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to mesenchymal stem cells
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Abstract 

Mesenchymal stem cell (MSC) therapy offers great potential for treatment of disease through the multifunctional and 
responsive ability of these cells. In numerous contexts, MSC have been shown to reduce inflammation, modulate 
immune responses, and provide trophic factor support for regeneration. While the most commonly used MSC source, 
the bone marrow provides relatively little starting material for cellular expansion, and requires invasive extraction 
means, fibroblasts are easily harvested in large numbers from various biological wastes. Additionally, in vitro expan-
sion of fibroblasts is significantly easier given the robustness of these cells in tissue culture and shorter doubling time 
compared to typical MSC. In this paper we put forward the concept that in some cases, fibroblasts may be utilized as a 
more practical, and potentially more effective cell therapy than mesenchymal stem cells. Anti-inflammatory, immune 
modulatory, and regenerative properties of fibroblasts will be discussed in the context of regenerative medicine.
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Introduction
Friedenstein and colleagues were the first to describe 
mesenchymal stem cells (MSC) as adherent cells derived 
from bone marrow that were capable of forming colonies 
and comprising the radioresistant fraction of cells associ-
ated with hematopoiesis [1, 2]. There cells are currently 
defined as adherent, non-hematopoietic cells expressing 
markers such as CD90, CD105, and CD73, while lacking 
expression of CD14, CD34, and CD45, and being able to 
differentiate into adipocytes, chondrocytes, and osteo-
cytes in vitro after treatment with differentiation induc-
ing agents [3]. Although early studies in the late 1960s 
initially identified MSC in the bone marrow [4], more 
recent studies have reported these cells can be purified 
from various tissues such as adipose [5], heart [6], Whar-
ton’s Jelly [7], dental pulp [8], peripheral blood [9], cord 
blood [10], and more recently menstrual blood [11–13]. 
Studies in the bone marrow showed that although MSC 
are the primary cell type that overgrows in in vitro cul-
tures, in  vivo MSC are found at a low ratio compared 

to other bone marrow mononuclear cells, specifically, 
1:10,000 to 1:100,000 [14]. The physiological role of MSC 
still remains to be fully elucidated, with one hypoth-
esis being that bone marrow MSC act as precursors for 
stromal cells that make up the hematopoietic stem cell 
microenvironment [15–17].

The first clinical use of MSC was reported in a 1995 
paper, in which Lazarus et al. reported the use of autolo-
gous, in vitro expanded, “mesenchymal progenitor cells” 
to treat 15 patients suffering from hematological malig-
nancies in remission. The authors demonstrated that a 
10  cc bone marrow sample was capable of 16,000-fold 
growth over a 4–7  week in  vitro culture. Cell adminis-
tration was performed in total doses ranging from 1 to 
50 × 106 cells and was not causative of treatment associ-
ated adverse effects [18]. In a subsequent study from the 
same group, the use of MSC to accelerate hematopoi-
etic reconstitution was performed in 28 breast cancer 
patients who received high dose chemotherapy. MSC at 
concentrations of 1.0–2.2 × 106/kg, were administered 
intravenously with no treatment associated adverse 
effects. The authors noted that leukocytic and throm-
bocytic reconstitution occurred at an accelerated rate as 
compared to historical controls [19]. It is important to 
note that these initial clinical experiences with MSC were 
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in patients with oncological indications and no overt 
acceleration of cancer progression was noted. This has 
been a concern given that MSC are known to be angio-
genic [20–25], produce mitogenic/antiapoptotic factors 
[26–32], and exert an immune suppressive effect [33–40]. 
Besides feasibility, these studies were important because 
they established the technique for ex vivo expansion and 
re-administration.

