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Abstract 

Background:  Evidences in literature strongly advocate the potential of immunomodulatory peptides for use as 
vaccine adjuvants. All the mechanisms of vaccine adjuvants ensuing immunostimulatory effects directly or indirectly 
stimulate antigen presenting cells (APCs). While numerous methods have been developed in the past for predicting B 
cell and T-cell epitopes; no method is available for predicting the peptides that can modulate the APCs.

Methods:  We named the peptides that can activate APCs as A-cell epitopes and developed methods for their pre-
diction in this study. A dataset of experimentally validated A-cell epitopes was collected and compiled from various 
resources. To predict A-cell epitopes, we developed support vector machine-based machine learning models using 
different sequence-based features.

Results:  A hybrid model developed on a combination of sequence-based features (dipeptide composition and motif 
occurrence), achieved the highest accuracy of 95.71% with Matthews correlation coefficient (MCC) value of 0.91 on 
the training dataset. We also evaluated the hybrid models on an independent dataset and achieved a comparable 
accuracy of 95.00% with MCC 0.90.

Conclusion:  The models developed in this study were implemented in a web-based platform VaxinPAD to predict 
and design immunomodulatory peptides or A-cell epitopes. This web server available at http://webs.iiitd​.edu.in/ragha​
va/vaxin​pad/ will facilitate researchers in designing peptide-based vaccine adjuvants.
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Adjuvants

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/
publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Peptide subunit vaccines are hailed as an advance-
ment over live or inactivated whole organism vaccines 
due to their ability to minimize adverse reactions [1]. 
Yet, antigenic peptides by themselves are poorly immu-
nogenic since they lack the capability of activating the 
innate immunity. Activation of the innate immune sys-
tem is required for stimulation of whole immune system 
including adaptive immunity. Hence, there is a need for 

inclusion of immunostimulants known as adjuvants in 
the subunit vaccine formulations. Conventionally, empir-
ical approaches were used for adjuvant discovery, so far 
limited adjuvants have been approved and licensed for 
clinical use like alum, MF59, AS03 and AS04 [2].

Vaccine adjuvants effectuate their action by a variety of 
mechanisms with all of them involving the antigen pre-
senting cells (APCs) particularly the dendritic cells [3]. 
One of these mechanisms is the activation of the pattern 
recognition receptors (PRRs) on the APCs that recognize 
conserved microbial molecular signatures. PRR ligands 
shape the adaptive immune response mediated by the 
APCs. A majority of the vaccine adjuvants are ligands of 
PRRs making them potential targets for rational design of 
vaccine adjuvants [2]. Thus, hypothesis-driven adjuvant 

Open Access

Journal of 
Translational Medicine

*Correspondence:  raghava@iiitd.ac.in 
†Gandharva Nagpal and Kumardeep Chaudhary contributed equally to 
this work
2 Centre for Computational Biology, Indraprastha Institute of Information 
Technology, Okhla Industrial Estate, Phase III, New Delhi 110020, India
Full list of author information is available at the end of the article

http://webs.iiitd.edu.in/raghava/vaxinpad/
http://webs.iiitd.edu.in/raghava/vaxinpad/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-018-1560-1&domain=pdf


Page 2 of 15Nagpal et al. J Transl Med  (2018) 16:181 

development relies on the expectation that the mecha-
nistic understanding of the immune responses exhibited 
by PRR ligands would enable fine-tuning the specificity 
of adjuvants to attain vaccine efficacy and safety, simul-
taneously. An important example of a class of molecules 
that have been shown to have immunomodulatory effects 
and are poised to become safe and cost-effective adju-
vants in future is—short immunomodulating peptides 
[4]. Figure  1 is a schematic representation of the adap-
tive immune cell activation by a coordination of antigen 

presentation to the naïve adaptive immune cell with the 
release of cytokine milieu mediated by PRR activation. 
Keeping in view the role of peptide ligands of PRRs in 
the activation of APCs, we introduce the term ‘A-cell 
epitopes’ for these immunomodulatory peptides.

Cationic host defense peptides (HDPs) were originally 
discovered as antimicrobial peptides produced within 
the multicellular organisms having a broad-spectrum 
activity against bacteria, viruses, fungi, protozoa, etc. [5]. 
Of late, HDPs and their synthetic analogs called innate 

Fig. 1  An illustrative mechanism of antigen presenting cell (APC) activation caused by immunomodulatory peptides through innate immune 
receptors leading to the induction of adaptive immune cells. The immunomodulatory peptides are ligands of innate immune receptors that evoke 
cytokine expression through cellular signaling pathways. The cytokines lead to the maturation of naïve cells into mature adaptive immune cells 
such as various types of T-lymphocytes. Since the immunomodulatory peptides activate the APCs leading to the activation of the adaptive immune 
cells, they may be used as vaccine adjuvants and be called ‘A-cell epitopes’. The figure was drawn using ScienceSlides, made available at http://
www.scien​cesli​des.com/ by VisiScience

http://www.scienceslides.com/
http://www.scienceslides.com/
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defense regulators (IDRs) have been realized to cause 
immunomodulatory effects like differentiation and acti-
vation of innate and adaptive immune cells, modulation 
of pro- and anti-inflammatory responses, chemo attrac-
tion, autophagy, apoptosis and enhancement of immune-
mediated bacterial killing [6]. Many host defense 
peptides (HDPs) with known immunomodulatory effects 
are already in clinical trials [7]. IMMACCEL-R is a short 
synthetic peptide with immunomodulatory properties 
that has been commercialized for use as vaccine adjuvant 
in animals and birds for the purpose of antibody genera-
tion [8]. The human cathelicidin antimicrobial peptide 
(CAMP or LL37) is another well-known antimicrobial 
peptide shown to induce immunomodulatory effects 
[9] and has been found to be associated with immune-
related disorders like psoriasis [10] and morbus Kost-
mann [11].

