffolds have been used 
for tissue engineering [109–111]. Specifically designed 
amphiphilic peptides that contain a carbon alkyl tail 
and several other functional peptide regions have been 
synthesized and shown to form nanofibers through self-
assembly by mixing cell suspensions in media with dilute 
aqueous solutions of the peptide amphiphile. Nanoscaled 
fibers produced by self-assembly of peptide amphiphile 
have great potential in tissue engineering [112, 113]. Pep-
tide groups may be customized to direct cell behavior 
and polymerized directly into the hydrogel. For example, 
it was shown that directed differentiation of neural stem 
cells could be modulated using such a hydrogel function-
alized with isoleucine–lysine–valine–alanine–valine, a 
laminin-derived sequence, without the use of additional 
biochemical factors [114]. Despite their excellent biologi-
cal properties and the ease with which they can be modi-
fied for specific applications they are mechanically weak, 
which has limited their application in vivo.

Along with chemical properties, physical parameters 
of fabricated hydrogels such as stiffness, elastic modulus, 
degradation, and ligand density have a profound impact 
on stem cell fate decision and phenotype acquisition. 
Stiffness and matrix composition together have potential 
to regulate the hepatic differentiation of progenitor cells 
[115]. In a very recent experiment, cellular reaction of 
stem cells to matrix stiffness was evaluated using acryla-
mide and bisacrylamide in a variable stiffness. It was 
found that stem cells cultured on a soft substrate tended 
to significantly acquire hepatocyte-like cell phenotype 
on a soft matrix compared to cells of stiff matrix system. 
Additionally, soft matrix can maintain the function of 
stem cells longer than stiff matrix [116]. The soft matrix 
actively promoted cell migration and alignment. Young’s 
modulus value and integrin β1 content were decreased by 
increasing matrix stiffness [117]. These results give deep 
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insights to cell biologists in designing improved matrices 
with abilities to enhance differentiation efficiency. To our 
knowledge, there are several mechanistic studies evaluat-
ing the effect of microenvironment biophysical proper-
ties on hepatic differentiation and functional behavior 
but more investigations are highly demanded to discover 
beyond molecular mechanisms.

Hepatic differentiation of various stem cells 
on decellularized scaffolds
Decellularized liver scaffolds are achieved by isolating of 
all cellular and immunogenic components of extracellular 
matrix proteins used commonly in studies related to liver 
regeneration. The ECM can be obtained through various 
methods including chemical, mechanical and enzymatic 
alone or in combination with each other aimed to pre-
serve maximum ECM composition and natural architec-
ture with minimum damage [118, 119]. Evidence points 
out that the preserved components of ECM differ in 
number and type depending on the method of decellu-
larization. While in a method the greater amount of com-
ponents is preserved, however, the substrates required to 
support hepatic cells or tissue carrying stem cells such 
as fibronectin, collagen and GAGs may be also excluded 
[120]. Experiments showed endogenous cytokines and 
growth factors attached to side chains of GAGS either 
can be conserved after decellularization [17]. In a very 
recent study, mass spectrometric analysis revealed that 
the amount of ECM proteins in a liver decellularized by 
deoxycholate were significantly higher than those decel-
lularized by ammonium hydroxide, but the retained ECM 
proteins in the latter mainly were fibronectin, collagen 
(types 1 and 4) and proteoglycans, participating in cell 
attachment, survival, growth and hepatic differentiation 
[120]. Since the type and amount of the material content 
of scaffold affect the orientation of stem cells toward the 
hepatic lineage, quantitative and qualitative evaluation of 
decellularized scaffolds component appears to be essen-
tial prior to recellularization [120]. ECM scaffolds in the 
field of liver tissue regeneration are originated from vari-
ous sources. For instance, the whole or part of the human 
liver organ which is not suitable for transplantation or 
the addition of synthetic or semisynthetic bio-molecules 
is at the center of attention [121].

Considering the role of common signals in hepatic dif-
ferentiation across the various species, xenogenic animal 
livers including porcine, rat and mice also are used [122]. 
It seems that hepatic cells could per se trigger the stem 
cell-to-hepatocyte differentiation by providing essential 
ECM in in  vitro condition. Liver-derived cell lines such 
as HepG2, Sk-Hep-1, liver primary cells, and progeni-
tor cells were shown to release the array of ECM com-
ponents into the culture media, promoting the hepatic 

commitment of various stem cells. Although decellular-
ized whole liver maintains as much of native liver archi-
tecture, it requires challenging perfusion systems to fulfill 
decellularization which is not suitable to study a certain 
area of tissue [123]. Decellularized liver scaffolds not only 
markedly up-regulate the gene expression of integrin 
receptors, α1, α2 and notably α3β1 subunits, and related 
downstream modulators such as FAK and ILK but also 
yields the induction of HGF, bFGF, oncostatin-M and 
MAPK genes. Using scaffolds with higher porcine liver 
ECM content, hepatic differentiation of bone marrow-
MSCs is not accelerated in optimum rate and expression 
of hepatic markers disappeared [124].

