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Abstract

Background: Glioblastoma multiform (GBM) is a devastating brain tumor with maximum surgical resection, radio-
therapy plus concomitant and adjuvant temozolomide (TMZ) as the standard treatment. Diverse clinicopathological
and molecular features are major obstacles to accurate predict survival and evaluate the efficacy of chemotherapy or
radiotherapy. Reliable prognostic biomarkers are urgently needed for postoperative GBM patients.

Methods: The protein coding genes (PCGs) and long non-coding RNA (IncRNA) gene expression profiles of 233 GBM
postoperative patients were obtained from The Cancer Genome Atlas (TCGA), TANRIC and Gene Expression Omnibus
(GEO) database. We randomly divided the TCGA set into a training (n=76) and a test set (n=77) and used GSE7696
(n=280) as an independent validation set. Survival analysis and the random survival forest algorithm were performed
to screen survival associated signature.

Results: Six PCGs (EIF2AK3, EPRS, GALE, GUCY2C, MTHFD2, RNF212) and five IncRNAs (CTD-2140B24.6, LINC02015,
AC068888.1, CERNAT, LINC00618) were screened out by a risk score model and formed a PCG-IncRNA signature

for its predictive power was strongest (AUC =0.78 in the training dataset). The PCG-IncRNA signature could divide
patients into high- risk or low-risk group with significantly different survival (median 7.47 vs. 18.27 months, log-rank
test P<0.001) in the training dataset. Similar result was observed in the test dataset (median 11.40 vs. 16.80 months,
log-rank test P=0.001) and the independent set (median 8.93 vs. 16.22 months, log-rank test P=0.007). Multivari-
able Cox regression analysis verified that it was an independent prognostic factor for the postsurgical patients with
GBM. Compared with IDH mutation status, O-(6)-methylguanine DNA methyltransferase promoter methylation status
and age, the signature was proved to have a superior predictive power. And stratified analysis found that the signa-
ture could further separated postoperative GBM patients who received TMZ-chemoradiation into high- and low-risk
groups in TCGA and GEO dataset.

Conclusions: The PCG-IncRNA signature was a novel prognostic marker to predict survival and TMZ-chemoradiation
response in GBM patients after surgery.
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Background

Glioblastoma multiforme (GBM) is regarded as the most
common malignant brain tumor in adults, account-
ing for 47.1% of all malignant brain tumors [1], and the
median survival time of untreated patients with GBM is
only 3 months [2]. For malignant brain tumors, accord-
ing to the Central Brain Tumor Registry of the United
States (CBTRUS), the incidence rate of GBM in the
United States is extremely high (3.20/100,000 popula-
tion) and increases with age [1]. Maximal surgical resec-
tion, is considered as the first-line treatment for GBM
patients relieving clinical symptoms, extending survival
time and providing tissue to pathological diagnosis [3].
A large-scale randomized phase III trial, initiated by the
European Organization for Research and Treatment of
Cancer and National Cancer Institute of Canada Clini-
cal Trials Group, found that the 2-year survival rate of
GBM patients was improved to 26.5% by radiotherapy
plus temozolomide from 10.4% by radiotherapy alone
[4]. Since then, the standard therapeutic strategy for
glioblastoma patients has become the multimodal treat-
ment with radiotherapy and chemotherapy after surgery.
Therefore, prediction of response to chemotherapy drugs
or radiation and prediction of prognosis are crucial for
post-surgical GBM patients.

In 1993, the Radiation Therapy Oncology Group-
Recursive Partitioning Analysis (RTOG-RPA) classi-
fication system was developed for high-grade glioma
patients with similar survival times [5] and validated its
prognostic significance in GBM patients [6—8]. However,
all the stratification variables of RTOG-RPA risk classifi-
cation are clinical factors including age, tumor size and
location, treatment, karnofsky performance score (KPS),
cytologic, histologic composition and so on. Due to the
intra- and inter-individual heterogeneity, the RTOG-RPA
classification could not satisfactorily predict the survival
and tumor response to therapy of each individual [9].
Therefore, molecular markers are becoming more use-
ful in the field of prognosis prediction [10]. Currently,
GBM related researches from genomics, epigenom-
ics and transcriptomics level have led to unprecedented
discoveries of potential prognostic and predictive indi-
cators [11]. Genomic analysis suggests survival-related
genomic abnormalities in GBM patients, such as epider-
mal growth factor receptor (EGFR) amplification [12, 13]
and isocitrate dehydrogenase 1/2 (IDH1/2) mutations
[14, 15], have prognostic value. Some studies show that
high expression of EGFR indicated poor prognosis [16],
and other research find the IDH mutations are associated
with improved survival [17]. From the epigenetic level,
O-6-methylguanine-DNA methyltransferase (MGMT)
promoter methylation has been demonstrated that it is
associated with improved progression-free and overall
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survival in GBM patients treated with alkylating agents
[18]. However, genomic prognostic classification of GBM
is not yet clinically feasible, and the mechanism of how
these multiple genomic alterations affect clinical progno-
sis is not clear [19].

