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Abstract 

With the wealth of data accumulated from completely sequenced genomes and other high-throughput experiments, 
global studies of biological systems, by simultaneously investigating multiple biological entities (e.g. genes, tran-
scripts, proteins), has become a routine. Network representation is frequently used to capture the presence of these 
molecules as well as their relationship. Network biology has been widely used in molecular biology and genetics, 
where several network properties have been shown to be functionally important. Here, we discuss how such meth-
odology can be useful to translational biomedical research, where scientists traditionally focus on one or a small set of 
genes, diseases, and drug candidates at any one time. We first give an overview of network representation frequently 
used in biology: what nodes and edges represent, and review its application in preclinical research to date. Using can-
cer as an example, we review how network biology can facilitate system-wide approaches to identify targeted small 
molecule inhibitors. These types of inhibitors have the potential to be more specific, resulting in high efficacy treat-
ments with less side effects, compared to the conventional treatments such as chemotherapy. Global analysis may 
provide better insight into the overall picture of human diseases, as well as identify previously overlooked problems, 
leading to rapid advances in medicine. From the clinicians’ point of view, it is necessary to bridge the gap between 
theoretical network biology and practical biomedical research, in order to improve the diagnosis, prevention, and 
treatment of the world’s major diseases.
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Background
Next-generation sequencing (NGS) and other high-
throughput experiments highlight one of the most signif-
icant advances in molecular biology over the past decade. 
Such technological improvements enable a large number 
of molecules, including genes, transcripts, and proteins 
to be simultaneously measured in different conditions 
over time. This rapid generation of data has transformed 
molecular biology from a “data poor” to “data rich” 

discipline, leading to the emergence of systems biology 
[1–4]. The key challenges and bottlenecks of the modern-
day molecular biology have shifted from simply gather-
ing information to the analysis and interpretation of large 
quantities of data that can now be obtained.

Network representations have been widely used in 
physics and social science for decades, and are now 
among the most frequently used tools in systems biology. 
This technique provides not only a systematic represen-
tation of both the presence and abundance of biological 
molecules, but also displays the relationships or interac-
tions between them. Networks have been used to repre-
sent the interactions between different types of biological 
molecules, e.g. protein–protein interactions [5–8], and 
in various biological systems including transcriptional 
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regulation [9–11], signaling [12–14], and metabolic path-
ways [15, 16]. Analyses of network sub-structures have 
revealed fundamental insights into how biological mol-
ecules are organized [17–20], which would not have been 
possible by studying individual genes or proteins.

Network representation and analysis has been success-
fully applied to study many systems in molecular biol-
ogy [21]; however, the use of these tools in translational 
medicine and drug discovery is relatively new [22–24]. 
This might be due in part to the knowledge and under-
standing gaps between clinicians and systems biologists. 
By convention, clinicians typically focus on specific sets 
of key genetic markers associated with diseases, to iden-
tify the most probable drug targets. In contrast, systems 
biologists have strong computational and analytical skills, 
but frequently lack hands-on experimental experience. 
The lack of interaction of systems biologists with patients 
can prevent a full appreciation of the complexity of the 
problems and hindrances in biomedical research [25, 26]. 
In this review, we aim to improve the understanding of 
challenges in biomedical research and establish a com-
mon ground between clinicians and systems biologists 
to further promote the application of network biology in 
translational medicine.

Network biology in a nutshell
What are networks; what do they represent?
We first outline the fundamental concepts of a network 
representation. In general, a network represents the pres-
ence of objects or entities in a system as “nodes”, and the 
relationships or interactions among the nodes are called 
“edges” (Fig. 1). In biology, nodes can represent biological 
molecules such as genes, proteins, and ligands, or even 
larger entities such as cells or individual humans. Edges 
represent physical interactions or contacts between bio-
logical molecules, biochemical processes between sub-
strates and products, genetic interactions between genes, 
and in some cases, interactions between cells or individ-
ual organisms.