Though it is well-established that the ECM composi-
tion plays an important role in the determination of cell 
attachment, differentiation, and proliferation, however, 
a great body of studies has particular attention on the 
induction and/or inhibition of signaling pathways by 
growth factor treatment [125, 126]. Notably, there is lit-
tle knowledge regarding the role of ECM type, protein 
content, and protein types of the scaffold in hepatic phe-
notype acquisition. As a matter of fact, novel strategic 
approaches investigating these features seem to be highly 
recommended. The use of plates coated with Matrigel, 
laminin and different types of collagen with a limit num-
ber of adhesion molecules was done previously. It has 
been shown that these matrices were unable to sup-
port the attachment of hiPSC-derived definitive endo-
derm cells [121]. In contrast, DE cells not only attached 
more efficiently to plates containing HepaRG acellular 
matrix and tightly adhered to each other but also com-
mitted more efficiently toward hepatic lineage [123, 127]. 
The effect of matrixes was examined on later stages of 
hepatic differentiation and shown that matrices mostly 
induce mature hepatic markers expression when used at 
maturation step [14]. On the other hand, the use of the 
human decellularized liver matrix in the early stage of 
differentiation can further stimulate earlier high expres-
sion of stage-specific markers in hepatic differentiation 
of hiPSCs compared to cells grown on Matrigel and col-
lagen substrates [121]. With the progress of hepatic dif-
ferentiation, the cells lose their sensitivity to the ECM 
composition. Therefore, ECM composition has the least 
influence on hepatic differentiation at the late stages. If 
the entire process of differentiation takes place on liver 
decellularized matrix, the large number of cells further 
display hepatic lineage features and the pattern of mark-
ers expression is found in embryonic development of 
liver and a low expression of HLF and HHEX, as mature 
liver markers, indicates these cells do not enter to a com-
plete maturation procedure [121]. However, evaluation 
of ECM effect on the maturation of hepatocytes-derived 
from iPSCs led to achieve cells closer to intact mature 
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liver cells evidenced by expression of lower levels of 
fetal liver markers, AFP and CYP3A7, and greater extent 
expression of Cyp proteins as well as better metabolic 
activity as compared with the same cells cultured on syn-
thetic 3D scaffolds [128].

Some alternatives have been represented to partially 
overcome immaturity including pretreatment of cells 
with divalent cations such as Mn2+, as an integrin acti-
vator, remove of HGF, and the addition of AMP and 
Matrigel in the maturation step of hepatic differentiation 
[123, 124]. One recent study has shown that liver progen-
itors seeded onto ECM discs developed from ferret rat 
decellularized liver can self-assemble into 3D spheroids 
with a greater capacity for differentiation into hepatocyte 
and simultaneous generation of bile canaliculi-like struc-
tures [122]. The cultured cells also showed the first step 
of xenobiotic catabolic activity and expression of adult 
livers markers (HNF4a, CYP3A4, and CK19) [122].

In another study, the hepatic induction of porcine-
iPSCs in a mixture of porcine liver ECM solution and 
hepatocyte differentiation media (10% of ECM in a total 
volume of media produced mature and functional cells 
compared to 2D cultures [14]. Following the transplan-
tation of these cells to decellularized rat liver, the cells 
establish a cell-to-cell connection and efficiently attach 
to the matrix and exhibited enhanced expression of AFP 
and Alb, indicating hepatic phenotype maintaining [14]. 
The differentiated cells showed morphology similar to 
hepatocytes, abundant cytoplasm and large microvilli 
with a high ratio of cytoplasm to the nucleus. The trans-
plantation of hepatocyte-like cells restored the liver func-
tion and reduced the CCL4-induced liver fibrosis in mice 
when compared to non-ECM cultures [14]. Despite con-
siderable advances in liver tissue engineering, the use of 
liver decellularized scaffolds encounters some obstacles 
[129]. The problematic issues in the liver are that the out-
come of decellularization show donor to donor variation 
[129]. Indeed, using the same chemical decellularization 
protocol on five livers obtained from patients undergo-
ing resection and three healthy porcine liver yielded five 
different outcomes for human livers but reproducible for 
porcine livers [129]. In addition, substantial leakage of 
cells from the vascular network and parenchymal space 
takes place to the outside of the scaffold in perfusion-
based protocols [130]. Based on the size of scaffolds, 
appropriate methodologies must use for decellulariza-
tion. For example, the perfusion of small-size livers is 
laborious and many tissue masses are required to yield 
tissue powder. However, a low number of large livers are 
needed for the preparation of tissue powder while com-
parable to the human liver [14, 131]. In addition, the 
vacant spaces of tissue undergo collapse after removal of 
cells, which in turn makes the tissue condensed and stiff. 

Obtained stiffness is similar to the consistency of fibrotic 
tissues such as liver parenchyma. It has been reported 
that tissue stiffness could be altered from 4.5  kPa in 
normal tissue to more than 19 kPa in diseased liver tis-
sue. Stem cells differentiated toward hepatic lineage on 
soft matrices (stiffness = 0.4  kPa) demonstrated a high 
degree of hepatocyte characteristic within a few hours, 
whereas stiffer matrices (stiffness > 80  kPa) was unable 
to support differentiation. Integrins have been suggested 
play an important role in hepatic induction of stem cells 
and the matrices with moderate stiffness enhance cell–
cell (catenin-based) and cell–matrix (integrin-based) 
adhesion through maintaining balanced regulation of 
integrin-β1 and β-catenin expression and exhibit high 
value of Young’s modulus [117].