The demonstration of clinical feasibility, combined with 
animal models supporting therapeutic efficacy of MSC 
in non-hematopoietic indications [41–48], gave rise to a 
series of clinical trials with MSC in a wide range of thera-
peutic areas ranging from major diseases such as stroke 
[49–52], heart failure [53, 54], COPD [55], and liver fail-
ure [56], as well as rare diseases such as osteogenesis 
imperfecta [57], Hurler syndrome [58], and Duchenne 
Muscular Dystrophy [59]. The ability to generate large 
amounts of defined MSC starting with a small clinical 
sample, to administer without need for haplotype match-
ing, and excellent safety profile, has resulted in a cur-
rent 367 clinical trials listed on the international registry 
clinicaltrials.gov. While some trials have demonstrated 
efficacy of MSC, little is known about molecular mech-
anisms. Initial studies demonstrated ability of certain 
MSC types to differentiate into functional tissues that is 
compromised as a result of the underlying pathological.

Although MSC appear to be ideal as a source for devel-
opment of cellular therapeutics, there are several draw-
backs. Firstly, MSC are relatively rare cells in tissue, with 
bone marrow containing 1:10,000 to 1:100,000 MSC per 
nucleated cells [14]. In order to generate therapeuti-
cally relevant doses (1–2 million/kg), the MSC need to 
undergo massive numbers of cell multiplication in vitro. 
This increases both the possibility of mutatgenesis, as 
well as loss of activity. Accordingly, tissue sources, such 
as fibroblasts, in which larger numbers of cells may be 
originally extracted, may serve as an attractive alternative 
to MSC. Secondly, fibroblasts typically possess a shorter 
doubling time than MSC, allowing for less tissue culture 
media use in their expansion, thus reducing cost of pro-
duction. Finally, MSC generation often involves isolation 
and in vitro growth of the cellular product. In contrast, 
fibroblasts may be grown without need for isolation of 
specific subtypes of cells.

Properties of fibroblasts
Fibroblasts comprise the main cell type of connective 
tissue, possessing a spindle-shaped morphology, whose 
classical function has historically been believed to pro-
duce extracellular matrix responsible for maintaining 
structural integrity of tissue. Fibroblasts also play an 
important role in proliferative phase of wound healing, 
resulting in deposition of extracellular matrix [60, 61]. 

During wound healing, scar tissue is formed by fibro-
blast over proliferation. In embryos, and in some types of 
amphibians, scarless healing occurs after injury, by pro-
cesses which are currently under intense investigation 
[62, 63]. With aging, many kinds of tissues and organs 
undergo fibrosis gradually, such as fibrosis of skin, lung, 
liver, kidney and heart. The process of scar tissue for-
mation is caused by hyperproliferation of fibroblasts, as 
well as these cells producing abnormally large amounts 
of extracellular matrix and collagens during proliferation 
and thereby replacing normal organ structure (paren-
chyma), leading to functional impairment and scar for-
mation, which may further trigger persistent fibrosis.

The original thinking on fibroblasts was that these cells 
possess similar characteristics regardless of their source 
of origin, a notion that is no longer believed to be entirely 
correct [64]. For example, studies have shown that pro-
tein antigens such as MHC II [65], C1q receptor [66], 
LR8 [67], and Thy-1 [68], differ in expression based on 
tissue origin of fibroblasts. Interestingly, not only origin 
of fibroblasts affects markers but also proliferating state. 
For example, one study showed that CD40 expression 
on fibroblasts was elevated on proliferating fibroblasts 
but reduced on non-proliferating cells [69]. Other varia-
tions in fibroblasts have been detected in various tissues 
for example, lung fibroblasts are known to possess vari-
able expression of both cell surface marker expression, as 
well as in their levels of collagen production [70]. Fibro-
blasts derived from periodontal tissue possess differences 
in extracellular matrix production, glycogen pools, and 
morphology [71].