As far as the transcriptomics level is concerned, stud-
ies mostly focus on mRNA or protein coding gene (PCQG)
and long noncoding gene (IncRNA) because of their role
as gene expression regulators, tumor suppressors and
oncogenes. Using PCGs or IncRNAs, numerous stud-
ies have constructed transcriptome prognosis models
for GBM survival prediction. Zhu et al. screened out an
effective prediction system composed of 63 signature
genes for glioblastoma prognosis [20]. Marko et al. iden-
tified a 43-gene “fingerprint” from a population of 1478
differential expressed genes (P<0.01) that distinguished
GBM survival phenotypes [21]. Anindya Dutta et al. in
a global analysis identified 584 IncRNAs correlated with
a poor prognosis and 282 IncRNAs associated with bet-
ter survival outcomes in GBM patients [22]. Above
researches verify PCGs and IncRNAs can be prognostic
biomarkers of GBM. However, these studies found too
many prognostic genes to provide a clinically feasible
transcriptome signature with a small number of genes to
predict the survival of GBM patients. Therefore, we focus
our attention on find out a molecular signature which
contains few prognostic genes and could more accurately
predict the outcomes of postoperative GBM patients and
guide the tailored therapy.

In the present study, we sought to explore the role of
multi-transcriptome signature in the prognosis of GBM
patients after surgery. We analyzed 233 postoperative
GBM patients with the expression profiles of mRNAs and
IncRNAs and screened out genes significantly associated
with survival. Through further bioinformatics analysis,
we aimed at constructing a prognostic transcriptome
signature to divide patients into different risk groups,
thereby assessing the survival and treatment response for
GBM patients after surgical resection.

Methods

Glioblastoma multiforme datasets

We downloaded the normalized TCGA level 3 mRNA
expression data and corresponding clinical information
of GBM patients (n=153) from the UCSC Xena (https://
gdc.xenahubs.net/download/ TCGA-GBM/Xena_Matri
ces/TCGA-GBM.htseq_fpkm.tsv.gz). LncRNA expres-
sion data of the corresponding GBM patients was
obtained from the TANRIC database (https://ibl.mdand
erson.org/tanric/_design/basic/download.html) [23].
Another part GBM expression data (GSE7696, n=80)
and corresponding clinical data was obtained from the
publicly available GEO database (https://www.ncbi.nlm.
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nih.gov/geo/). GSE7696 data was generated by the Affy-
metrix Human Genome U133 Plus 2.0 Array (http://
www.affymetrix.com/support/technical/byproduct.
affx?product=hg-ul33-plus) and included 80 tumors
and 4 normal samples. By probe re-annotation [24], we
got their PCG and IncRNA expression data. Then we pro-
cessed the gene expression data by removing the genes
with missing expression values in more than 30% of sam-
ples or patients and excluding genes whose expression
value were 0 or null [25]. For the remaining genes with
missing expression value in less than 30% of samples or
patients, we used the mean of the corresponding genes
expression values by R program to replace the missing
expression values. We used the expression value on a
log2 scale in the subsequent analysis.

A total of 233 glioblastoma patients concurrent with
gene expression profiles and clinical information were
utilized in our study. Of these, all GBM patients were
postoperative, then treated with radiotherapy or chemo-
therapy. The 153 GBM patients from TCGA database
were randomly assigned to a training set (n=76) or a
testing set (n=77) using the ‘sample’ function [26] from
R library and the 80 patients from GSE7696 were served
as an independent validation set. Table 1 described the
clinical characteristics and therapy information of the
TCGA and GEO cohort respectively.

Construction of the prognostic PCG-IncRNA signature

in the training dataset

The relationship between the expression of PCG or
IncRNA and patients’ overall survival (OS) was analyzed by
univariate Cox proportional hazards regression analysis in
the training dataset. Genes were selected if P value <0.05.
Before constructing a risk prediction model, the random
survival forests-variable hunting (RSFVH) algorithm was
performed to filter genes. In the random survival forest
supervised classification algorithm, an iteration procedure
was implemented to narrow down the gene set, and each
iteration step discarded the 1/4 least important PCGs or
IncRNAs. One thousand trees were grown at each step,
and the square root of the number of input nodes at each
step was set to the size of randomly chosen PCGs or IncR-
NAs at each node of single classification tree. Because the
number of good-prognostic and poor-prognostic patients
were not equal, the class weights were adjusted accord-
ingly. The generalization error was estimated on the out-
of-bag samples. Finally, six PCGs and six IncRNAs were
selected [27-29]. Risk prediction score model was devel-
oped by these selected genes, weighted by their estimated
regression coefficients as follows [30].