Biological information described in a network is not 
restricted to the presence of nodes and their relation-
ships. The size of node, for instance, can reflect abun-
dance of biological molecules (e.g. gene expression 
levels). Nodes can also be drawn in different shapes and/
or colors according to the classification of interest (e.g. 
gene/protein family). Likewise, the thickness of an edge 
or the distance between nodes may represent the fre-
quency or strength of pairwise interaction (e.g. affinity of 
protein–protein interaction); whereas colors can indicate 
different types of interactions (e.g. physical or genetic 
interaction). In addition, edges can be directional or 
non-directional, solid or dotted, depending on the types 
of interactions. Thus, networks are information-rich 

representations, which are widely used to summarize, 
visualize, and analyze large-scale datasets obtained from 
high-throughput experiments. To give an overview of the 
current application of networks in biomedical-related 
fields, here we review two major types of biological 
networks.

Interaction networks
We first illustrate the components of interaction net-
works, where the edges represent a “direct” relationship 
between nodes (Fig.  1, left). For instance, protein inter-
action networks, i.e. interactomes, describe physical 
interactions between proteins, usually obtained from 
high-throughput screening techniques such as yeast-two 
hybrid [6, 27], or affinity purification followed by mass 
spectrometry [5, 28]. In humans, analyses of protein–
protein interaction networks have shown that dysfunc-
tional interactions can lead to several diseases including 
neurological disorders such as ataxias [29], autism [30], 
several types of cancers including breast [31] and colo-
rectal cancers [32], acute lymphoblastic leukemia [33], as 
well as other inheritable genetic diseases [34–37].

Transcriptional regulation networks (also known as 
Gene Regulatory Networks, GRNs) are widely used to 
illustrate the binding events of regulatory proteins, such 
as transcription factors, to the promoters of targeted 
genes, and this technique has been employed in the anal-
ysis of bacteria [38], budding yeasts [9], worms [39], and 
embryonic stem cells [40, 41]. GRNs are directional, and 
the relationship between two nodes is represented by 
an arrow starting from a regulator and pointing toward 
a targeted gene. Mis-regulation of gene expression leads 
to various diseases especially cancers, as seen in the 
genome-wide transcription network of the vertebrate 
transcription factor SOX4 [42], and the androgen recep-
tor, a transcription factor that regulates the onset and 
progression of prostate cancer [43].

Interaction networks have also been used to describe 
the binding and affinity of ligands or small molecules to 
targeted proteins. As seen in a drug-target network [44], 
a list of drugs approved by the Food and Drug Admin-
istration (FDA) were linked to proteins according to 
drug-target binary associations. The analysis of these 
networks revealed that many drugs have overlapping 
but not identical sets of targets. In addition, the network 
analysis indicated that new drugs tend to be, at least 
partly, linked to well-characterized proteins already tar-
geted by previously developed drugs. This suggests that 
the pharmaceutical industry might be shifting toward 
polypharmacology, to systematically address complex 
diseases using multiple drugs aimed at multiple specific 
targets in related pathways to improve treatment efficacy 
[45, 46].
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Metabolic networks differs from other networks 
described earlier in the sense that the edges between 
two nodes (metabolites) do not represent physical con-
tacts, but instead biochemical reactions that convert 
one metabolite to another. Recent studies have recon-
structed and explored genome-scale metabolic networks 
in pathogenic microbes including Staphylococcus aureus 
[47], M. tuberculosis [48], as well as in human hosts [49]. 
These analyses may lead to a better understanding of 
host-pathogen interactions, and could aid in the design 
of drugs that specifically target the metabolic pathways 
of microbes and cause minimal interference with those of 
the hosts.

Association networks
Networks can also be used to visualize and summa-
rize the overlap in expression profiles for thousands of 
transcripts/proteins obtained from high-throughput 
methods, such as expression microarray, RNA-seq, or 
short-gun proteomics [50]. In co-expression networks, 
two or more genes are linked if their products (mRNAs 
or proteins) exhibit similar expression profiles, with the 
strength/thickness of the edges proportional to how 
often the two transcripts are expressed at the same time 
and/or place [51, 52]. Co-expression networks are widely 
used as a starting point for inferring the cellular functions 
of uncharacterized genes, as in many cases, genes with 

Fig. 1  Interaction networks (Left) represent direct interactions between biological molecules (e.g. transcripts, proteins, and ligands). The interactions 
represented include direct physical interaction (e.g. protein–protein, and gene regulatory networks) or transition (e.g. metabolic network). Associa-
tion networks (Right) represent biological molecules that are linked based on their shared and/or common properties (e.g. co-expression)
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related functions show overlapping expression patterns 
[53]. New disease markers can be discovered from clus-
ters of genes that are co-expressed with known disease-
associated genes, as they frequently show differential 
expression between the normal and diseased populations 
[54–57].