Adjuvants have been incorporated into the vaccine 
formulations for qualitative alteration of the adap-
tive immune responses that are different from non-
adjuvanted antigens. For instance, the adjuvants have 
been used to skew the immune responses with respect 
to Th1 (T-helper 1) cells versus Th2 cells, CD8+ versus 
CD4+ T cells, specific antibody types, etc. [2]. The PRR 
ligands produce these effects by virtue of the adapter 
proteins in the signaling pathways activated by the PRR. 
For example, bacterial flagellin protein causes adjuvant 
effect through TLR 5 and produces a mixed Th1 and Th2 
response instead of polarized Th1 response and requires 
TLR adapter protein MyD88 for this effect. In contrast, 
monophosphoryl lipid A (MPL) and bacterial lipopoly-
saccharide (LPS) acting through TLR 4 activation lead to 
production of pro-inflammatory cytokine TNF leading 
to a polarized Th1 response instead of mixed Th1–Th2 
response. While MPL signals through TRIF adaptor, LPS 
mediated activation of TLR 4 acts through both TRIF 
and MyD88 adapter proteins. Thus, MPL formulated on 
alum (AS04) stimulates a polarized Th1 cell response and 
is a component of licensed vaccine for HBV and papil-
loma that has proven to be both safe and effective.

Developing adjuvants based merely on empirical stud-
ies without the understanding of mechanisms is inad-
equate [2]. There is a need to develop systematic and 
rational approaches for designing highly potent vaccine 
adjuvants. One such approach could be the development 
of PRR ligands into vaccine adjuvants since their mecha-
nism is known.

In such a scenario, in silico models to screen and iden-
tify potential vaccine adjuvant candidates could prove 
to be useful as the existing experimental approaches 
are time and resources consuming [12]. Previously, 
our group developed a method, Vaccine DA for pre-
dicting immunomodulatory oligodeoxynucleotides 

that can activate innate immune system via Toll-like 
receptor-9 (TLR-9). This tool can be used for design-
ing oligodeoxynucleotide-based vaccine adjuvants as 
well as for genome-wide screening of vaccine adjuvants 
[13]. Recently, we also developed a method imRNA for 
designing single-stranded RNA (ssRNA) based vaccine 
adjuvants [14]. These methods may play an important 
role in designing DNA and RNA-based therapeutics as 
these methods allow a user to design oligonucleotides of 
desired immunogenicity.

In the last two decades, numerous method have been 
developed for predicting potential of peptides to stimu-
late adaptive arm of the immune system that include 
methods for predicting MHC binders, B-cell epitopes 
[15–23] and T-cell epitopes [24–31]. To the best of our 
knowledge, no method has been developed so far for pre-
dicting immunostimulatory potential of peptides to acti-
vate innate immunity. In this study, we made an effort to 
develop method for predicting immunomodulatory pep-
tides that can activate innate arm of immune system or 
antigen presenting cells. These peptides activate the anti-
gen presenting cells (e.g., dendritic, macrophages); hence, 
we propose that these immunomodulatory peptides be 
termed as ‘A-cell epitopes’.

In the present work, first we collected experimentally 
identified immunomodulatory peptides from the litera-
ture and included them in our positive set named A-cell 
epitopes. Next, we collected the human endogenously 
circulating peptides to build the negative set named 
A-cell non-epitopes. Combining the positive and the 
negative sets into a complete dataset, we developed sup-
port vector machine (SVM) based computational models 
that can classify a new query peptide as A-cell epitope or 
non-epitope. To benefit the users of the scientific com-
munity, we provided the best performing SVM-based 
prediction models in the form of a web-based application 
called VaxinPAD to be used for identifying and designing 
novel A-cell epitopes. Such peptides identified computa-
tionally might serve as the starting molecules for design-
ing peptide-based vaccine adjuvants.

Methods
Dataset
The experimentally validated immunomodulatory 
peptide sequences were obtained from 16 patents. 
As an example of the sequences considered immu-
nomodulatory, a set of sequences taken from a patent 
(US20110008318 A1), includes flagellin-derived peptides 
that exhibit immunomodulatory effect by direct bind-
ing to TLR 5 as indicated by assays reporting increased 
NF-κB expression estimated from coupled luciferase 
activity and TNFα production estimated using flow 
cytometry. In one of the patents (US7462360 B2), a 
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class of immunomodulatory peptides, called alloferons, 
derived from the bacteria challenged blood of larvae of 
the insect blowfly, Calliphora vicina, have been found to 
stimulate the cytotoxic anticancer activity of the human 
NK-cells and lymphocytes. In another case, a set of pep-
tides as described in patent US8791061 B2 have been 
shown to enhance innate immunity by modulating the 
activity of type II transmembrane serine protease dipep-
tidyl peptidase (DPPIV) also known as CD26 or adeno-
sine deaminase binding protein, expressed on major 
immune cells like activated T-cells, B-cells, NK-cells, 
macrophages and epithelial cells. With two major func-
tions of signal transduction and proteolysis, the effects 
of DPPIV protein-mediated cellular processes include 
modulation of the chemokine activity by cleaving dipep-
tides from chemokine N-terminus that alters the recep-
tor binding and specificity of the processed chemokine. 
DPPIV is a neutrophil chemorepellant and eosinophil 
chemoattractant too.

After removing the longer sequences, 304 unique 
sequences left in the length range of 3–30 residues were 
used to constitute the positive dataset named here as the 
A-cell epitopes. The upper bound of length 30 residues 
was kept as more than 90% of the originally collected 
epitope sequences were retained keeping this criterion 
used for removing very long sequences. In the absence 
of experimentally verified non-immunomodulatory 
peptides (non-epitopes), the experimentally identified 
endogenous human serum peptides [32, 33] were taken 
as non-epitopes. We assume these peptides are non-
immunogenic as they are part of human serum, thus we 
assign them as non-epitopes. Only the sequences of the 
length 3–30 were taken into the negative dataset. In this 
manner, the main dataset consisted of 304 A-cell epitopes 
and 385 non-epitopes. Additional file  1: Table  S1 pro-
vides the sequences and the source patent/publication for 
the positive and the negative datasets.

Input features
In order to develop any in silico model it is important to 
generate input features corresponding to each data point. 
In this study, a data point is the amino acid sequence 
of a peptide (either A-cell epitope or non-epitope). It is 
important to generate fixed length input features because 
machine-learning techniques require fixed length vec-
tor for developing a model. As the length of peptides is 
variable, thus we computed amino acid composition of 
A-cell epitopes and non-epitopes for developing models. 
We also computed the average amino acid composition 
of A-cell epitopes, non-epitopes and the human pro-
teins, in order to understand compositional bias in A-cell 
epitopes. The amino acid composition for each sequence 
constituted the input vector of length 20, which was used 

for developing SVM-based prediction models. Similarly, 
the dipeptide composition vectors of length 400 were 
generated for A-cell epitopes and non-epitopes with 
each element of a vector corresponding to the composi-
tion value of each type of possible dipeptide. In addition 
to compositional features, we also generated binary fea-
tures for developing models using fixed length of amino 
acids from the termini (N-terminal or C-terminal or 
both) of peptides. In the case of binary feature, an amino 
acid is represented by a vector of 20, where the pres-
ence of amino acid is indicated by ‘1’ and the absence is 
presented by ‘0’ [34]. This means a peptide of length N 
is presented by a vector of length N × 20 in the case of 
binary features.