N
Risk Score (RS) = Z (Expi * Coey)

i=1
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Table 1 Summary of patient demographics and clinical
characteristics

Characteristic Training set Test set Independent
set

Age

<60 41 35 64

>60 35 42 16
Sex

Female 26 29 21

Male 50 48 59
Chemotherapy

No 14 15 28

Yes 53 55 52

Unknown 9 7 0
Radiotherapy

No 8 13 0

Yes 62 63 80

Unknown 6 1 0
TMZ-chemoradiation

No 41 42 28

Yes 33 29 52

Unknown 2 6 0
Subtype

Classical 18 22

Mesenchymal 23 26

Neural 15 11

Proneural 20 17

where N is the number of prognostic IncRNAs or PCGs,
Exp; is the expression value of IncRNAs or PCGs, and
Coe; is the estimated regression coefficient of PCGs or
IncRNAs in the univariate Cox regression analysis. Then
each patient obtained 4095 risk scores because six PCGs
and six IncRNAs could form 2'2—1=4095 combina-
tions or signatures. The receiver operating characteris-
tic (ROC) curve was used to compare the sensitivity and
specificity of the 4095 signatures in the training dataset.
Area under the curve (AUC) were calculated from the
ROC curve. By comparing the AUC values, we selected
the prognostic PCG-IncRNA signature in the training set.

Statistical analysis and bioinformatics analysis

With the median risk score in the training dataset as
the cutoff value, the GBM patients in training or test
set were divided into high-risk or low-risk group [31].
In GSE7696, X-tile software was used to select cutoff
value for risk grouping [32]. The Kaplan—Meier analysis
and the log-rank test were used to assess and compare
survival differences between the low-risk and high-risk
groups. ROC analysis was tested to compare the sur-
vival predictive power. Furthermore, to test whether the
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signature was an independent prognostic factor, multi-
variable Cox regression analysis and data stratification
analysis were performed. All analyses were performed
using R program 3.2.3 (http://www.r-project.org) includ-
ing packages named pROC, survival and randomForest-
SRC downloaded from Bioconductor.

To investigate the biological roles of the PCGs and
IncRNAs in the signature, we analyzed the co-expressed
protein coding genes of the prognostic genes computed
by Pearson correlation test and genes with P<0.05
and absolute value of the Pearson coefficient >0.4 were
selected. Here, SubpathwayMiner was used for identifi-
cation of related pathways of the selected genes (http://
cran.r-project.org/web/packages/SubpathwayMiner
/) for it supports multiple species (approximately 100
eukaryotes, 714 bacteria and 52 Archaea) and different
gene identifiers (Entrez Gene IDs, NCBI-gi IDs, UniProt
IDs, PDB IDs, etc.) in the KEGG GENE database, which
provides more flexibility in annotating gene sets and
identifying the involved pathways (entire pathways and
sub-pathways) [33].

Results

Characteristics of study subjects

In this study, the GBM patients after surgical resec-
tion and their expression profiles were used as the main
subjects. After screened the data downloaded from the
TCGA, TANRIC and GEO database, we identified 233
eligible patients diagnosed with GBM concurrently
including PCG and IncRNA expression profiles and cor-
responding clinical data. All these GBM patients received
surgical treatment and the median age of the enrolled
patients was 60 years (21-89 years). Simultaneously, we
obtained a total of 14,607 PCGs and 6613 IncRNAs from
the 233 GBM patients.

Identification of the prognostic PCG-IncRNA signature

in the training dataset

Firstly, in order to find the survival-related genes in
training set, univariate cox proportional hazards regres-
sion analysis was performed and identified a 707-genes
set including 437 PCGs and 270 IncRNAs in the train-
ing dataset which were significantly correlated with OS
(P<0.05, Additional file 1: Table S1). The volcano plot
displayed the 707 genes with statistical differences as the
blue dots in Fig. 1a. Secondly, to further narrow down the
number of prognostic PCGs or IncRNAs, we analyzed
the above 707 survival related genes by random survival
forest algorithm and got six PCGs (EIF2AK3, EPRS,
GALE, GUCY2C, MTHFD2, RNF212) and six IncRNAs
(LINC00618, LINC02015, AC068888.1, CERNA1, CTD-
2140B24.6, ZMIZ1-AS1) significantly associated to OS of
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GBM patients according to the permutation important
score in every step: Discard 1/4 less important PCGs and
IncRNAs at each step based on estimating the important
score for each PCG or IncRNA using the out-bag samples
by pemutation testing (Fig. 1b—d).