The ultimate goal of liver decellularization is to subject 
bioscaffolds for recellularization which are more applica-
ble to hepatic microstructure. Liver decellularization and 
recellularization reported by Uygun et  al. was the first 
study in this area. They transplanted acellular scaffolds 
to hepatic tissue coincided with the administration of 
5 × 106 rat primary cells through the portal vein. Evalu-
ations confirmed the successful engraftment exceeding 
90% percent. During the 1st days after recellularization, 
transplanted cells surrounded the large veins and dis-
tributed across the whole scaffold. Based on the released 
data, approximately 20% of transplanted cells exhibited 
apoptotic changes. Furthermore, the cells continuously 
expressed the UDP-glucurotransferase 1, polypeptide A1, 
Alb, and urea. Interestingly, the expression of cytochrome 
450 isoenzymes was similar to the pattern observed in 
normal liver. Also, Robertson and colleagues examined 
hepatic recellularization by using adult rat and human 
hepatocytes in a bioreactor culture model. After perfu-
sion of rat liver with rat or human hepatocytes through 
the portal vein, cellular constructs were developed after 
28 days and reticular networks consisted of type III col-
lagen III formation were observed. In addition, these cells 
were functional and actively showed Alb and urea syn-
thesis for up to 28 days of study [132]. In another study, 
decellularized mouse liver was recellularized with 5 × 105 
iPSCs-derived hepatocytes and transplanted into the 
mice by a four steps infusion protocol through the portal 
vein. The transplanted cells successfully engrafted around 
the portal vein and produced Alb and α-fetoprotein [14]. 
It was also shown that decellularized hepatic scaffolds 
were appropriately recellularized in rat partial hepatec-
tomy model [133]. Although results from recellulariza-
tion protocols seem promising many efforts are essential 
to achieve functional liver tissue. Calling attention, the 
various routes of recellularization demonstrated different 
performance and regenerative outcomes. In a compara-
tive experiment, the efficiency of cell administration was 
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assessed via portal vein and bile duct routes in murine 
recellularized liver tissue. It was shown that adminis-
trated cells developed aggregates that block the micro-
vasculature system and led to uneven distribution of cells 
throughout the parenchyma when cells were introduced 
through the portal vein. In contrast, by cell transplanta-
tion through bile duct, these cells were uniformly dis-
tributed throughout decellularized hepatic parenchyma 
[134]. Some authorities declared the potency of decel-
lularized non-hepatic bioscaffolds such as placental tis-
sue for the restoration of hepatic function [135]. Despite 
these technical barriers, considerable efforts are ongoing 
to generate liver decellularized scaffolds closely simulate 
in vivo microarchitecture of the liver.

Hepatic differentiation via the combination of cell 
source and nanotechnology‑based approaches
The sophisticated nanofiber designed is touted as alter-
native methodologies for improving the efficiency of 
fabricated biomaterials in the favor of target tissue regen-
eration. The electrospun nanofibers with high surface 
area and porosity have been extensively used to act as 
backbone ECM, improving the growth and differentia-
tion of cells. For example, the 3D liver model developed 
by electrospun chitosan nanofibers and co-culture sys-
tem was shown to support hepatocytes and fibroblasts 
for long-term liver functions. The use of different ECM 
substrates in synthesized nanofibers such as fibronectin 
enhanced cellular adhesion and polarization [136]. Chi-
tosan is a suitable polymer for hepatocyte culture, expan-
sion and maintenance, because of structural similarity 
to glycosaminoglycans; the components seen commonly 
in hepatic ECM [137]. Based on the great body of docu-
ments, hepatocytes can maintain their morphologies and 
functions for long periods of time in the co-cultures 3-D 
system [136]. By applying various strategies, it is mighty 
to preserve the functional behavior of the target cells in a 
controlled manner. For instance, encapsulation of hepat-
ocytes in 3D structures provides an appropriate niche for 
optimal function. In one study, polyelectrolyte complex 
hydrogel fibers were used as self-assembling 3D struc-
tures to encapsulate hepatocytes and endothelial cells dif-
ferentiated from human iPSCs. The co-culture of cells in 
multi-interfacial polyelectrolyte complex fibers with chi-
tin and sodium alginate origin showed that the existence 
of endothelial cells in the scaffold significantly improved 
hepatocyte function and in  vivo studies revealed the 
superior effect of endothelial cells in vascularization of 
the transplanted scaffolds [138].

Natural ECM has a nanoscale structure that is common 
to many tissues’ basement membranes. To mimic liver 
ECM, various nanomaterial-based scaffolds have been 
studied until yet. CNTs showing controlled nanoscale 

topography that can be employed as liver ECM [139]. 
In a study, PA was used as a base matrix to resemble the 
human liver due to its Young’s modulus [140]. In addition 
to the existence of anchor sites stimulating cell attach-
ment, scaffold consistency and pattern could dictate spe-
cific phenotype for target cells. It has been shown that 
the scaffold stiffness can influence the in  vitro behav-
iors of hepatocytes [141]. Also, PEG-CNTs were coated 
on the PA to make CNT-PA. The influence of CNT-PA 
on the differentiation of hAECs to functional HLCs was 
investigated. CNT-PA had the potency to induce the up-
regulation of hepatic markers at transcription and pro-
tein levels. Moreover, this milieu was able to yield higher 
uptake of indocyanine green, Alb secretion and compara-
ble CYP3A4 enzymatic function [19].

Authorities demonstrated broad advantages for tissue 
engineering governed by CNTs. For example, they are 
biocompatible materials with great potential as cell-sup-
porting substrates, provide strong mechanical properties, 
can be easily functionalized and are aligned as the col-
lagen fibers [142]. Calling attention, MWNTs used as a 
scaffold to investigate the effect of it on primary liver cell 
culture showed suitable adhesion, proliferation rate with 
an enhanced function. This microstructure possesses the 
capacity to force hepatocyte to enhance Alb production 
coincided with the activity of CYP1A2 enzyme [139].

Hepatocyte growth factor has been found to play an 
important role in morphogenesis, and liver regeneration. 
Because of its short half-life in circulation, specific car-
riers have been studied for improving the release profile 
[143]. The polymeric delivery systems based on PLA, 
PLGA, and polycaprolactone and inorganic nanomate-
rials such as silica nanoparticles have been investigated. 
Due to specific properties such as biocompatibility, eas-
ily functionalized surfaces and tunable pore volumes 
silica nanoparticles are considered in the field of tis-
sue engineering [144]. The modification of MSNs sup-
plemented with PEI and loaded with Activin A, aFGF 
and HGF were used for hepatocyte differentiation of 
mouse embryonic stem cells. Functionalized MSNs were 
found to deliver growth factors in a sustained manner. 
Compared to the control non-treated cells, the gene 
expression of hepatocyte markers, such as ALB and 
alpha-fetoprotein was upregulated in the GF–PEI–MSN 
complexes. Also, the expression of hepatic functional 
markers such as α1-antitrypsin, cytochrome P450 subu-
nit CYP7A1, and glucose-6-phosphatase were higher 
in GF–PEI–MSN complexes. Monitoring the synthesis 
of glycosaminoglycans by periodic acid-Schiff showed 
that the increasing number of positive cells in the GF–
PEI–MSN complex group. In the presence of this nano-
particle, mouse embryonic stem cells acquire a potency 
to give rise to endodermal lineage and hepatocyte-like 