Other association networks include drug target-pro-
tein networks [44], where each node is a protein and 
two proteins are linked if they are targeted by the same 
compounds. These networks can be computationally 
derived from the drug-target network described in the 
previous section. It provides a complementary protein-
centric view by focusing on the proteins that are often 
co-targeted, and might be involved in related pathways. 
Conversely, two or more drugs can be linked in a net-
work based on common properties, such as targeting 
specific proteins or side effects. It has been shown that 
documented adverse side effects could be used to infer 
molecular drug-target interactions [58]. This type of net-
work has the potential to predict whether or not exist-
ing and routinely used drugs have additional unknown 
off-targets, allowing for these drugs to be candidates for 
additional, distinct therapeutic categories. Illustrations 
of the potential of alternative uses for current drugs are 
sildenafil, losartan, and fenofibrate. Sildenafil (e.g. Via-
gra®, Pfizer Incorporated) was initially developed to 
treat angina, but a side effect (prolong penile erection) 
discovered during clinical trial has become its main use. 
The antihypertensive drug losartan blocks angiotensin II 
type 1, and is now a candidate drug for preventing aortic 
aneurysm complications in Marfan syndrome patients, 
through reduction of TGF-β activitiy [59, 60]. Fenofi-
brate, a drug mainly used for controlling cholesterol lev-
els in cardiovascular patients, has also been shown to 
suppress growth of hepatocellular carcinoma [61].

Global disease networks offer a useful insight into how 
human disorders are related. In the “human disease net-
work” [62], disease nodes are connected if they share at 
least one gene with mutations associated with both dis-
eases. Complementarily, the gene-centric version of this 
network comprises nodes of disease genes, linked if they 
are associated with the same disorders. Such networks 
not only represent a framework to visualize all known 
disease genotype-phenotype associations, but also reveal 
that human diseases are much more genetically related 
than previously appreciated [63]. This is highlighted by 
a gigantic network comprising over 500 interconnected 
human diseases [7].

What can we learn from networks and their properties?
In addition to being a framework for visualizing and 
documenting all the known relationships between 
nodes, earlier analyses of large-scale networks from 

high-throughput studies have revealed many interest-
ing biologically relevant properties, which cannot be 
obtained by studying genes and proteins individually 
[64–66]. One of the most frequently observed proper-
ties of biological networks is the connectivity distribution 
that follows a power-law distribution, known as “scale-
free networks”. This pattern of connections, also known 
as the “small world property”, has also been extensively 
studied for their statistical features in different types of 
networks, including social networks, scientific collabo-
ration networks, and the World Wide Web [67–72]. In 
brief, a scale-free network consists of a small number 
of “hubs”, i.e. nodes that are connected to a larger num-
ber of other nodes, through different types of interac-
tions aforementioned. In contrast to hubs, the majority 
of nodes in the network have much fewer connections. 
Several studies have documented similar observation for 
biological networks, including protein–protein interac-
tion networks [6, 17, 73] and metabolic networks [15, 74].

Because of their connectivity distribution, scale-free 
networks are robust against random deletion of nodes. 
That is, the connections between a node and most other 
nodes remain intact, if nodes are removed randomly. In 
contrast, scale-free networks quickly become non-func-
tional if hubs are targeted. Earlier studies have shown 
that many pathogenic organisms have evolved to target 
the central components (i.e. hubs) of a human protein 
interaction network, and quickly disrupt various cellular 
functions, including the immune response [75, 76]. Simi-
larly, one would expect drugs that specifically inhibit the 
central components of the regulatory circuits in a patho-
gen will rapidly disrupt their homeostatic processes, and 
thus efficiently eliminate them. As a result, these hubs 
from pathogenic organisms could be promising candi-
dates for novel drugs. Network connectivity distribu-
tion is one of the better-studied areas, and a number of 
insightful reviews and analyses are available [77, 78].