Thirdly, putting the six IncRNAs and six PCGs into the
risk score model constructed in methods, we obtained a
total of 2!2 — 1=4095 models or signatures that included
different gene numbers from 1 to 12, indicating that
PCGs and IncRNAs alone or the combination of PCGs
and IncRNAs were included in these 4095 models. To
screen out a signature with biggest predictive power, we
performed ROC analysis 4095 times using the survival
status as label and signature risk scores of GBM patients
as variable in the training dataset by pROC R packages.
After compared the AUC values of all these 4095 signa-
tures (Additional file 2: Table S2), we identified the max
AUC value was 0.78 (Fig. le, f) from the PCG-IncRNA
signature comprising six PCGs (EIF2AK3, EPRS, GALE,
GUCY2C, MTHFD2, RNF212) and five IncRNAs
(LINC00618, LINC02015, AC068888.1, CERNA1 and
CTD-2140B24.6).

The risk score model was constructed as follows: Risk
score=(—0.82 x EIF2AK3 expression)+ (—0.79 x EPRS
expression) 4 (0.71 x GALE expression) + (0.60 x GUCY2C
expression) 4 (—0.71 x MTHFD2 expression) + (— 0.87 x
RNF212 expression)+ (0.57 x LINC00618 expression) +
(—0.84 x LINC02015  expression)+(0.61 x AC068888.1
expression) + (0.65 x CERNA1 expression) + (— 0.74 x
CTD-2140B24.6 expression). Among them, the coeffi-
cients for PCGs (EIF2AK3, EPRS, MTHFD2 and RNF212)
and IncRNAs (LINC02015, CTD-2140B24.6) are negative,
and the coefficients for PCGs (GALE, and GUCY2C) and
IncRNAs (LINC00618, AC068888.1 and CERNAI) are
positive (Table 2).

Validation the survival prediction of the PCG-IncRNA
signature in the three dataset

The risk score model constructed by the PCG-IncRNA
signature in the training dataset gave each patient a risk
score. Patients from the training dataset were divided
into high-risk group (n=38) and low-risk group (n=38)
when the median risk score was used as the cutoff point.
Kaplan—Meier survival analysis was performed to com-
pare the overall survival of two risk groups of patients. As
we can see in Fig. 2a, the OS rates were significantly differ-
ent in patients from the two groups. Compared with those
in the low-risk group, patients in the high-risk group had
a shorter survival time (median survival: 7.47 months vs.
18.27 months, log-rank test P<0.001) and lower OS rate
(5% vs. 50%, log-rank test P<0.001, Fig. 2a).
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Table 2 Identities of PCGs and IncRNAs in the prognostic PCG-IncRNA signature and their univariable cox association

with prognosis in the training group

Ensembl database ID Gene symbol Coefficient ? Pvalue? Gene expression level
association with poor
prognosis

ENSG00000172071 EIF2AK3 —0.82 <0.001 Low

ENSG00000136628 EPRS —-0.79 0.01 Low

ENSG00000065911 MTHFD2 —-071 0.02 Low

ENSG00000178222 RNF212 —0.87 0.00 Low

ENSG00000117308 GALE 0.71 0.01 High

ENSG00000070019 GUCY2C 0.6 0.03 High

ENSG00000231574 LINC02015 —0.84 <0.001 Low

ENSG00000271963 CTD-2140B24.6 —0.74 0.01 Low

ENSG00000225163 LINC00618 0.57 0.04 High

ENSG00000257337 AC068888.1 0.61 0.03 High

ENSG00000259577 CERNA1 0.65 0.02 High

2 Derived from the univariable Cox regression analysis in the training group

To validate the predictive power of the signature, we
calculated the PCG-IncRNA signature-based risk scores
of 77 patients in the test dataset. When the same median
cutoff point obtained from the training dataset was
used, patients from the test dataset were also separated
into low-risk and high-risk groups (median survival:
11.4 months vs. 16.8 months, log-rank test P=0.001,
Fig. 2b). The OS rate of patients in the high-risk group
was about 19.4% vs. 53.7% in the low-risk group (Fig. 2b).
In the independent set, Kaplan—Meier analysis found
the PCG-IncRNA signature classified patients into dif-
ferent two risk groups (median survival: 8.93 months vs.
16.22 months, log-rank test P=0.007, Fig. 2c). Moreover,
shorter survival time was noted in GBM patients with
higher risk-scores in the training, test and independent
datasets and P-values were calculated by the rank-sum
test (Fig. 2d—f).

The PCG-IncRNA signature is an independent prognostic
factor from other clinical variables and molecular features
After demonstrating the survival predictive power of
PCG-IncRNA signature, we need to clarify whether the
PCG-IncRNA signature was an independent prognos-
tic factor since numerous factors affect GBM prognosis.
Thus we performed univariable cox analysis and mul-
tivariable Cox regression analysis in which covariates
included the PCG-IncRNA signature-based risk score
and clinical features (Table 3). Multivariable Cox regres-
sion analysis showed that the PCG-IncRNA risk score
remained to be significantly associated with overall sur-
vival when adjusted other clinical features including sex,
age and Karnofsky performance score in the training

and the test dataset (High-risk group vs. Low-risk group,
HR=5.94, 95% CI 2.66-13.25, P<0.001; HR =2.89, 95%
CI 1.35-6.20, P=0.01). The independent dataset showed
the independent predictive power of PCG-IncRNA sig-
nature (HR=2.17, 95% CI 1.16—4.07, P=0.02) when
adjusted other clinical features including sex, age.