At present there is a deficiency in specific and repro-
ducible markers for fibroblasts, which has hampered to 
some extent, our knowledge of in vivo functionality [72, 
73]. Currently one of the main means of detecting fibro-
blasts is quantification of vimentin expression. Vimentin, 
is major structural component of the intermediate fila-
ments in many cell types, is shown to play an important 
role in vital mechanical and biological functions such 
as cell contractility, migration, stiffness, stiffening, and 
proliferation [74, 75]. One disadvantage of this marker 
is that it is also found on endothelial cells of capillaries 
that often locate very close to fibroblasts, additionally, it 
is found on neurons [76]. Another marker of fibroblasts, 
that is preferentially found on cardiac derived fibroblasts 
is the collagen receptor Discoidin Domain Receptor 2 
(DDR2 [77]). Unfortunately DDR2 has also been found 
non-fibroblast cells such as neutrophils [78], dendritic 
cells [79, 80], and osteoblasts [81]. Investigators typically 
refer to Thy-1, also known as CD90, as a marker associ-
ated with fibroblasts. CD90 is comprised of a glycopro-
tein anchored by a glycosylphosphatidylinositol (GPI) 
tail [82], which is found at various levels of expression of 
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fibroblasts [70]. Expression of CD90 on fibroblasts has 
been detected on cells from mouse and rat lungs, as well 
as from reproductive tract and ocular tissues [68, 83–85]. 
There appears to be correlations between expression of 
CD90 and particular function of fibroblasts. For example, 
in one study, lung fibroblasts where shown to be heter-
ogenous in expression of CD90. Cells expressing CD90 
where more susceptible to apoptosis than cells lacking 
its expression. Furthermore it was found that CD90 co-
aggregated with Fas, a death inducing molecule, on lipid 
rafts, allowing for increased ability for apoptosis [86]. 
In other studies, CD90 expression is related to ability to 
produce the inflammatory cytokine IL-6 [87].

Mesenchymal properties of fibroblasts: 
differentiation
The therapeutic significance of the ability of MSC to dif-
ferentiate into various tissues is under debate, with some 
arguments being that MSC exert disease inhibiting activ-
ity by secretion of soluble factors, while other schools 
of thought suggest that MSC actually differentiate into 
injured tissue. The possibility that fibroblasts can also dif-
ferentiate into tissue is intriguing. Classically, the role of 
the fibroblast has been perceived to strictly allow for col-
lagen and other ECM deposition, as well as formation of 
scar tissue.

The association of fibroblasts with differentiation 
potential comes originally from studies showing that 
when mechanical stimulation is applied to dermal fibro-
blast cells encapsulated in alginate beads using a custom-
built bioreactor system for either a 1- or 3-week period 
at a frequency of 1  Hz for 4  h/day under hypoxic con-
ditions, chondrogenic differentiation of the fibroblasts 
was observed, as indicated by elevated aggrecan gene 
expression and an increased collagen production rate 
[88]. In  vivo ability of fibroblasts to differentiate into 
chondrogenic cells was demonstrated in a subsequent 
study. The group of Professor An from Rush University 
induced disc degeneration in New Zealand white rab-
bits by annular puncture and after 4 weeks intradiscally 
implanted human dermal fibroblasts or saline. Eight 
weeks after cellular implantation there was a significant 
increase in disc height in the treated compared to con-
trol fibroblasts, as well as reduced expression of inflam-
matory markers, a higher ratio of collagen type II over 
collagen type I gene expression, and more intense immu-
nohistochemical staining for both collagen types I and II 
[89]. A subsequent study by an independent group where 
8 rabbits underwent disc puncture to induce disc degen-
eration. One month later, cultured fibroblasts, which had 
been taken from the skin, were injected into the disc. The 
viability and the potential of the injected cells for repro-
duction were studied histologically and radiologically. 

Cellular formations and organizations indicating to the 
histological recovery were observed at the discs to which 
fibroblasts were transplanted. The histological findings of 
the discs to which no fibroblasts were transplanted, did 
not show any histological recovery. Radiologically, no 
finding of the improvement was found in both groups. 
The fibroblasts injected to the degenerated discs are via-
ble [90].