Page 15 of 24Hosseini et al. J Transl Med          (2019) 17:383 

phenotype after transplantation into the injured liver in 
the mouse model [145]. In conclusion, nanomaterials 
possess advantages for tissue regeneration. For example, 
the nanofibers act as ECM and provide high surface area 
and porosity that are suitable for cell proliferation and 
differentiation. CNTs simulate collagen fibers and due to 
their high mechanical properties provide good stiffness 
as a scaffold. Also, nanomaterials can be used as carriers 
for improving release completeness of growth factors that 
have a role in the differentiation of cells. It suggests that 
the combination of these nanomaterials can be appropri-
ate for hepatic differentiation.

3D printing role on cell fate toward a hepatic‑like 
phenotype
3D printing has been touted as a novel method to dic-
tate specific cell alignment on distinct substrates. Dur-
ing the last decades, many attempts have been collected 
to commercialize 3D-printing scaffolds. In this regard, 
Organovo™, one of the pioneer bioprinting corporations, 
has effectively attained 3D-vascularized liver constructs 
with high cell survival rate and applicable microstruc-
tures coincided with the formation of hepatic lobules 
after the use of mixed cell populations notably hepato-
cytes, endothelial, and hepatic progenitor cells [146, 147]. 
As a matter of fact, 3D tissue-engineering technology 
possesses the capacity to effectively simulate complex 
organ formation in a 3D pattern and circumvent plenty 
of obstacles reported for the 2D culture system [23]. The 
main obstacle is a confined hepatocyte proliferation and 
expansion rate in the 2D system. For instance, the hepato-
cyte proliferation rate is commonly decreased 3 to 5 days 
post-isolation and these cells are prone to de-differenti-
ate and acquire fibroblast-like phenotype by modulation 
of hepatic-associated genes, leading to cell functionality 
removal and limitation of activity [148, 149]. It has shown 
that the secretion of Alb, synthesis of urea, and expres-
sion of gene CYP3A4 are decreased in freshly isolated 
hepatocytes [150, 151]. In support of the above-men-
tioned statement, the fabrication of scaffolds with natural 
substrates enabling a long-term culture of hepatocytes is 
the most attractive issues remain to be resolved. Investi-
gations of primary hepatocytes in the 3D niche have been 
briefly progressed to elucidate hepatic metabolism and 
uptake [150, 152]. Calling attention, primary hepatocytes 
have the potential to form individual micro-aggregates 
in organ culture systems [23]. Culturing in 3D alginate 
scaffolds was found to promote hepatic cells aggregation 
7  days post cultivation. The cells acquired prerequisite 
function and typical hepatocyte-like morphology to syn-
thesize Alb [24, 151]. Considering the importance of cell 
aggregation in the function of hepatocytes, this leads to 
the expansion of a diversity of techniques to encourage 

and dictate the formation and maintenance of aggre-
gates and micro-spheroids within an engineering scaf-
fold prior to implantation to the target sites in vivo [153, 
154]. In line with this claim, encapsulation or loading 
single-cell suspensions onto a porous scaffold are famous 
techniques to induce cell aggregation [155, 156]. How-
ever, some considerations in scaffold design are highly 
recommended for appropriate results. For example, the 
control of aggregate size to avoid generation of necrotic 
cells located at the core or applying some approaches to 
induce reciprocal interconnectivity between cells from 
neighboring aggregates while facilitating nutrient dif-
fusion and neo-vascularization following implantation 
[157]. Notably, some inherent modulations could not 
be omitted during the fabrication of synthetic scaffolds. 
In scaffold production, restriction and bottlenecks such 
as freeze casting, electrospinning, salt leaching, or gas 
foaming could change the size and cell microspheres 
integrity within 3D backbones [158]. In these circum-
stances, only a limited degree of control is possible over 
scaffold geometry, pore size, and interconnectivity.

Hexagonal lobule-like geometries have been displayed 
to have advantageous effects on cultured hepatocytes 
[118, 159]. Use of an engineered technique to re-form 
detailed lobule structure must be considered as lobule 
organization in  vivo is recognized to have a biological 
effect on blood and bile flow as well as hepatocyte pheno-
type and zonality [160]. The influence of 3D-printed scaf-
fold pore geometry has therefore not been thoroughly 
examined for applications in soft tissue engineering. This 
may partially be due to the complications in 3D print-
ing of soft resources, mainly hydrogels, making labori-
ous attempts. Recently Sainz and co-workers studied the 
effect of gelatin-based scaffold pore geometry on non-
adherent cells while keeping pore size constant and com-
pared the result with a control 2D surface. They revealed 
that 3D manipulation of quite simple material, such as 
gelatin, can have major influences on the application of 
engineered tissues [161]. Compared to the 2D system, 
an appropriate phenotype acquisition and functional 
improvements are seen in 3D printing systems. In 3D 
hydrogel-based culture model, the co-culture of hiPSCs 
and hematopoietic progenitor cells with endothelial line-
age and adipose-derived stem cells contributed to micro-
scale size hexagonal construction while the biochemical 
activity of hepatocyte was initiated by advanced liver-
specific gene expression levels, increased cytochrome 
P450 stimulation and activated secretome [118].