Subsequently, examining the clinical data of these
153 TCGA GBM patients after surgical resection, we
obtained 73 samples with known status of MGMT pro-
moter and 80 samples with known status of IDH1 muta-
tion (both known were 70 samples). Multivariable Cox
regression analysis showed that the PCG-IncRNA risk
score was significantly associated with overall survival
when adjusted the molecular features including MGMT
promoter and IDH1 mutation in the 70 TCGA GBM
patients (High-risk group vs. Low-risk group, HR=3.71,
95% CI 1.80-7.62, P<0.001).

Comparing the survival predictive power of the signature
with that of age, IDH1 mutation and MGMT promoter
methylation status

To compare the survival predictive power of the PCG-
IncRNA signature with the reported prognostic factors,
such as age, IDH1 mutation and MGMT promoter meth-
ylation status, we performed a series of ROC analyses
considering that a larger AUC usually represented a bet-
ter predictive power [34, 35].

In the training dataset (n=76), the AUC of the
PCG-IncRNA signature was bigger than that of age,
indicating a better predictive power in GBM prog-
nosis  (Signature-AUC=0.78 vs. Age-AUC=0.56,
Fig. 3a). The same result can be seen in the test dataset
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Fig. 2 The PCG-IncRNA signature predicts survival of postoperative GBM patients in the training, test and independent validation set. Kaplan—Meier
survival curves classify training-set patients (n=76) (a) test-set patients (n="77) (b) and independent validation set (n =80) (c) into high- and
low-risk groups by the PCG-IncRNA signature. Shorter survival time was noted in GBM patients with higher risk-scores in the training (d), test (e) and

(Signature-AUC=0.69 vs. Age-AUC=0.53, n=77,
Fig. 3b), Furthermore, the AUC of the signature model
combined with age was maximum (Age+ Signature-
AUC=0.80/0.68 in training/test group, Fig. 3a, b),
illustrating combination of the PCG-IncRNA signa-
ture with age could provide more precisely prognostic

information. And we also compared the survival pre-
dictive ability at 1, 2 and 3 years of the PCG-IncRNA
signature with that of age by TimeROC analysis in the
entire TCGA 153 samples. As Fig. 3¢ showed, the AUC
of the PCG-IncRNA signature is 0.69 (0.60-0.77) at
1 year, 0.72 (0.60—0.83) at 2 year and 0.81 (0.76—0.86) at
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Table 3 Univariable and multivariable Cox regression analysis of the PCG-IncRNA signature and survival of GBM patients

Variables Univariable analysis Multivariable analysis
HR 95% Cl of HR P HR 95% Cl of HR P
Lower Upper Lower Upper
The training set
Age
>60vs. <60 1.54 09 264 0.12 1.96 0.98 392 0.06
Sex
Male vs. female 0.68 0.39 12 0.18 0.65 0.33 1.28 0.21
KPS
>70vs. <70 0.86 042 1.74 0.04 248 1.05 587 0.04
The signature
High risk vs. low risk 4.68 248 8.80 <0.001 5.94 2.66 13.25 <0.001
The test set
Age
>60vs. <60 1.93 1.05 3.56 0.04 1.66 0.81 344 0.16
Sex
Male vs. female 0.8 045 143 045 1.16 0.52 2.59 0.71
KPS
>70vs. <70 0.51 0.25 1.07 0.08 0.53 0.24 117 0.12
The signature
High risk vs. low risk 2.77 1.49 5.16 0.001 2.89 1.35 6.20 0.01
The independent set
Age
>60 vs. <60 1.65 0.92 296 0.09 1.54 0.85 279 0.15
Sex
Male vs. female 092 0.53 161 0.77 1.05 0.59 1.85 0.88
The signature
High risk vs. low risk 2.24 122 4.1 0.01 217 1.16 4.07 0.02
The entire TCGA set
MGMT
Methylated vs. unmethylated 0.92 048 177 0.80 0.94 049 1.83 0.87
IDH1
R132H vs. WT 0.27 0.04 2.01 0.20 0.46 0.06 357 0.46
The signature
High risk vs. low risk 4.00 1.97 8.12 <0.001 3.71 1.80 7.62 <0.001

KPS Karnofsky performance score

3 year, larger than that of age 0.60 (0.51-0.69) at 1 year,
0.60 (0.48-0.73) at 2 year and 0.57 (0.37-0.76) at 3 year.