In addition to differentiation into chondrocytic tissues, 
other studies have shown that fibroblasts are capable 
of differentiating into other types of cells. In one study, 
cultured human adult bronchial fibroblast-like cells (Br) 
where assessed in comparison with mesenchymal cell 
progenitors isolated from fetal lung (ICIG7) and adult 
bone marrow (BM212) tissues. Surface immunopheno-
typing by flow cytometry revealed a similar expression 
pattern of antigens characteristic of marrow-derived 
MSCs, including CD34 (−), CD45 (−), CD90/Thy-1 
(+), CD73/SH3, SH4 (+), CD105/SH2 (+) and CD166/
ALCAM (+) in Br, ICIG7 and BM212 cells. There was 
one exception, STRO-1 antigen, which was only weakly 
expressed in Br cells. Analysis of cytoskeleton and matrix 
composition by immunostaining showed that lung and 
marrow-derived cells homogeneously expressed vimen-
tin and nestin proteins in intermediate filaments while 
they were all devoid of epithelial cytokeratins. Addi-
tionally, alpha-smooth muscle actin was also present in 
microfilaments of a low number of cells. All cell types 
predominantly produced collagen and fibronectin extra-
cellular matrix as evidenced by staining with the mono-
clonal antibodies to collagen prolyl 4-hydroxylase and 
fibronectin isoforms containing the extradomain (ED)-A 
together with ED-B in ICIG7 cells. Br cells similarly to 
fetal lung and marrow fibroblasts were able to differen-
tiate along the three adipogenic, osteogenic and chon-
drogenic mesenchymal pathways when cultured under 
appropriate inducible conditions. Altogether, these data 
indicate that MSCs are present in human adult lung. 
They may be actively involved in lung tissue repair under 
physiological and pathological circumstances [91].

Another study revealing multilineage differentiation 
of fibroblasts used cells isolated from juvenile foreskins. 
These cells where shown to share a mesenchymal stem 
cell phenotype and multi-lineage differentiation poten-
tial. Specifically, the investigators demonstrated similar 
expression patterns for CD14(−), CD29(+), CD31(−), 
CD34(−), CD44(+), CD45(−), CD71(+), CD73/SH3–
SH4(+), CD90/Thy-1(+), CD105/SH2(+), CD133(−) 
and CD166/ALCAM(+) in well-established adipose tis-
sue derived-stem cells and foreskin fibroblastic cells by 
flow cytometry. Immunostainings showed that fibro-
blast cells expressed vimentin, fibronectin and colla-
gen; they were less positive for alpha-smooth muscle 
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actin and nestin, while they were negative for epithelial 
cytokeratins. When cultured under appropriate induc-
ible conditions, both cell types could differentiate along 
the adipogenic and osteogenic lineages. Additionally, 
fibroblasts demonstrated a higher proliferation poten-
tial than mesenchymal stem cells. These findings are of 
particular importance, because skin or adipose tissues 
are easily accessible for cell transplantations in regenera-
tive medicine [92]. Verification of multilineage differen-
tiation of foreskin fibroblasts was provided by a study in 
which foreskin fibroblasts where demonstrated to pos-
sess shorter doubling time than MSC, as well as ability 
to multiply more than 50 doublings without undergoing 
senescence. The cells were positive for the MSC markers 
CD90, CD105, CD166, CD73, SH3, and SH4, and could 
be induced to differentiate into osteocytes, adipocytes, 
neural cells, smooth muscle cells, Schwann-like cells, and 
hepatocyte-like cells [93].

Other more detailed studies have evaluated the poten-
tial of fibroblasts to differentiate into endodermal cell 
lineages. For example, in one publication, fibroblast cells 
were isolated from 12- to 14-day-old pregnant mice that 
were characterized for their surface markers and tri-line-
age differentiation potential. The investigators found that 
islet-like cell aggregates (ICAs) were produced in some 
cultures, which was confirmed for their pancreatic prop-
erties via immunofluorecence for C-peptide, glucagon, 
and somatostain. They were positive for CD markers-
Sca1, CD44, CD73, and CD90 and negative for hemat-
opoietic markers-CD34 and CD45 at both transcription 
and translational levels. The transcriptional analysis of 
the ICAs at different day points exhibited up-regulation 
of islet markers (Insulin, PDX1, HNF3, Glucagon, and 
Somatostatin) and down-regulation of MSC-markers 
(Vimentin and Nestin). They positively stained for dithi-
zone, C-peptide, insulin, glucagon, and somatostatin 
indicating intact insulin producing machinery. In  vitro 
glucose stimulation assay revealed three-fold increase in 
insulin secretion as compared to basal glucose with insu-
lin content being the same in both the conditions. In vivo 
data on ICA transplantation showed reversal of diabetes 
in streptozotocin induced diabetic mice. These results 
demonstrated that mouse fibroblast cells are capable of 
differentiation into insulin producing cell aggregates [94].