Bioinks
Hydrogel bioinks used for cell-based systems presented 
biochemical and biophysical motivations to mimic 
native ECM in in  vivo microenvironment. Bioinks with 
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the ability to allow appropriate cellular activities have 
also been improved for 3D bioprinting. In this tech-
nique, interfacing between the substrates and fabrica-
tion hardware, physicochemical features of biomaterials 
and bioink cocktails are one of the most obstacles atten-
dant with 3D bio-fabrication methods [162]. Different 
studies have used a diversity of hydrogels such as HA, 
MeHA, PEG, GelMA, NovoGel® 2.0 (a non-adherent and 
thermo-responsive hydrogel), collagen, fibrin, fibrino-
gen, PCL, gelatin, and alginate in different combinations, 
for 3D bioprinting of hepatocytes and liver associated 
cell lines [118, 162–165]. Based on previously published 
experiments, different bioink formulations were used for 
the rapid production of hepatic tissue. Two forms of cell-
loaded scaffolds including hepatic cells, gelatin and/or 
fibrinogen were effectively synthesized by programmed 
rapid prototyping method and became stable with 
thrombin. During the procedure, no obvious cell damage 
was observed. It was reported that an equal gelatin/fibrin 
combination provided the highest mechanical properties. 
Hepatic cells were demonstrated to efficiently proliferate 
in the matrix of gelatin/fibrinogen. The Alb biosynthesis 
was found to improve in embedded hepatocytes. It seems 
that fibrin performs as a satisfactory material for a gel-
atin-based cell assembly matrix with easy manipulation, 
bio-resorbable, supporting in  vitro cell functions [166]. 
Another group combined ADSCs within a gelatin/algi-
nate/fibrinogen hydrogel to construct a vascular-like net-
work, using a digital pattern. They also located a cocktail 
of hepatocytes with gelatin/alginate/chitosan around it to 
simulate a natural liver tissue. In these systems, endothe-
lial growth factors were used to induce the ADSCs to 
trans-differentiate into endothelial-like cells. In these 
bulk constructions, a 3D syringe-based bioprinting tech-
nique is demanded to provide bulk interchange channels 
using to preserve the integrity of the constructed liver 
structure. This double-nozzle assembling techniques 
have the potential to be a powerful apparatus for produc-
ing multipart constructs with distinctive intrinsic/extrin-
sic properties [167].

3D fabrication procedure
Recently, several 3D bioprinting technologies have been 
exploited with effective advances in shaping biomateri-
als at the macroscale size to design biomaterials with 
high complexity. These technologies can be divided into 
different categories that include stereolithography, laser-
assisted forward transfer, nozzle-based bioprinting tech-
niques, shear-thinning extrusion bioprinting, sacrificial 
bioprinting, microfluidic bioprinting, and multi-material 
bioprinting [168, 169]. Depending on the type of bioinks, 
some of these methods are applicable for liver tissue 
engineering.

Shear‑thinning extrusion bioprinting
Extrusion bioprinting is a promising method to produce 
organized tissue constructs that supply cells and matrix 
materials concurrently to restore or substitute dam-
aged or diseased tissues and organs. This procedure has 
an interesting vision to fabricate constructs with 3-D 
distinctions of cells through numerous axes with great 
architectural complexity. Extrusion bioprinting naturally 
needs the distinct bioink formula to be self-supportive 
and preserve the architectural integrity of the scaffold 
upon extrusion [170]. Lee et al. produced a GelMA-based 
shear-thinning bioink that allowed direct extrusion, by 
rapidly cooling down GelMA solutions to beneath their 
gelation points in the printing nozzle [170]. UV-initiated 
crosslinking could then be used to subsequent solidifica-
tion [170, 171]. The bio-printed products could maintain 
the viability of encapsulated hepatocellular carcinoma 
cells; HepG2 and mesenchymal stem cells (MSCs) within 
the GelMA microfibers over 14 days [170].

Multi‑material bioprinting
Printing a single bioink has been the base of most 
researches in 3D-bioprinting customarily. Nevertheless, 
because of the complexity of organs and tissues, combin-
ing various construction biomaterials and numerous cell 
types is essential in a single bioprinting procedure. Sev-
eral studies have been done to explore the intricate asso-
ciations between the printing factors and the resultant 
resolution. Tissue constructs made of numerous materi-
als in a well-ordered fashion could be gained by serially 
altering the input bioinks for the digital micro-mirror 
device bioprinter [118, 172]. For instance, to simulate 
the liver microstructure, Ma et  al. used the sequential 
printing of human hiPSC-derived hepatic cells in a hex-
agonal lobule structure with supporting cells from the 
endothelial and mesenchymal original, filling the lin-
ing of the lobules [118]. The 3D printed liver construct 
proved structural similarity with it’s in vivo counterpart 
and showed an appropriate functionality evident by pro-
longed cell viability, cytochromes activity, and stable 
secretion of liver biomarkers.

DCW system
DCW is used to fabricate simple linear or complex con-
formal constructions on a substrate by material depo-
sition. Digital writing or digital printing is a group of 
malleable multifaceted procedures in which different 
methods and devices such as inkjet, laser, mechanical 
pressure, and tips are used to create structures in the 
range of nm to the mm. Also, an extremely wide range 
of materials from ceramics, metals, polymers, and dielec-
trics to bio-materials is used in these techniques [173]. 
In new technical systems, solid freeform fabrication, 
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cell-based micro-chip systems, sensors, and microfluidic 
devices, cells are combining as part of the construction 
blocks for several tissue engineering procedures. Multi-
layer 3D printing techniques combined with perfusion 
culture systems are capable of producing in  vivo liver 
tissue. To produce a biomimetic liver micro-organ as a 
drug screening approach, a DCW method in combina-
tion with perfusion culture has been established [174]. 
To align alginate hydrogels encapsulating HepG2 cells, 
the DCW system with four nozzles capable of operat-
ing in extrusion or droplet model was utilized. Three-
layer tissue-engineered scaffolds were created by printing 
these alginate-encapsulated cells into liver sinusoidal 
shape structure that combined into a microchip device, 
allowing for medium exchange. Outcomes presented 
that over 80% of HepG2 cells in the cross-linked, printed 
products stayed alive after 3 days. Additionally, viability 
was preserved after 24-h perfusion circulation, indicat-
ing that the perfusion method did not per se influence 
cell viability and could be utilized to perfuse a targeted 
drug through fabricates and measure pharmacokinetic 
performance. Another investigation successfully utilized 
the DCW process and incorporated both hepatic and 
epithelial cells in the Matrigel substrate to more pre-
cisely stimulated hepatic sinusoid hierarchical architec-
ture. A microfluidic environment was designed by these 
cells to make enhanced higher reliability in the favor of 
micro-liver tissue stimulation. This application is use-
ful to serve as a portable ground model for the study of 
drug conversion and radiation protection of living liver 
tissue analogs. It seems that understanding the underly-
ing mechanisms of the multi-cellular biological system 
responses for a prolonged period, various disease models 
and biosensors need to be elucidated [175].