Then, we compared the survival predictive power of the
PCG-IncRNA signature with MGMT or IDH1 mutation
by TimeROC analysis. For MGMT set (#="73), the AUC
of the signature was 0.78 (0.67-0.90) at 1 year and 0.79
(0.70-0.88) at 2 year, larger than that of MGMT which
was 0.53 (0.38-0.65) at 1 year and 0.53 (0.26-0.78) at
2 year, but the AUC of the signature was 0.77 (0.69-0.85)
at 3 year a little less than that of MGMT which was 0.78
(0.69-0.86) (Fig. 3d). For IDH1 mutation set (n=80), the
AUC of the PCG-IncRNA signature was 0.74 (0.62—0.86)

at 1 year, 0.79 (0.61-0.88) at 2 year and 0.76 (0.68—0.84)
at 3 year, larger than that of IDH1 mutation which was
0.47 (0.43-0.51) at 1 year, 0.40 (0.22-0.58) at 2 year and
0.52 (0.48-0.57) at 3 year (Fig. 3g).

In addition, Kaplan—Meier survival analysis was
performed in the 73 samples with known status of
MGMT promoter and 80 samples with known status
of IDH1 mutation to compare the risk grouping ability
of the PCG-IncRNA signature with that of MGMT and
IDH1 mutation. Using the same median cutoff point
obtained from the training dataset, the PCG-IncRNA
signature showed a robust efficiency to separate
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Fig. 3 ROC analyses for comparison of the predictive power of the PCG-IncRNA signature with that of age in the training (a), test dataset (b) and
TimeROC analysis in the entire set (c). TimeROC analysis for comparison of the survival predictive power of the PCG-IncRNA signature with that
of MGMT promoter methylation status (d) and IDH1 mutation (g). Kaplan-Meier survival curves found the PCG-IncRNA signature (e, h) could
classify patients with known MGMT promoter (f) and IDH1 mutation status (i) into high- and low-risk groups by the PCG-IncRNA signature in each
corresponding TCGA dataset. Kaplan-Meier survival curves found the MGMT and IDH1/2 could not group patients into high- and low-risk groups

corresponding patients into two risk groups with dif- Stratification analysis of TMZ-chemoradiation treatment
ferent survival time (P<0.001, Fig. 3e, h), however, The relationship between the PCG-IncRNA signature
the MGMT and IDH1/2 did not group well (P>0.05, with a series of clinicopathological parameters in the
Fig. 3f, i). entire TCGA dataset (n=153) was analyzed. As can be
seen in Table 4, there was an association between PCG-
IncRNA signature and TMZ-chemoradiation (Chi square
test, P<0.05, Table 4). Obviously, TMZ-chemoradiation
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Table 4 Association of the PCG-IncRNA signature with clinicopathological characteristics in postoperative GBM patients

in TCGA dataset
Variables Training set P Test set P Entire TCGA set P
Low risk? High risk® Low risk® High risk® Low risk® High risk®
Age 0.76 1 0.93
<60 21 20 19 16 40 36
>60 17 18 22 20 39 38
Sex 0.23 0.97 0.52
Female 10 16 16 13 26 29
Male 28 22 25 23 53 45
TMZ-chemotherapy 0.16 0.51 0.11
No 4 10 6 9 10 19
Yes 30 23 31 24 61 47
Unknown 4 5 4 3 8 8
Radiotherapy 0.01 0.26 0.01
No 1 7 5 8 6 15
Yes 36 26 36 27 72 53
Unknown 1 5 0 1 1 6
TMZ-chemoradiation 0.01 0.03 <0.001
No 14 27 17 25 31 52
Yes 23 10 20 9 43 19
Unknown 1 1 2 3 5
Subtype 0.8 0.34 047
Classical 9 9 8 14 17 23
Mesenchymal 13 10 15 11 28 21
Neural 6 9 6 5 12 14
Proneural 10 10 1 6 21 16

@ Low risk < median value of the PCG-IncRNA signature risk score, high risk > median of risk score in training group; The Chi-squared test; P value <0.05 was

considered significant; TMZ temozolomide

treatment could stratify post-operative GBM patients
into treated stratum and untreated stratum. Data strati-
fication analysis using the PCG-IncRNA signature risk
score further divided the patients into four groups:
high-risk and treated, high-risk and untreated, low-risk
and treated, low-risk and untreated. The Kaplan—Meier
test was performed and Kaplan—Meier curves showed
in Fig. 4. The log-rank test showed that TMZ-chemora-
diation treated patients in high-risk group with shorter
survival than TMZ-chemoradiation treated patients
in low-risk group (n=62, P<0.001, Fig. 4a). The TMZ-
chemoradiation untreated patients were also divided into
a high-risk group with lower OS and a low-risk group
with higher OS (n=83, P=0.005, Fig. 4b), indicating
the stratification power of the PCG-IncRNA signature in
TMZ-chemoradiation GBM patients.