Another study using foreskin fibroblasts assessed 
whether these cells can be transdifferentiated into hepat-
ocytes. The investigators demonstrated that when fibro-
blasts where cultured in distinct media, spheres formed 
in Dulbecco’s modified Eagle’s medium (DMEM) con-
taining F12, epidermal growth factor (EGF), and basic 
fibroblast growth factor (b-FGF), however fibroblast-like 
morphology was attained with the cells where cultured 
in DMEM-based growth medium. Both cell populations 

expressed the typical mesenchymal stem cell mark-
ers CD90, CD105, and CD73, but the p75 neurotro-
phin receptor (p75NTR) was detected only in fibroblast 
derived spheres. Both types of fibroblasts could differen-
tiate into hepatocyte-like cells, which express typical liver 
markers, including albumin and hepatocyte paraffin 1 
(Hep Par1), along with liver-specific biological activities. 
When plasmids containing the human hepatitis B virus 
(HBV) genome were transfected transiently into fibro-
blasts, differentiated hepatocyte-like cells secrete large 
amounts of HBe and HBs antigens [95].

Mesenchymal properties of fibroblasts: immune 
modulation
One of the major therapeutic properties of MSC is 
believed to be immune modulation. In fact, the original 
clinical implementation of MSC where not for treat-
ment of degenerative diseases but for the immune medi-
ated disorder called “graft versus host disease” (GVHD), 
which occurs subsequent to allogeneic hematopoietic 
transplants in which donor cells begin attacking recipi-
ent cells [96, 97]. MSC have also shown promise in other 
immunologically mediated conditions such as multiple 
sclerosis [98, 99], sepsis [100], type 1 diabetes [101], and 
rheumatoid arthritis [102]. Give that fibroblasts appear to 
share with MSC surface markers and ability to transdif-
ferentiate into various tissues, it may not be unreasonable 
to assess whether fibroblasts possess immune modula-
tory properties such as MSC do.

One of the first investigations into immune modulatory 
activities of fibroblasts compared foreskin fibroblasts to 
bone marrow MSC. The investigators found that fibro-
blasts were unable to provoke in  vitro allogeneic reac-
tions, but strongly suppress lymphocyte proliferation 
induced by allogeneic mixed lymphocyte culture (MLC) 
or mitogens. We show that fibroblasts’ immunosuppres-
sive capacity is independent from prostaglandin E2, IL-10 
and the tryptophan catabolising enzyme indoleamine 
2,3-dioxygenase and is not abrogated after the depletion 
of CD8+ T lymphocytes, NK cells and monocytes [103].

In another study, human foreskin fibroblasts (HFF) 
where assessed for immune modulatory potential. It was 
demonstrated that HFFs suppressed human peripheral 
blood mononuclear cells (PBMC) proliferation stimu-
lated with mitogen or in an allogeneic mixed lymphocyte 
reaction comparable to BMSCs. However, HFFs showed 
undetectable levels of indoleamine 2,3-dioxygenase and 
inducible nitric oxide synthase expression, in contrast 
to BMSCs when cocultured with activated PBMCs. To 
identify HFF specific immunosuppressive factors, the 
investigators performed array profiling of common 
cytokines expressed by HFFs and BMSCs alone or when 
cocultured with activated PBMCs. Real-time polymerase 
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chain reaction analysis confirmed that multiple factors 
were upregulated in HFFs cocultured with activated 
PBMCs compared with HFFs alone or BMSCs cultured 
under the same conditions. Functional assays identified 
interferon-α as the major immunosuppressive media-
tor expressed by HFFs. These results suggest that the 
HFFs possess immunosuppressive properties, which are 
mediated by alternate mechanisms to that reported for 
BMSCs [104].