Stereolithography
Stereolithography is one of the first 3D printing methods 
in which a forerunner mixture of a UV-curable mate-
rial is filled in a tank, which is then cross-linked in an 
aligned manner. After the depositing of each distinct 
layer, a mechanized stage moves the deposited construc-
tion from the light source in the z-direction so there will 
be space for the subsequent print layer [169]. Scaffolds 
that more closely simulate liver construction and encour-
age improved hepatocyte culture have also been consid-
ered yet. PEG-based, photo-polymerizable polyethylene 
glycol-based hydrogels have been produced using stere-
olithography to develop hepatocyte cell seeding, prolifer-
ation, and duration of perfusion cultures in liver designs. 
Hydrogel scaffolds with open channels were fabricated 
for post-seeding and perfused culture of primary hepato-
cytes that form 3D structures in a bioreactor. Cell seed-
ing densities, flow rates photo-initiator concentrations, 

stereolithography energy dose and pretreatment condi-
tions were determined to be important factors to control 
and maximize cell viability. The perfused culture of pri-
mary hepatocytes in hydrogel constructs in the existence 
of soluble epidermal growth factor increased the pres-
ervation of Alb creation throughout the 7-day culture 
relative to 2D controls. This method can be hired to con-
struct soft scaffolds for a number of bioreactor configura-
tions [176].

Other physical factors important in the efficiency of bioink
Different studies have shown that cell viability is affected 
by several factors including the material flow rate, mate-
rial concentration, dispensing pressure, and nozzle geom-
etry. These results can attend as an instruction for future 
explorations and optimization of the 3D system. Sun and 
his co-workers made a multi-nozzle bio-printing system 
to concurrently deposit cells and multiple biomaterials. 
Their rheology study and cell viability assay were exe-
cuted to examine mechanical-stress-induced cell damage 
during the printing procedure [177, 178]. Both Burdick 
and Wells groups examined how the differentiation of 
HSCs was affected by matrix stiffness. Tissue fibrosis that 
might be in part attributed to ECM stiffening during dis-
ease improvement has been the cause of differentiation 
of HSCs into myofibroblasts. Their outcomes established 
that HSCs cultured on stiffer hydrogels (24  kPa in elas-
ticity) as compared to HSCs on softer hydrogels (2 kPa), 
expressed advanced levels of alpha-smooth muscle actin 
and type I collagen [179–181]. Shear stress applied dur-
ing the printing procedure is another factor that can 
affect cell viability. Using liver spheroids can protect the 
cells from the adverse influences applied by the shear 
stress during the printing process and recapitulate the 
cell-to-cell interactions. By their stable secretion of 
hepatic biomarkers including Alb, ceruloplasmin, alpha-1 
antitrypsin, and transferrin, the bio-printed liver sphe-
roids surrounded by GelMA hydrogel showed long-term 
functionality for up to 30 days [163]. In another experi-
ment, it was revealed that UV exposure can affect cell 
viability in UV-initiated crosslinking systems which are 
used to subsequent solidification of self-standing multi-
layered constructions and thereby advanced UV expo-
sure could improve the crosslink density and thus causes 
in decreased cell viability [170].

Hepatic phenotype acquisition via an intracellular 
signaling pathway
Small molecule
To induce hepatocyte-differentiation of stem cells, dif-
ferent methodologies have been developed yet. In most 
circumstances, exploiting step-wise differentiation 
approaches along with recombinant growth factors or 
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small-molecule analogs could be promising [182]. Early 
protocols for the generation of the specific cell type from 
stem cells was applicable by using embryoid body forma-
tion [183]. The basis of this protocol was the spontane-
ous formation of cell aggregates (embryoid bodies) from 
pluripotent cells which has the capacity to give rise to all 
three germ layers [16]. To expand the hepatocytes, the 
most well-organized method is a monolayer culture of 
distinct cells in a step-wise manner exposure to specific 
cocktails of recombinant growth factors and cytokines, 
including Activin A, Wnt3a, HGF, OSM, FGF4, VEGF, 
EGF and BMP4 [184–191]. These approaches were 
designed to simulate the embryonic stages of hepatocyte 
lineage. The protocol has, however, some deficiencies 
with low differentiation efficacy and heterogeneity in the 
nature of differentiating cells [182].