Motif search
We used the Motif—EmeRging and with Classes—Iden-
tification (MERCI) Program [35] to identify motifs exclu-
sively occurring in the A-cell epitopes [36]. Though this 
program allows searching for gapped and ungapped 
motifs, but we restricted our analysis to the ungapped 
motifs. It is well established that in the case of T-cell 
epitopes, even a single residue mutation changes its 
immunogenicity [37] and can even eliminate the immu-
nogenicity of the epitope [38]. Hence, intuitively the 
ungapped motifs found to be conserved among the 
positive sequences are more likely to help identify novel 
A-cell epitopes. Thus, we computed and compared the 
frequency of occurrence of ungapped motifs in A-cell 
epitopes, non-epitopes and the Swiss-Prot proteins.

Classifiers based on machine learning techniques
In the present study, some commonly used popular 
machine learning techniques were used to develop clas-
sification prediction models. We used WEKA package 
to implement these machine learning techniques namely 
Random Forest, Naïve Bayes, SMO and J48 [39]. These 
classification models were developed using commonly 
used features of peptides like amino acid composition 
(AAC) and the dipeptide composition (DPC).

Support vector machine (SVM)
Subsequent prediction models in this study were devel-
oped using SVM, which has been frequently used to 
develop models for epitope prediction in previous stud-
ies [21, 23, 28]. SVM has been the method of choice 
for building epitope prediction models especially 
T-cell epitopes [40] due to its ability to provide effec-
tive models on high dimensionality data with less data 
points. Also, in the past studies it has been shown that 
SVM performs better on independent dataset in com-
parison to other machine learning classifiers [41]. The 
dataset used in the current study contains data points 
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comparable in number to the dimensionality. Hence, 
we optimized the prediction models on various param-
eters using the radial basis kernel of a freely available 
program SVMlight [42] to select the best performing 
models on different sets of features.

Evaluation of models using internal and external validation
In this study, standard procedure was followed to evalu-
ate the performance of models in order to avoid biases in 
performance due to over optimization. Our main data-
set was divided into two categories internal and exter-
nal dataset, where the internal dataset contained ~ 80% 
sequences and the external dataset comprised of the 
remaining 20% sequences. In order to perform internal 
validation, we performed fivefold cross validation tech-
nique on internal dataset. In this technique, the dataset is 
divided in five sets, four sets are used for training a model, 
and the remaining set is used for testing the model. This 
process is repeated five times so each sequence is tested 
only one time. In order to perform the external validation 
of a model, the best model developed using fivefold cross 
validation is tested on an external dataset. It is important 
to assess the performance of a model on external or inde-
pendent dataset because the performance of a model in 
internal validation may be biased due to optimization of 
the model [28]. The performance of models was meas-
ured using standard threshold dependent parameters 
namely sensitivity, specificity, accuracy and Matthew’s 
correlation coefficient (MCC) [19, 36] and a threshold 
independent parameter area under receiver operating 
characteristics (AUROC) [43].

Bootstrap aggregating
In order to avoid over fitting of models and reducing 
variance in performance of models; we used bootstrap 
aggregating (bagging) for averaging performance of 
models. In this study, process of creating internal and 
the external datasets has been repeated ten times. Each 
time, the sequences for the internal dataset were ran-
domly selected from the main dataset, and the remain-
ing sequences were included in external dataset. Finally, 
we evaluated the performance of our models using vari-
ous features on both the internal as well as the external 
datasets as described in above sections. This process 
gave 10 performance values using internal and 10 perfor-
mance values using external validation from 10 rounds of 
sampling. We computed the mean and standard devia-
tions of these performance values to check for bias in 
performance of the models depending on the choice of 
sequences on which the models were trained or indepen-
dently evaluated.

Random peptides as negative dataset
As described above, initially the negative dataset con-
sisted of the experimentally identified endogenous 
human serum peptides as non-epitopes constituting the 
negative dataset. We further wanted to check whether 
the performances of the classification models were 
dependent on the choice and size of the negative data-
sets. This was necessary as the negative dataset does not 
contain the experimentally verified non-epitopes. For 
this, we created an alternative negative dataset of random 
peptides derived from the human proteins obtained from 
the Swiss-Prot database. As mentioned in the previous 
section, for each of the 10 rounds of sampling, a different 
set of random peptides 10 times the number of the posi-
tive sequences (A-cell epitopes) from the human proteins 
was kept as the negative dataset.

Results
Compositional analysis
One of the objectives of this study is to understand the 
nature of A-cell epitopes regarding the residues preferred 
in A-cell epitopes. Thus, we computed the average resi-
due composition of A-cell epitopes and the non-epitopes. 
The non-epitope dataset consists of peptides occur-
ring in the normal human serum assumed to be non-
immunomodulatory. In addition, the average residue 
composition of the Swiss-Prot Human proteins was also 
computed and compared with that of the A-cell epitopes.

In the A-cell epitope dataset, the percentage compo-
sition of an amino acid residue was calculated for each 
epitope, and the average of these values was plotted 
in Fig.  2 for the corresponding amino acid. Similarly, 
the average percentage composition was calculated for 
all the amino acids in the non-epitope dataset and the 
Swiss-Prot Human proteins. As shown in Fig.  2, the 
residues showing noticeable differences in average com-
position between A-cell epitopes and non-epitopes 
are C, D, E, I, L, R, S, T, V and W. Student’s t-test sig-
nificance value (p-value) was calculated for each residue 
type to check whether the composition values among 
A-cell epitopes were different from those in the non-
epitopes. In decreasing order of significance (increasing 
adjusted p-value), the residues R, E, T, S, D, V, W, L, I and 
C showed the most significant difference between the 
A-cell epitopes and non-epitopes among all of the resi-
due types with adjusted p-values 1.76E−39, 1.66E−24, 
7.04E−18, 3.59E−17, 3.72E−12, 2.79E−11, 5.21E−10, 
7.91E−10, 1.24E−09, 1.76E−08 respectively (Additional 
file  1: Table  S2). In particular, when compared to the 
human proteins taken from Swiss-Prot; R was found to 
have a higher average composition in A-cell epitopes. The 
average composition of R in non-epitopes is lower than 
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that in the human proteins. Overall, the residues I, R, 
V and W were found to be more abundant in the A-cell 
epitopes as compared to the non-epitopes and Swiss-Prot 
Human proteins.