In consistence with the findings in TCGA described
above, for GSE7686 dataset, the PCG-IncRNA signa-
ture could stratify the TMZ-chemoradiation treated or
untreated patients into a high-risk group and a low-risk

group with different survival (log-rank test P=0.03,
Fig. 4c, log-rank test P=0.13, Fig. 4d).

Functional characterization of the prognostic genes

in the PCG-IncRNA signature

Co-expression network analysis was carried out in the
entire TCGA dataset visualized by Cytoscape [36] and
we found 2328 protein-coding genes co-expressed with
the prognostic 6 PCGs and 5 IncRNAs in the signa-
ture (Absolute value of the Pearson correlation coef-
ficient >0.40, P<0.05, Additional file 3: Table S3). Then
we performed pathway analysis by SubpathwayMiner
(see method) and found these co-expressed genes were
enriched in 90 different pathways (P<0.05, Additional
file 4: Table S4). The gene set were significantly associated
with different cancer types such as non-small cell lung
cancer, prostate cancer, thyroid cancer, bladder cancer
and glioma (P<0.05, Fig. 5a). And these results suggested
that the 11 genes, via the co-expressed genes, could
exert their regulatory roles by implicating in regulating
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Fig. 4 Stratification analysis in the entire set. Kaplan-Meier survival curves found the PCG-IncRNA signature could classify TMZ-chemoradiation
treated patients (a) and untreated patients (b) in the entire TCGA dataset and TMZ-chemoradiation treated patients (c) and untreated patients (d) in
the GSE7696 dataset into high- and low-risk groups. P Value was calculated by log-rank test

downstream pathways such as JAK-STAT signaling path-
way, MAPK signaling pathway, WNT signaling pathway,
Cell cycle, TGF-beta signaling pathway and p53 signaling
pathway (P<0.05, Fig. 5b, c).

Discussion

Glioblastoma multiforme (GBM) is a heterogeneous dis-
ease characterized by poor prognosis. In order to extend
the survival time of patients with GBM, in recent year,
adjuvant and concomitant temozolomide with radiation
are widely used. Despite advances in treatment such as
radiation and chemotherapy, the prognosis and therapy
response for post-surgical GBM patients with similar
clinical risk factors varied tremendously. Considering
the molecular heterogeneity of GBM, in this study, we
identified a prognostic molecular indicator comprising
five long non-coding RNAs and six protein coding genes,

and confirmed the survival prediction power of the PCG-
IncRNA signature in postoperative GBM patients.
Molecular markers are of great significance to disease
diagnosis, treatment decision and prognosis assessment.
With regard to the prognostic molecular characterization
of GBM, the 2016 World Health Organization (WHO),
for the first time, used the isocitrate dehydrogenase
(IDH) gene mutation status as the classification molecu-
lar parameter to separate the GBM into three groups:
GBM IDH-wild type, GBM IDH-mutant, and GBM NOS
[37], with different prognosis [38]. In the past decade,
GBM prognostic studies focused on mRNA or PCG as
a result of the development of sequence technology and
The Cancer Genome Atlas (TCGA) database. Chen et al.
selected a gene expression signature score (GGESS) by
incorporating ten glycolytic genes significantly correlated
with patient survival and verified that the PCG signature
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could independently predict prognosis and response to
chemotherapy of GBM patients [39]. According to Chi-
nese Glioma Genome Atlas (CGGA) RNA sequencing
database and TCGA DNA methylation, another study
established a gene signature comprising eight differen-
tially expressed genes affected by DNA methylation and
validated its prognostic value for GBM patients [40]. A
minimal multigene signature that correlated with patient
survival and effectively separated the proneural and mes-
enchymal glioblastoma subtypes was developed from
two patient-derived novel primary cell culture models
(MTA10 and KW10) [41].

Recently, emerging evidence suggests that IncRNA
play a vital role in cancer occurrence and development,
such as regulating gene transcription [42] and post tran-
scriptional processing of mRNA [43], participating in
chromatin remodeling [44]. Subsequently, a great deal of
IncRNAs have been shown to be closely associated with
the survival of patients in different cancer types, indi-
cating its prognostic prediction role. For GBM patients,
some researchers identified a six-IncRNA signature asso-
ciated with the overall survival by analyzing IncRNA
expression profiling in 213 GBM tumors from TCGA
[45]. An immune-related six-IncRNA signature was
found by performing a genome-wide analysis of IncRNA
expression profiles form 419 GBM patients and demon-
strated its ability to stratify patients into high- and low-
risk groups with significantly different survival [46]. All
these above mentioned studies highlighted that it is fea-
sible to mine the reliable and readily available expression
profiles from TCGA database in GBM prognostic PCG/
IncRNA marker studies. Moreover, a recent work found
the dysregulated IncRNAs and mRNAs associated with
acquired TMZ resistance in glioblastoma cells in vitro
and may provide novel targets for GBM chemotherapy
[47].