A more rigorous study attempted to overcome possible 
various between different fibroblast cell lines, in order to 
assess whether the immune modulatory activity of the 
fibroblasts was a peculiarity to the cells used, or whether 
it was an overall property of the cell type itself. The inves-
tigators used four well-established human fibroblast 
strains from three different tissue sources and several 
human MSC strains from two different tissue sources to 
compare the phenotypic and immunological characteris-
tics of these cells. The investigators found that fibroblast 
strains had a similar morphology to MSCs, expressed the 
same cell surface markers as MSCs and could also dif-
ferentiate into adipocytes, chondrocytes and osteoblasts. 
Also, similar to MSCs, these fibroblasts were capable 
of suppressing T cell proliferation and modulating the 
immunophenotype of macrophages. They also showed 
that MSCs deposit extracellular matrices of collagen type 
I and fibronectin, and express FSP1 in patterns similar 
to fibroblasts. Based on currently accepted definitions 
for cultured human MSCs and fibroblasts, the investiga-
tors could not find any immunophenotypic property that 
could make a characteristic distinction between MSCs 
and fibroblasts [105].

Clinical use of fibroblasts
Foreskin fibroblasts, together with keratinocytes have 
been used clinically for treatment of various non-healing 
wounds. One of the earliest studies created a cultured 
skin substitute by successive cultivation of fibroblasts 
and keratinocytes that were combined within a col-
lagen matrix. This collagen matrix was composed of a 
collagen spongy sheet and a collagen gel. The collagen 
spongy sheet was designed to produce a honeycomb 
structure having many holes in which all holes through 
the sheet were filled with collagen gel. This specific struc-
ture thereby allows for the nourishment of the cultured 
keratinocytes on the surface of the matrix when placed 
on the graft bed. In this study, autologous cultured skin 
substitute was applied to a 51-year-old man who had sus-
tained a burn injury. Three sheets of the cultured skin 
substitute (6 × 9.5  cm) were grafted onto the full-thick-
ness excised wound in the right anterior chest wall. One 
week after grafting most of the matrix disappeared and 
stratified keratinocytes were seen to have firmly attached 

to the underlying tissue. Five weeks after grafting a corni-
fied epidermal layer was seen. Ten months after grafting a 
mature epidermis and a well-differentiated papillary and 
reticular dermis replacement were observed. The physical 
properties and color of this grafted area resemble those 
of normal skin. In the second patient case, autologous 
cultured skin substitute was applied to a 30-year-old man 
with a scar remaining after tattoo removal. Eight sheets 
of the cultured skin substitute (10 × 18 cm) were applied 
on an excised wound (thickness, 0.02–0.025 in.) of both 
the fore- and upper arms. The histological appearance 
of a biopsied skin specimen from the grafted area at 
3 months after grafting showed a mature epidermis and 
a well-differentiated reticular dermis replacement. The 
regenerated skin at 14  months after grafting showed an 
excellent result [106].

Numerous other studies have been conducted using 
a similar type of approach, which culminated in the 
commercial product known as Dermagraft. The FDA 
approved Dermagraft® is a sterile, cryopreserved, human 
fibroblast-derived dermal substitute generated by the 
culture of neonatal dermal fibroblasts onto a bioabsorb-
able polyglactin mesh scaffold. During the product-man-
ufacturing process, the human fibroblasts proliferate to 
fill the interstices of this scaffold and secrete collagen, 
other extracellular matrix proteins, growth factors, and 
cytokines, creating a three-dimensional human tissue 
containing metabolically active living cells. Dermagraft 
has been approved for marketing in the United States 
for the treatment of diabetic foot ulcers. In addition, the 
product is in active development for the treatment of 
venous leg ulcers and has been clinically used in a variety 
of other indications to stimulate wound healing [107].