Similarly, the dipeptide and tripeptide compositions of 
the A-cell epitopes and non-epitopes were also compared 
with the Swiss-Prot Human proteins. Additional file  1: 
Table S3 gives the average composition for each dipeptide 
in the A-cell epitopes, non-epitopes as well as the Swiss-
Prot Human proteins. After sorting the table according 
to descending order of difference of dipeptide composi-
tion between the A-cell epitopes and the human proteins, 
top 10 dinucleotide include the residues I, R and V. But 
these motifs also contain other amino acids that show 
less significant difference of abundance as compared to 
the non-epitopes and human proteins. Similar analysis 
of tripeptide composition is shown in Additional file  1: 
Table  S4. In this case too, the top 10 tripeptide motifs 
include less abundant residues apart from I, R and V.

Terminal residue preference
We performed position-specific analysis of residues in 
A-cell epitopes to understand the type of residues pre-
ferred at different positions in A-cell epitopes. In this 
study, two-sample logo (TSL) tool (available at http://
www.twosa​mplel​ogo.org/cgi-bin/tsl/tsl.cgi) [44] was used 
to visualize residues preferred or not preferred in A-cell 
epitopes. Since the minimum peptide length in the data-
set was 3, the N-terminal 3 residues of both the negative 
and the positive sequences were taken as input to build 
the N-terminus TSL. C-terminus TSL was obtained using 
the C-terminal 3 residues from the dataset. Figure  3 
shows that the residues R, V and I are among the pre-
ferred residues in the A-cell epitopes at both the N and 
the C termini.

MERCI motif analysis
The Motif—EmeRging and with Classes—Identification 
(MERCI) Program is a software that helps in finding the 
motifs exclusive to one class when compared to another 
class of sequences. Additional file  1: Table  S5 provides 
the MERCI motifs exclusive to the A-cell epitopes as 
compared to non-epitopes. Top 10 ungapped motifs with 
respect to the occurrence in the A-cell epitope sequences 
have a frequent occurrence of I, R and V. On the other 
hand, ungapped MERCI motifs exclusive in non-epitopes 
(Additional file 1: Table S6) that are top 10 in abundance 
contain E, G, P and L.

Rare motif occurrence
We compared the occurrence of peptide n-mers (n = 3, 4, 
5, 6) in the A-cell epitopes and non-epitopes. First, the 
occurrence of each type of n-mer was counted in all of 
the Swiss-Prot proteins, and the n-mers were arranged in 
increasing order of occurrence. In this order, the n-mers 
were divided into 8 bins such that the 1st bin contained 
the n-mers least abundant in Swiss-Prot while the 8th bin 
contained the most abundant n-mers occurring in the 
Swiss-Prot. Next, the percentage of n-mers in a particu-
lar bin that occur in the Swiss-Prot was calculated with 
respect to the total number of n-mers in Swiss-Prot. Sim-
ilar percentage value was calculated for A-cell epitopes 
and non-epitopes for each bin, and the values were pre-
sented in the form of a plot in Fig. 4.

Figure 4a shows that tripeptides in the first three bins 
occur more in A-cell epitopes while those of 4th, 5th, 
6th, 7th and 8th bin (most abundant Swiss-Prot tripep-
tides) occur more in the non-epitopes. For tetrapeptides 
(Fig. 4b), the bins having more number of tetrapeptides 
occurring in the A-cell epitopes than non-epitopes are 

Fig. 2  Barplots showing the comparison of percent average amino acid composition of A-cell epitopes (blue) with non-epitopes (red) and 
Swiss-Prot human proteins (green)

http://www.twosamplelogo.org/cgi-bin/tsl/tsl.cgi
http://www.twosamplelogo.org/cgi-bin/tsl/tsl.cgi
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1st, 2nd, 3rd and 4th. Figure  4c shows the occurrence 
of the pentapeptides. The bins having distinctly more 
pentapeptides in the A-cell epitopes than non-epitopes 
are again the first four bins. On the other hand, the per-
centage occurrence of hexapeptides of A-cell epitopes is 
lower than non-epitopes and Swiss-Prot proteins only in 
the 8th bin (Fig. 4d).

Prediction of immunomodulatory peptides
The sequence-based analyses like residue composition 
preferences; position-wise residue preference and motif 
search indicated that these features could help in dis-
criminating the A-cell epitopes from non-epitopes. We 
developed SVM-based prediction models using SVMlight 
by from the dataset of 304 A-cell epitopes as positive 
sequences and 385 non-epitopes as negative sequences. 
From each of the positive and negative datasets, ~ 80% 
sequences were kept in the training–testing dataset 
while the remaining ~ 20% were kept in the independent 
dataset. Thus, the training–testing dataset had 243 posi-
tive and 308 negative sequences. The best performing 
models were selected on the basis of highest Matthews 

correlation coefficient values and a minimal difference 
between the sensitivity and specificity values.

Prediction models based on machine learning techniques
In order to understand, which machine learning tech-
nique will be most efficient for predicting A-cell epitopes, 
models were developed using different machine learn-
ing techniques. Initially models were developed using 
SVM implemented with SVMlight and four commonly 
used techniques (Random Forest, Naïve Bayes, SMO and 
J48) implemented using WEKA package. These models 
were developed using amino acid composition (AAC) 
and dipeptide composition (DPC) of peptide sequences 
(epitope and non-epitope). As shown in Additional 
file  1: Table  S7, SVM based model performed better 
than models developed using any other machine learn-
ing technique. SVM based models on training dataset 
obtained MCC values 0.90 and 0.91 for AAC and DPC 
respectively. Similarly, performance was evaluated on the 
independent dataset. Thus, in this study, we used SVM 
for developing models using various features of pep-
tides. The performance of SVM models developed using 
different features have been shown in Additional file  1: 