Therefore, in the present study, we combined the
PCG expression profile with the tissue-specific IncRNA
expression profile to explore a signature indicating
the prognosis and therapy effectiveness of postopera-
tive GBM patients. We obtained 233 postsurgical GBM
patients with corresponding PCG, IncRNA expression
profiles and clinical information as the study object. After
summarized clinical characteristics, we found the median
age of the postsurgical GBM patients was 60 and more
common in men, almost consistent with most research
reported [48—50]. Clinical treatment information of these
233 GBM patients provided convenience for our research
on treatment response. Subsequently, we used two pow-
erful bioinformatics analysis methods for identification
of prognostic genes. Firstly, univariable cox regression
analysis was performed and identified 707 genes that was
significantly associated with the overall survival of GBM
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patients in the training dataset. Secondly, the random
survival forest method further minimized the prognos-
tic genes to 6 PCGs and 6 IncRNAs. Then we screened
out a PCG-IncRNA signature with biggest AUC from
4095 combinations including different number of PCGs
and/or IncRNAs, comprising six PCGs (EIF2AK3, EPRS,
GALE, GUCY2C, MTHFD2, RNF212) and five IncR-
NAs (LINCO00618, LINC02015, AC068888.1, CERNALI,
CTD-2140B24.6), which separated patients into low-risk
or high-risk group with different survival in the train-
ing and test dataset. The biggest AUC value of the PCG-
IncRNA signature suggests it was better than any PCG
alone signature or IncRNA alone signature. Multivari-
able Cox regression analysis verified the independence
of the selected PCG-IncRNA signature from clinical fac-
tors like sex, age, KPS in predicting survival in postopera-
tive GBM patients. As we mentioned, radiotherapy plus
concomitant and maintenance TMZ chemotherapy after
operation is the standard treatment for GBM patients,
which means most postoperative GBM patients experi-
enced TMZ-chemoradiation. Notably, the stratification
analysis found that the PCG-IncRNA signature could fur-
ther classify the TMZ-chemoradiation patients into low-
risk or high-risk group with different survival, indicating
the PCG-IncRNA signature could be helpful in predicting
GBM treatment outcome, especially in TMZ-chemoradi-
ation treated patients. Previous studies reported that age,
MGMT promoter and IDH1 mutation were one of the
main prognostic factors for GBM [45], so we compared
the predictive ability of age, MGMT promoter and IDH1
mutation with that of the PCG-IncRNA signature, and
the ROC analysis results confirmed the signature had a
superior survival predictive power.

To further explore the characteristics of the prog-
nostic PCGs and IncRNAs in the signature, we found
EIF2AK3, EPRS, MTHFD2, RNF212, LINC02015, CTD-
2140B24.6 were protected factors for GBM patients
highly expressed these genes with a long survival time
(univariable cox coefficient<0), and the remaining genes
(GALE, GUCY2C, LINC00618, AC068888.1, CERNA1)
associated with short survival time were risk factors (uni-
variable cox coefficient>0) according to the univariable
cox result in Table 2. Due to relevant functional research
of the prognostic 11 genes are limited, we performed bio-
informatics functional analyses including co-expression
network analysis and pathway analysis. However, the bio-
logical roles of the selected genes in tumorigenesis are
still not clear and should be investigated in further exper-
imental studies.

There are some limitations in this work. Firstly, after
rejecting missing data, only 6613 IncRNAs were included,
which might neglect some potential IncRNAs. Secondly,
only 233 patients were included in the analysis, thus the
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efficiency of the PCG-IncRNA signature should be con-
firmed in more GBM patients. Moreover, the molecular
mechanisms how these prognostic genes or the PCG-
IncRNA signature influence patients risk stratification
and clinical treatment responses need to be explained.

Although the above shortcomings, this article still has
advantages and novelty. Firstly, we used few genes which
predict survival and construct a PCG-IncRNA signature
with satisfactorily prognosis predictive power, giving
the postoperative GBM patients and clinicians a poten-
tial signature to evaluate survival. Secondly, in the post-
operative GBM patients, treated with radiotherapy or
chemotherapy, we found the stratification power of the
signature in TMZ-chemoradiation, which is helpful for
clinical treatment guiding.

Conclusion

This is, to our knowledge, the first study investigating a
correlation between the PCG-IncRNA signature and
the survival in postoperative GBM patients. Our study
strongly suggests that the PCG-IncRNA signature could
serve as novel biomarkers for predicting prognosis and
treatment outcome of postoperative GBM patients.
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