Small molecules can regulate specific target(s) in sign-
aling pathways and epigenetic mechanisms have been 
recognized as valid chemical tools for mediating cell fate. 
The use of small-molecule compounds has the advan-
tage of being safer than the use of cytokines, nucleic 
acids, or protein therapies [192]. Other advantages of 
small-molecule-based hepatic differentiation protocol 
in comparison with other methods are simplicity, stabil-
ity, reproducibility, and low cost [193]. Thus, the identi-
fication of small molecule compounds has enhanced the 
development of stem cells to liver regeneration. In the 
following, we will discuss the role of small molecules 
differentiation of stem cells toward liver cells in various 
studies. During hepatic differentiation of human MSCs, 
Wnt/b-catenin signaling is inhibited. Inhibition of Wnt/
b-catenin signaling molecules or target genes induces the 
hepatic differentiation of human MSCs. Effective modu-
lation of Wnt signaling and glycogen synthase kinase 3 
inhibition using small molecules efficiently produced 
definitive endodermal lineage. Dickkopf Wnt signal-
ing pathway inhibitor 1, an antagonistic inhibitor of the 
Wnt signaling pathway was shown to promote hepatic 
differentiation of bone marrow-derived MSCs [33, 194]. 
More recently, different research groups showed that gly-
cogen synthase kinase 3 inhibition with CHIR99021 effi-
ciently directs hPSCs toward the definitive endodermal 
lineage and primary hepatocytes, via a combination of 
small-molecule treatments with dimethyl sulfoxide. They 
stated that the small-molecule based approach is a sim-
ple, inexpensive and reproducible platform for the deri-
vation of hepatocytes from hPSCs [182, 195]. Itaba et al. 
screened 23 newly synthesized derivatives of small mole-
cule combinations produced from several known Wnt/β-
catenin signal inhibitors. In their study, HC-1, IC-2, and 
PN-3-13 similarly suppressed Wnt/b-catenin signaling, 
however, IC-2 was the most effective inducer of hepatic 
differentiation. Interacted molecules with IC-2 were not 

determined in their studies. IC-2 is a derivative of ICG-
001. It has been made clear that ICG-001 suppresses 
Wnt/b-catenin signals by binding CREB binding protein, 
and because IC-2 is derived from the ICG-001, it may act 
with the same mechanism as the ICG-001 [196].

Stauprimide a small molecule described by Shou-
tian Zhu et  al. that can significantly increase the effi-
ciency of directed ESC differentiation in conjunction 
with lineage specification cues. Using an affinity-based 
approach, NME2 was reported as the biological objec-
tive of stauprimide [197]. Inhibition of NME2 occurs 
when stauprimide binding to NME2, NME2 nuclear 
localization, which, in turn, suppresses c-Myc expression. 
Downregulation of c-Myc expression, a key factor in the 
preservation of ESC self-renewal and its inhibition facili-
tates the process of differentiation [198].

Tasnim and co-workers stated a protocol for efficient 
differentiation of hESCs into hepatocyte-like lineage 
using a mainly small molecule-based approach. These 
three stepwise differentiation strategies contain the use 
of optimized concentrations of LY294002 and bromo-
indirubin-3′-oxime) for the generation of definitive endo-
derm; sodium butyrate and dimethyl sulfoxide for the 
generation of hepatoblasts and SB431542 for differen-
tiation into hepatocyte-like cells. They also showed that 
SM-Hep were morphologically and functionally similar 
or applicable to the hepatocytes generated by growth fac-
tor cocktails (GF-Hep) in terms of expression of hepatic 
markers, urea and Alb production and cytochrome P450 
(CYP1A2 and CYP3A4) activities [33]. Ouyang et  al. 
introduced 2-(4-bromophenyl)-N-(4-fluorophenyl)-3-
propyl-3H-imidazo [4,5-b] pyridin-5-amine (SJA710-6), 
as a small molecule able to selectively promote MSCs dif-
ferentiation toward hepatocyte-like cells after monitoring 
a library of 2500 small molecules [199]. Also, small mol-
ecules of RNA called small hairpin (shRNA/Hairpin Vec-
tor) can be used as another small molecule to increase 
the regenerative capacity of hepatocytes. By small hairpin 
RNAs (shRNAs) directly in the animal model, Wuestefeld 
et al. recognized the MKK4 which is dual-specific kinase 
as a key mediator of liver regeneration. MKK4 inhibition 
expressively amplified the regenerative ability of hepato-
cytes in animal models of liver regeneration. Notably, 
MKK4 inhibition in hepatocytes decreased fibrosis after 
chronic liver injury. Hepatocytes with stable RNA inter-
ference (RNAi)—mediated MKK4 silencing indicated 
quicker cell-cycle entrance and accelerated liver regen-
eration [200].

In summary, using small molecules instead of growth 
factors would provide a striking alternative source since 
small molecules are cell-permeable and non-expensive 
compared to growth factors [201]. Due to several advan-
tages including the ability for sequential, tunable and 
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sectional control of specific protein function, elimina-
tion of the risks and drawbacks associated with genetic 
manipulation, the low efficiency and slow kinetics of dis-
tinct phenotype induction, the application of small mol-
ecules in the biomedical field could simplify therapeutic 
benefits related to stem cells [201, 202].