Fig. 3  Two-sample logo of the 3 residue positions at the a N-terminus and b C-terminus of the A-cell epitopes and non-epitopes. Enriched label 
represents the positive dataset whereas depleted label represents the negative dataset. In a two-sample logo, the height of a symbol at a residue 
position is proportional to the difference in symbol frequency between the positive and the negative datasets at that residue position. In the case 
of A-cell epitopes (as positives) and non-epitopes (as negatives), R is a preferred amino acid at terminal positions apart from I and V. The symbol 
colors are in accordance with the WebLogo default color scheme provided by the server available at http://www.twosa​mplel​ogo.org/cgi-bin/tsl/
tsl.cgi. In the default WebLogo color scheme, residues G, S, T, Y and C appear in green color, N and Q are colored purple, K, R and H are depicted in 
blue, D and E are drawn red and P, A, W, F, L, I, M and V are shaded black

http://www.twosamplelogo.org/cgi-bin/tsl/tsl.cgi
http://www.twosamplelogo.org/cgi-bin/tsl/tsl.cgi
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Table  S8. A variation was observed in performances of 
models on some feature sets between the training and 
the independent datasets. Ideally models performing 
better on the training dataset should also perform bet-
ter on independent dataset. In our case, we observed that 
models performing better on training dataset were per-
forming lower on independent dataset and vice versa (see 
Additional file 1: Table S8). This inconsistency in models’ 
performance might have arisen from the over fitting of 
models to the training dataset.

Diminishing over fitting using bagging
In this study, we used bagging approach for sampling to 
overcome problem of over optimization or over fitting. 
Bagging procedure of sampling was adopted in this study 
to evaluate performance of models. The main dataset was 
divided ten times randomly into the internal and external 
datasets. Thus, we get ten training/internal datasets and 
ten independent datasets. The performance of all mod-
els was evaluated ten times on training and independent 
dataset. Finally, we computed the performance of each 
model in 10 rounds of sampling and reported the mean 
and standard deviation on these 10 datasets. Table 1 pro-
vides the performance values of models developed on 
various feature sets for the 10 internal dataset samples in 
different categories.

Composition‑based models
The amino acid composition (AAC) and dipeptide (DPC) 
composition were used to develop SVM-based models on 
the training–testing dataset. On evaluating the perfor-
mance parameters, the AAC model gave an accuracy of 
93.30% and the Matthews correlation coefficient (MCC) 
value of 0.87 as given in Table  1. The DPC model also 
gave a similar performance in terms of accuracy (94.84%) 
and MCC (0.90) values. When the AAC and DPC models 
on the terminal 5 residues of the sequences individually 
(N or C terminus—N5, C5) or together (N and C termini 
combined—N5C5) were developed, the N5C5 AAC and 
N5C5 DPC models performed closest to but not better 
than the AAC and DPC models with MCC values for 
N5C5 AAC being 0.87 and N5C5 DPC 0.86 (Table 1).

Binary models
Binary models take the residue position into account by 
representing each residue type as a binary vector. We 
considered 5 and 10 residue positions from either end of 
the peptide sequences (N and C termini) and developed 
SVM-based models individually and in combination. 
In case of 5-residue position consideration, the model 
developed on combined 5 residue positions on both the 
N and C termini (N5C5 bin in Table  1) performed the 
best giving an accuracy value 90.22% and MCC value 

Fig. 4  Comparison of occurrence of a tripeptides, b tetrapeptides, c pentapeptides and d hexapeptides divided into 8 bins in the ascending order 
of occurrence (most rarely occurring to most abundant) in Swiss-Prot proteins
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0.80 while the N10C10 bin model performed the best 
among the 10-residue position models (accuracy 89.83% 
and MCC 0.79).

Hybrid model
In the previous motif analysis, motifs exclusive to the 
A-cell epitopes were identified using the MERCI pro-
gram. We checked whether the motif information added 
to composition could help improve the performance of 
prediction. Indeed, the AAC + motif model that com-
bined the information of presence of motifs exclusive to 
A-cell epitopes with amino acid composition achieved 
a better performance than AAC model on the training–
testing dataset giving an accuracy value of 95.42% and 
MCC value of 0.91 (Table 1). Yet, the best model among 
all the feature combinations was that of motif informa-
tion combined to the DPC (DPC + motif model) that 
gave an accuracy of 95.71% and the MCC value 0.91.

Performance of the models on the independent datasets
The independent dataset was generated in the same way 
as training dataset (by sampling) and consisted of ~ 20% 
of the total dataset resulting in 61 positive sequences and 
77 negative sequences. The average performances of the 
AAC and DPC models on the independent dataset were 
comparable to those on the training–testing dataset with 
AAC model giving an accuracy of 93.91% and MCC of 

0.88 while DPC model giving an accuracy of 94.64% and 
MCC of 0.89 (Table  2). The MCC values of the N5C5 
AAC and N5C5 DPC models in the independent dataset 
evaluation (0.88 and 0.88 respectively) were also close to 
those found in the training–testing dataset evaluation. 
Similar to the training–testing dataset results, the N5C5 
bin and N10C10 bin models performed the best (MCC 
0.82 and 0.81 respectively) among the binary models on 
the independent dataset. The hybrid model (AAC + motif 
and DPC + motif ) gave accuracies 94.35 and 95.00% 
respectively, while the MCC values found were 0.89 and 
0.90 respectively when evaluated on the independent 
dataset (Table  2). Figure  5 is a plot of the MCC values 
of various SVM models on the training–testing dataset 
along with the MCC values of the models obtained on 
the independent dataset drawn shown as bars. The MCC 
values on both the datasets are comparable for each of 
the models developed indicating that the models are not 
over optimized on the training–testing dataset.

Alternate negative dataset of random peptides
In the absence of the experimentally verified non-
epitopes, the human endogenous circulating peptides 
were considered to be negative sequences. There are 
two major issues with this dataset; firstly, it is possible 
that some of endogenous circulating peptides are A-cell 
epitopes and secondly, the size of negative dataset is 

Table 1  The performance of  SVM-based models developed using various features; models were evaluated on  training 
dataset using fivefold cross-validation (internal cross-validation)

This table shows average performance (mean ± standard deviation) of models on randomly generated training datasets (bagging)

MCC Matthews correlation coefficient, AAC​ amino acid composition, DPC dipeptide composition, N5 first 5 residues from N terminus, C5 first 5 residues from C 
terminus, N5C5 first 5 residues from N and C terminus respectively, bin binary profile, AAC + motif amino acid composition with MERCI motif score, DPC + motif 
dipeptide composition with MERCI motif score, SVM parameters g gamma parameter of the radial basis function, c trade-off between training error and margin, j 
regularization parameter (cost-factor, by which training errors on positive examples outweigh errors on negative examples)

Features Threshold Sensitivity (%) Specificity (%) Accuracy (%) MCC AUROC Parameters