Another example of allogeneic fibroblasts in clinical 
use is the treatment of the genetic disease recessive dys-
trophic epidermolysis bullosa, which is characterized by 
a mutation leading to reduced collagen VII production. 
Patients with this condition possess very fragile skin, 
which often blisters and sheds with minimal contact. 
A phase II double-blinded randomized controlled trial 
of intralesional allogeneic cultured fibroblasts in sus-
pension solution versus suspension solution alone for 
wound healing in patients with recessive dystrophic epi-
dermolysis bullosa was reported. Patients were screened 
for chronic ulcers and reduced collagen VII expression. 
Up to 6 pairs of symmetric wounds were measured and 
biopsied at baseline, then randomized to cultured allo-
geneic fibroblasts in a crystalloid suspension solution 
with 2% albumin or suspension solution alone. Ulcer 
size, collagen VII protein and messenger RNA expres-
sion, anchoring fibril numbers, morphology, and inflam-
matory markers were measured at 2  weeks and at 3, 
6, and 12  months. The investigators reported that all 
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wounds healed significantly more rapidly with fibroblasts 
and vehicle injections, with an area decrease of 50% by 
12 weeks, compared with noninjected wounds. Collagen 
VII expression increased to a similar degree in both study 
arms in wounds from 3 of 5 patients [108]. Another study 
also supported this possible clinical application. Collagen 
VII deficient patients were erosions were randomized 
1:1, to either a single treatment of 5 × 10(6) fibroblasts 
per linear cm of erosion margin or vehicle. All subjects 
continued standard wound care. Twenty-six erosions in 
11 subjects with recessive dystrophic epidermolysis bul-
losa were injected; 14 erosions received fibroblasts and 
12 vehicle alone. A single series of injections was given at 
day 0 and all follow-up visits were completed. Treatment 
difference between fibroblasts and vehicle was − 23.5% 
[95% confidence interval (CI) − 3.5 to − 43.5, P = 0.025] 
at day 7, − 19.15% (95% CI 3.36 to − 41.66, P = 0.089) at 
day 14 and − 28.83% (95% CI 7.97 to − 65.63, P = 0.11) 
at day 28 [109]. The ability of fibroblasts to replace colla-
gen VII production indicates that it is feasible to clinically 
utilize allogeneic cells without need for immune suppres-
sion or development of rejection reactions. This is in line 
with previous studies that we discussed which suggested 
fibroblasts possess similar immunological properties to 
MSC, and thus could be used allogeneically.

Several other examples of clinical use of autologous 
fibroblasts exist. These include in conditions of gingi-
val repair [110, 111], inhibition of wrinkles [112], and 
treatment of acne scars [113]. LAVIV® (azficel-T) is a 
FDA approved autologous cellular product indicated for 
improvement of the appearance of moderate to severe 
nasolabial fold wrinkles in adults. This product involves 
administration of 18 million laboratory expanded fibro-
blasts and is currently in commercial use without an sig-
nificant side effects associated with injection [114].

Conclusion
Despite the great interest in development of MSC as an 
allogeneic cellular therapeutic, the commercially attrac-
tive, and medically beneficial properties of allogeneic 
fibroblasts have been overlooked, with exception of 
dermal regeneration. The authors believe that based on 
the literature overviewed, sufficient rational exists for 
expanding clinical investigations of fibroblast thera-
peutics in areas of unmet medical need. Currently, the 
company SpinalCyte, of which two of the authors are 
members of, is conducting a clinical trial in disc degen-
erative disease for which enrollment has been com-
pleted and interim data is pending. To the knowledge of 
the authors, this will be the first allogeneic use of fibro-
blasts outside of skin conditions. Success of these studies 
is likely to advance the clinical translation of fibroblasts 
into other areas of regenerative medicine.
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