miRNAs
As above-mentioned many studies have tried to discover 
cheap and accessible techniques for producing definite 
liver cells or hepatocyte-like cells from different stem 
cell types. In order to achieve this end, several hepatic 
differentiation media with different growth factors and 
cytokines have been introduced to hinder hADSCs-
differentiation into hepatocytes. In a recent experiment, 
the significance of specific miRNAs has been shown on 
the differentiation and growth of certain cells. microR-
NAs are noncoding RNAs that control gene activities at 
the post-transcriptional stage, regulating stem cell bio-
logical features in plants and animals [203]. Further, 2500 
unique mature human miRNAs have been recognized 
until now and it is probable that more than one-third of 
human protein-coding genes are exposed to regulation 
by miRNAs during the development of hepatic tissue. For 
example, the essential role of miR-30a has been recog-
nized for bile duct development in the model of zebrafish 
[204]. The most abundant miRNA in the liver, miR-122, 
accounts for approximately 70% of total miRNAs [205], 
which is essential for the appropriate progression of 
hepatocyte differentiation [205, 206]. In recent years, evi-
dence showed miRNAs performance in stem cell main-
tenance, differentiation, and organ development [206]. 
Data suggest miRNAs can be important regulators of 
hepatocytic differentiation. Additionally, studies showed 
that miR-194 convinces intestinal epithelial cell differen-
tiation as well [207] is a key moderator of chondrogenic 
differentiation of ADMSCs [208]. More recently, Jung 
et al. [27] showed that the amplification of miR-194 pro-
gressively increased in HepaRG liver progenitor cells and 
hESCs differentiation into hepatocytes. In a better word, 
miR-194 overexpression results in down-regulation of 16 
genes in both HepaRG cells and hESCs by modulation 
of IGF1R and YAP1, a downstream mediator of Hippo 
signaling that plays a key role in cell fate determina-
tion [209]. It was elucidated that Let-7f miRNA acts as a 
negative regulator for hepatic differentiation in hADSCs 
through the suppression of HNF4a and silencing of Let-
7f, promoting hepatic differentiation [210]. It seems that 
simultaneous modulation of different miRNAs, miR-122, 
miR-148a, miR-424, miR-542-5p and miR-1246, could 
stimulate hMSCs-HLCs transition. The HLCs originated 
from five miRNAs expressed hepatocyte-specific genes 
HNF4A, AFP, ALB, TF, CYP3A4, and G6P [211]. Möbus 

et  al. found that miR-199a-5p repression increased 
hepatic differentiation led to the generation of hepatic 
cells. Further, they showed that these hepatic cells have 
the ability of engrafting and regeneration the mouse liver 
[28]. They recognized the ATPase subunit of the mam-
malian SWI/SNF complex, SMARCA4, as a target of 
miR-199a-5p. This complex consists of 15 subunits and 
participates in is chromatin-remodeling, used in iPS 
reprogramming and chromosomal stability [212]. These 
studies show that one or several definite microRNAs can 
be used to transform stem-cells derived from sources into 
hepatocytes to proficiently obtain hepatocytes in vitro.

Genetic manipulation in dictating hepatic‑like 
features
The population of stem cells in the human body pos-
sesses a highly different developmental capacity. The 
process from pluripotent to multipotent and develop-
mentally statuses is attended by total alterations in gene 
expression. Genes active in previous progenitors are pro-
gressively silenced at developmentally later stages, and 
subsets of cell-type-specific genes are turned off. This 
development is the result of the careful selective expres-
sion of transcription factors together. Hepatocyte differ-
entiation is recognized to be coordinately controlled by 
the act of multiple hepatocyte nuclear transcription fac-
tors, for example, hepatocyte nuclear factor (HNF)-1α 
and -1β; HNF-3α, -β, and -γ; HNF-4α, HNF-6; and 
CCAAT/enhancer-binding protein α and β [213]. A liver-
enriched transcription factor, HNF-3β, prompts the pri-
mary development of the endoderm, the predecessor to 
produce the liver. HNF-3β in the developing endoderm 
is essential for the expression of HNF-4α, which shows a 
potential action in hepatocyte differentiation [213, 214]. 
Recently, HNF-3β Overexpression has been presented 
to prompt endoderm differentiation of ES cells. While 
HNF-3β-transfected ES cells were cultured in hepato-
cyte-culture medium with FGF-2 in three-dimensional 
culture, ES cells differentiated into HTC cells with liver-
specific metabolic roles [214]. Parp1, (Poly (ADP-ribose 
polymerase 1)), is an enzyme that catalyzes PARylation, 
a crucial effector intricate in DNA repair, replication, 
transcription, and genomic methylation. DNA dam-
age and decreased proliferative responses to mitogens 
have been detected in hepatocytes from Parp1-deficient 
mice. Breakdown of Parp1 signaling can exacerbate diet-
induced obesity and insulin insensitivity. These findings 
suggested that Parp1 is an essential element in hepatic 
protection [215, 216]. Huang et  al. demonstrated that 
Parp1 can improve iPSC generation from somatic cells in 
the existence of three other reprogramming factors Oct4/
Sox2/Klf4 and after stimulation of hepatic differentiation 
into hepatocyte-like cells. Oct4/Sox2/Klf4-iPSC-Heps 
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expressed liver-specific markers and characteristics, 
exhibited mature hepatocyte roles [213].

Conclusion
Alcohol abuse and infection with different viruses, the 
occurrence of metabolic disorders, carcinoma and inju-
ries are common causes of liver failure. The only curative 
treatment suggested for liver disease is transplantation 
that remains expressively restricted by a severe deficiency 
of organ donors, forcing researchers to use the regen-
erative medicine modalities to address this issue. Call-
ing attention, producing decellularized scaffolds from 
the liver organ, 3D bio-printing system and Nano-based 
3D scaffolds that simulate the native liver microenviron-
ment seems logical for liver regeneration and to obtain 
functional hepatic microtissues/organoids. Applying 
some strategies such as genetic modulation that target 
small molecules and micro-RNAs could yield an efficient 
hepatic differentiation rate. Commensurate with these 
comments, several crucial challenges need to be fully 
addressed prior to application to the clinical field. For 
instance, reproducibility in the fabrication of native liver 
tissue microstructures over microfabrication techniques 
or self-organization of hepatic organoids remains chal-
lenging. Given the complications of cell variations inside 
the hepatic tissue, appropriate cell density and organi-
zation can barely be applied to in vivo milieu. Both jux-
tacrine and paracrine interactions of non-hepatic cells 
with hepatocyte regardless 3D bioprinting and decel-
lularized liver scaffolds allow for the reconstruction of 
ECM at a higher degree. Notably, microtissues/organoids 
engraftment or whole bioengineered liver transplanta-
tion with continuous functionality post-transplantation 
is challenging. More studies should be made to achieve 
efficient methods for clinical uses of hepatocytes-derived 
from stem-cells.
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