AAC​ − 0.1 94.49 ± 0.80 92.38 ± 1.33 93.30 ± 0.84 0.87 ± 0.01 0.98 ± 0.00 g = 0.001, c = 3, j = 3

N5 AAC​ 0 88.54 ± 0.75 90.25 ± 1.87 89.44 ± 1.26 0.79 ± 0.02 0.94 ± 0.00 g = 0.0005, c = 2, j = 1

C5 AAC​ 0 91.13 ± 1.42 92.94 ± 1.20 92.08 ± 1.05 0.84 ± 0.02 0.97 ± 0.00 g = 0.001, c = 9, j = 1

N5C5 AAC​ − 0.2 93.73 ± 0.60 92.83 ± 0.76 93.26 ± 0.40 0.87 ± 0.00 0.98 ± 0.00 g = 0.0005, c = 1, j = 1

DPC 0 93.79 ± 1.12 95.68 ± 0.78 94.84 ± 0.72 0.90 ± 0.01 0.99 ± 0.01 g = 0.0005, c = 1, j = 2

N5 DPC − 0.1 83.42 ± 1.77 87.73 ± 2.00 85.69 ± 1.10 0.71 ± 0.02 0.93 ± 0.00 g = 1e−05, c = 9, j = 1

C5 DPC − 0.1 90.21 ± 0.91 93.62 ± 0.96 92.00 ± 0.50 0.84 ± 0.01 0.97 ± 0.00 g = 0.0005, c = 1, j = 2

N5C5 DPC − 0.2 93.60 ± 0.72 92.67 ± 1.16 93.11 ± 0.70 0.86 ± 0.01 0.98 ± 0.00 g = 0.0001, c = 1, j = 1

N5 bin − 0.1 86.91 ± 0.82 88.81 ± 1.47 87.91 ± 0.73 0.76 ± 0.01 0.94 ± 0.00 g = 0.5, c = 2, j = 1

C5 bin − 0.2 91.18 ± 0.92 86.61 ± 1.68 88.80 ± 1.14 0.78 ± 0.02 0.96 ± 0.00 g = 0.5, c = 1, j = 2

N5C5 bin 0.2 89.20 ± 1.11 91.14 ± 1.61 90.22 ± 1.05 0.80 ± 0.02 0.96 ± 0.00 g = 0.05, c = 1, j = 4

N10 bin − 0.2 86.39 ± 2.73 89.68 ± 1.79 88.42 ± 1.05 0.76 ± 0.02 0.94 ± 0.01 g = 0.1, c = 2, j = 2

C10 bin − 0.2 79.87 ± 2.30 86.49 ± 2.43 83.96 ± 1.91 0.66 ± 0.03 0.90 ± 0.01 g = 0.05, c = 3, j = 1

N10C10 bin − 0.4 86.89 ± 2.70 91.62 ± 2.92 89.83 ± 1.31 0.79 ± 0.02 0.96 ± 0.00 g = 0.1, c = 1, j = 1

AAC + motif − 0.1 95.51 ± 0.86 95.35 ± 0.85 95.42 ± 0.77 0.91 ± 0.01 0.99 ± 0.00 g = 0.001, c = 6, j = 1

DPC + motif 0 94.15 ± 0.92 96.94 ± 0.49 95.71 ± 0.38 0.91 ± 0.00 0.99 ± 0.00 g = 0.0005, c = 1, j = 2
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small. In this study, we developed models on alternate 
dataset. In alternate dataset, non-epitopes were derived 
randomly from human proteins available in the Swiss-
Prot database. Our alternate dataset the non-epitopes 
(or random peptide) 10 times the number of A-cell 

epitopes. Bagging procedure of sampling was performed 
to create ten training and ten independent datasets for 
internal and external validation respectively. The DPC 
and DPC + motif models performed better than other 
models on the main dataset. As shown in Table  3, the 

Table 2  The performance of  SVM-based models developed using various features; models were evaluated 
on independent dataset (external cross-validation)

This table shows average performance (mean ± standard deviation) of models on randomly generated independent datasets (bagging)

MCC Matthews correlation coefficient, AAC​ amino acid composition, DPC dipeptide composition, N5 first 5 residues from N terminus, C5 first 5 residues from C 
terminus, N5C5 first 5 residues from N and C terminus respectively, bin binary profile, AAC + motif amino acid composition with MERCI motif score, DPC + motif 
dipeptide composition with MERCI motif score, SVM parameters g gamma parameter of the radial basis function, , c trade-off between training error and margin, j 
regularization parameter (cost-factor, by which training errors on positive examples outweigh errors on negative examples)

Features Threshold Sensitivity (%) Specificity (%) Accuracy (%) MCC AUROC Parameters

AAC* − 0.1 94.10 ± 2.70 93.77 ± 3.28 93.91 ± 2.00 0.88 ± 0.03 0.98 ± 0.00 g = 0.001, c = 3, j = 3

N5 AAC​ 0 89.75 ± 3.61 90.88 ± 3.67 90.32 ± 2.27 0.81 ± 0.04 0.95 ± 0.01 g = 0.0005, c = 2, j = 1

C5 AAC​ 0 91.12 ± 3.53 91.64 ± 2.90 91.40 ± 2.13 0.83 ± 0.04 0.97 ± 0.01 g = 0.001, c = 9, j = 1

N5C5 AAC​ − 0.2 94.61 ± 3.35 93.59 ± 3.23 94.07 ± 2.16 0.88 ± 0.04 0.98 ± 0.00 g = 0.0005, c = 1, j = 1

DPC 0 93.77 ± 2.76 95.32 ± 1.40 94.64 ± 1.24 0.89 ± 0.02 0.99 ± 0.00 g = 0.0005, c = 1, j = 2

N5 DPC − 0.1 81.68 ± 4.25 87.36 ± 2.78 84.62 ± 2.65 0.69 ± 0.05 0.93 ± 0.01 g = 1e−05, c = 9, j = 1

C5 DPC − 0.1 92.31 ± 3.36 94.71 ± 2.45 93.55 ± 1.40 0.87 ± 0.02 0.98 ± 0.01 g = 0.0005, c = 1, j = 2

N5C5 DPC − 0.2 94.10 ± 3.06 93.75 ± 2.33 93.90 ± 1.49 0.88 ± 0.03 0.98 ± 0.01 g = 0.0001, c = 1, j = 1

N5 bin − 0.1 88.46 ± 2.90 89.43 ± 3.32 88.98 ± 2.36 0.78 ± 0.04 0.95 ± 0.01 g = 0.5, c = 2, j = 1

C5 bin − 0.2 93.70 ± 3.03 87.88 ± 4.25 90.63 ± 2.43 0.82 ± 0.04 0.97 ± 0.01 g = 0.5, c = 1, j = 2

N5C5 bin 0.2 90.95 ± 3.18 91.13 ± 3.44 91.03 ± 2.77 0.82 ± 0.05 0.97 ± 0.01 g = 0.05, c = 1, j = 4

N10 bin − 0.2 89.38 ± 6.68 90.46 ± 4.67 90.01 ± 3.26 0.79 ± 0.06 0.95 ± 0.03 g = 0.1, c = 2, j = 2

C10 bin − 0.2 85.02 ± 8.02 85.24 ± 5.15 85.19 ± 4.09 0.69 ± 0.09 0.93 ± 0.03 g = 0.05, c = 3, j = 1

N10C10 bin − 0.4 88.73 ± 5.95 92.33 ± 5.69 91.04 ± 2.52 0.81 ± 0.05 0.97 ± 0.02 g = 0.1, c = 1, j = 1

AAC + motif − 0.1 93.11 ± 1.86 95.33 ± 3.13 94.35 ± 1.67 0.89 ± 0.03 0.99 ± 0.00 g = 0.001, c = 6, j = 1

DPC + motif 0 93.28 ± 2.38 96.36 ± 1.70 95.00 ± 1.25 0.90 ± 0.02 0.99 ± 0.00 g = 0.0005, c = 1, j = 2

Fig. 5  Comparison of the support vector machine-based prediction models on the training–testing and the independent datasets. The striped bars 
correspond to the Matthews correlation coefficient (MCC) values obtained for the models on the training–testing dataset and the solid line joins 
the MCC values of the models on the independent dataset. For each model, the MCC values for the training–testing dataset and the independent 
dataset are comparable indicating the reliable prediction capabilities of the models
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performance of models on alternate dataset is similar to 
the performance of models on main dataset. Overall, the 
performance values are comparable indicating that the 
choice of negative dataset in the absence of the experi-
mentally verified negative sequences or the total number 
of training examples has a minimal effect on the perfor-
mance of the prediction models developed in this study.

VaxinPAD: the web interface for prediction of A‑cell 
epitopes
For providing the SVM-based A-cell epitope prediction 
methods developed in the present study to the scientific 
community, we designed an in silico platform Vaxin-
PAD (available at http://webs.iiitd​.edu.in/ragha​va/vaxin​
pad/). The platform has a couple of utilities that may help 
the user in designing peptide-based adjuvants as well 
enhance or diminish the immunomodulatory potential of 
the query sequence.

Designing of vaccine adjuvants
The ‘PREDICTION’ module of the VaxinPAD platform 
allows the user to check whether the query sequence 
would be immunomodulatory on the basis of SVM score. 
It allows the virtual screening of the A-cell epitopes 
among a library of input peptide sequences.

Designing analogs of adjuvant peptides
The ‘ANALOGS’ module of VaxinPAD enables a user to 
generate all possible single residue position substituents 
of a query peptide sequence and predict potential immu-
nomodulators among the analogs generated.

Immunomodulatory regions in a protein
The ‘PROTEIN ADJUVANTS’ module of VaxinPAD 
does a window search across the length of a query pro-
tein sequence to identify immunomodulatory patches, 
the window size being user-defined. LL37, a well-known 
immunomodulatory peptide is a 37 amino acid peptide 

derived from human Cathelicidin. This menu may help 
the researchers in identifying more such peptides that are 
immunomodulatory.

Peptide sequences dataset
Finally, VaxinPAD includes a menu ‘DATASET’ that 
includes a list of immunomodulatory peptides collected 
from literature. Among the sequences in the database 
only the peptides of length 3–30 were used for develop-
ment of prediction models in the current work.

Discussion
Previously, peptide-based vaccine adjuvants were largely 
being developed as ligands of innate immunity recep-
tors like TLR-4 and TLR-2 [45] or as self-assembling 
nanostructure forming entity [46]. Recently, it has been 
realized that short immunomodulatory peptides can be 
developed as potential vaccine adjuvants [4]. Cationic 
host defense peptides were previously known to have 
antibacterial activity by direct killing of the pathogen 
[47]. Of late, these peptides have been found to evoke 
the innate immunity by a variety of mechanisms [6]. A 
majority of these mechanisms involve pattern recogni-
tion receptors (PRRs) playing important roles especially 
in the antigen presenting cells (APCs) like dendritic cells, 
macrophages, etc. Since these peptides activate APCs, we 
call these peptides as ‘A-cell epitopes’ (antigen presenting 
cell epitopes). The A-cell epitopes undertaken in the pre-
sent study were collected from the patent literature that 
included host defense peptides as immunomodulatory 
sequences. To the best of the authors’ knowledge, the 
present study is the first attempt to develop an in silico 
tool for designing innate immunomodulatory peptides 
as the first step towards engineering novel peptide-based 
vaccine adjuvants.

An important finding in this study was that the resi-
dues preferred in A-cell epitopes include arginine (R). 
Arginine enrichment of the peptide sequences is an 

Table 3  The average performance of A-cell epitope prediction models on training and independent dataset

These training and independent datasets were created from alternate datasets using bagging. In alternate dataset, negative or non-epitopes were derived from 
human proteins. The performance values have been reported as mean ± standard deviation for each model

MCC Matthews correlation coefficient, DPC dipeptide composition, DPC + motif dipeptide composition with MERCI motif score, SVM parameters g gamma parameter 
of the radial basis function, c trade-off between training error and margin, j regularization parameter (cost-factor, by which training errors on positive examples 
outweigh errors on negative examples)

Features Threshold Sensitivity (%) Specificity (%) Accuracy (%) MCC Parameters

Internal validation: performance on training dataset, evaluated using fivefold cross-validation

 DPC − 0.2 87.49 ± 1.41 98.70 ± 0.16 97.68 ± 0.22 0.86 ± 0.01 g: 0.0005, c: 1, j: 4

 DPC + Motif − 0.2 87.81 ± 1.01 99.30 ± 0.10 98.25 ± 0.17 0.89 ± 0.01 g: 0.0005, c: 1, j: 4

External validation: performance on independent dataset

 DPC − 0.2 87.54 ± 4.31 98.87 ± 0.28 97.84 ± 0.41 0.87 ± 0.02 g: 0.0005, c: 1, j: 4

 DPC + Motif − 0.2 77.86 ± 5.84 99.28 ± 0.30 97.33 ± 0.58 0.83 ± 0.04 g: 0.0005, c: 1, j: 4

http://webs.iiitd.edu.in/raghava/vaxinpad/
http://webs.iiitd.edu.in/raghava/vaxinpad/
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important aspect of increasing the cellular uptake of 
cell-penetrating peptides (CPPs) [48]. Cathelicidins are 
recognized as an important class of host defense pep-
tides that includes many arginine-rich peptides [49]. 
Further, human cathelicidin-derived peptide LL37 that 
is rich in basic residues arginine and lysine has been 
reviewed as a promising immunomodulatory peptide 
with cell penetrating properties [50]. Hence, sequence 
analysis of the A-cell epitopes may indicate cell-pene-
trating ability to be an associated property of the A-cell 
epitopes.

Another aspect of our sequence analysis is the occur-
rence of n-mers found sparsely in the naturally occurring 
proteins. Patel et  al. [51] found that peptide pentapep-
tides occurring rarely in the universal proteome when 
introduced into the end of the antigenic sequence 
enhanced its antigenicity and also suggested that on 
exogenous addition these rare pentapeptides could act as 
immunomodulators and thus could be developed as adju-
vants. In our analysis too, we found tripeptides, tetrapep-
tides and pentapeptides occurring rarely in Swiss-Prot 
proteins to be present more in the A-cell epitopes than 
non-epitopes. This fits well with the intuition that the 
immune system is more likely to react to rarely encoun-
tered sequence motifs than frequent ones.

On evaluating the performance of SVM models based 
on composition, the dipeptide composition showed no 
improvement over amino acid composition. The binary 
models also showed a lower performance than compo-
sition-based models. On the other hand, addition of the 
motif information increased the performance of both the 
amino acid composition model as well as dipeptide com-
position to achieve the maximum accuracies of ~ 96%. In 
our study, we implemented our best models- the dipep-
tide composition-based and that based on the hybrid of 
dipeptide composition and motifs. These models were 
better than other models possibly owing to the fact that 
the dipeptide composition provides more information 
in comparison to simple composition. Dipeptide com-
position provides the information about the amino acid 
fraction as well as their local order [34]. It is well known 
fact that there are certain patterns/motifs present in the 
proteins/peptides which are responsible for its biologi-
cal activity [52–55]. In past also, many methods have 
been developed which have shown that adding the motif 
information increases the accuracy of model [56, 57]. In 
our analysis, we have identified certain motifs which are 
exclusively present in A-cell epitopes. We also observed 
that adding the information of these motifs with dipep-
tide composition improved the accuracy of the model. 
Therefore, we believe that this model will help in clas-
sifying the A-cell epitope from non-A cell epitope more 
accurately in comparison to other models.

We also checked whether the random distribution of 
the main dataset into the dataset used for training the 
models (internal dataset) and that evaluating them inde-
pendently (external dataset) renders a bias in the per-
formance of prediction models. Further, the choice of 
sequences assumed to be the non-epitopes could also 
affect the performance of the prediction models. A low 
number of positive sequences in the total dataset could 
be a third source of influence on the robustness of pre-
diction models. Using various methods, we observed that 
all of these three factors have a negligible effect on the 
performance of the best performing SVM-based predic-
tion models for A-cell epitopes.

The peptides designed using the tools developed in 
the present study might act by various mechanisms and 
receptors for activating the innate immunity owing to 
the fact that the training dataset of the prediction models 
contains peptides acting by diverse cell signaling routes. 
Hence, the in silico tool presented here could help an 
investigator to begin with a choice of peptides that may 
be the starting molecules for the development of vaccine 
adjuvants. However, there are certain limitations associ-
ated with this model, for example, the method does not 
consider modifications (e.g., post-translational modi-
fications) and other topological aspects during model 
development. Secondly, whether the predicted peptides 
actually prove to be useful as adjuvants, would have to 
be tested experimentally. Another limiting aspect of the 
present study is the exclusion of very long immunomod-
ulatory sequences and lastly, the size of the dataset used 
in the study. The model can be further optimized by 
incorporating more peptide features such as physico–
chemical properties, modifications, etc. Also, with larger 
datasets and receptor-specific ligands made available in 
future, studies subsequent to the present investigation 
might help design peptides eliciting a specific desired 
innate immune response leading to adjuvancy. None-
theless, VaxinPAD developed in this study for predict-
ing the immunomodulatory peptides sets a stage for the 
advancement of rational peptide-based vaccine adjuvant 
designing.

In silico methods for predicting and identifying DNA 
and RNA-based immunomodulatory molecules have 
already been developed [13, 14]. The current study is the 
first attempt to develop models for predicting immu-
nomodulatory peptides for the development of vaccine 
adjuvants. Though other biomolecules like lipopoly-
saccharides and glycosaminoglycan’s also cause activa-
tion of innate immunity by binding to the PRRs, the 
literature currently does not hold a sufficient number of 
molecules for developing prediction models in these cat-
egories. Future studies might focus on the development 
of in silico tools for predicting such immunomodulatory 
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biomolecules for obtaining new vaccine adjuvants. In 
addition to this, peptides with non-natural chemical 
modifications might offer better adjuvants too. Corre-
spondingly, computational tools for prediction of modi-
fied peptides might also become an area of development.

Conclusion
Host Defense Peptides have been realized as promising 
immunomodulators likely to become potential vaccine 
adjuvants [47]. With immunomodulatory properties, 
novel peptides predicted to be A-cell epitopes using the 
models developed here are also likely to have potential 
to provide host protection against pathogens. Many host 
defense peptides (HDPs) with known immunomodu-
latory effects are already in clinical trials [47]. Despite 
the associated toxicity of the A-cell epitopes due to 
their pleiotropic effects on the immune system, rational 
design of innate defense regulators (IDRs) that are syn-
thetic analogs of HDPs is in pressing demand for having 
immunopotentiators with reduced toxicity and increased 
specificity of immune responses. We have developed 
SVM-based models for prediction of A-cell epitopes 
that could be used to formulate vaccine adjuvants. These 
models have been implemented in the form of webserver 
VaxinPAD available at http://webs.iiitd​.edu.in/ragha​va/
vaxin​pad/ and http://crdd.osdd.net/ragha​va/vaxin​pad/ 
freely to the scientific community.
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