Another interesting example of biological network 
properties are the network motifs, which are sets of well-
defined interconnection patterns between nodes [19]. 
These connectivity patterns, or network sub-circuits, 
recur in biological networks at a frequency significantly 
higher than in randomized networks [79–81], signifying 
their important roles as building blocks for the large-
scale organization of interactions. The patterns and pro-
portions of sub-circuits used in different networks are 
distinct, depending on the functionality required under 
different conditions. Interestingly, it has been shown in 
a yeast transcription regulatory network that sub-net-
work structures, facilitating fast signal propagation (e.g. 
single-inputs), are more frequently employed to respond 
to external stressors and sudden environmental changes 
(e.g. DNA damage or diauxic shift), because a rapid 
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response is required against the stressors. In contrast, 
motifs that buffer spurious inputs or only respond to per-
sistent signals (e.g. feed-forward-loops) are more suitable 
for analysis of normal growth stages (e.g. sporulation) 
[18, 82].

Applications of network biology in translational 
medicine
Disease network and drug discovery
Using a transistor radio as an analog of a biological sys-
tem, Yuri Lazebnik described how a biologist would fix 
a broken radio, assuming no prior knowledge of how 
the radio components were wired together [83]. A tra-
ditional biological approach would involve removing 
(gene knockout, mutagenesis) each part of a functioning 
radio and track the changes in performance (phenotype). 
However, the human “radios” are different and repeating 
this process on all the components would generate an 
enormous amount of data, some of which may be redun-
dant or contradictory. In contrast, a typical engineering 
approach would involve systematic reconstruction of 
a component diagram from a normal radio (e.g. regula-
tory network), and compare the broken radios with the 
normal reference. Can a similar problem-solving mindset 
help expedite advances in biomedical research?

If regulatory circuits that control biological activities in 
a human body can be represented using a complex net-
work, then a diseased state would be expected to occur 
when the normal state of the network is perturbed. Fail-
ure of key components (e.g. mutations in hub genes in 
genetic diseases) or external stimuli (e.g. invasion of 
pathogens in infectious diseases) would lead to loss of 
network integrity. Diseased perturbations can occur at 
different regulatory levels, as illustrated in Fig. 2. Firstly, 
the absence or malfunction in important network com-
ponents can lead to diseases, such as the loss of a par-
ticular gene. The absence of TBX1, in 22q11.2 deletion 
syndrome (DiGeorge syndrome) is responsible for the 
majority of characteristic features of this disease [84] 
(Fig. 2a, the absence of node is illustrated in red). Simi-
larly, inappropriate levels of gene expression can cause 
disorders (Fig.  2b, altered node size). For example, spe-
cific mutations in the FGFR3 gene result in an overac-
tive receptor and lead to the short stature phenotype 
observed in achondroplasia [85]. Some diseased states 
can be explained by mis-regulation of the interactions 
between key components of the network (Fig.  2c, miss-
ing edge), as well as mis-direction (Fig. 2d, mis-directed 
edge) or strength (Fig.  2e, altered edge’s thickness) of 
interactions. The diseases that can be linked to errone-
ous interactions include neurodegenerative and neurode-
velopmental diseases, genetic disorders, and cancers. In 
these cases, mutations in multiple relevant genes lead to 

abnormal protein interactions, and disrupt networks (see 
[29, 30, 36, 37] for details).

Some of the long-standing challenges in drug discovery 
are lack of specificity, high incidence of adverse effects, 
and unpredicted toxicities of new therapeutic compounds 
[86]. As a result, modern-day drug discovery employs 
more targeted approaches, such as virtual screening and 
structure-based drug design to complement conventional 
in  vitro high-throughput screening [46, 87]. These new 
approaches rely on an accurate global understanding of 
the mechanisms of diseases. Comprehensive understand-
ing of the network and regulatory circuit for a particular 
disease process would help to identify network hubs with 
the potential to be novel drug targets.

A network model of cancers
In the past decades, chemotherapy had been the back-
bone for systemic treatment of cancers. When admin-
istered to patients, these drugs target rapidly dividing 
cells but lack specificity. Survival of both cancer cells and 
normal, rapidly growing cells are impaired, resulting in 
side effects such as bone marrow suppression and hair 
loss, due to toxicity toward bone marrow cells and hair 
follicles, respectively. With recent advances in molecu-
lar biology and genetics, several genetic mutations and 
other alterations have been described for various cancers, 
and these changes specific to cancer cells have become 
an attractive target for novel therapies. The concept of 
“driver” and “passenger” mutations in carcinogenesis is 
comparable to hubs and peripheral nodes in a network, 
whereby a subset of somatic alterations present in each 
tumor is a driver of the oncogenic process [88]. Acting 
as a complex network hub, these driver mutations pro-
mote cancer cell survival, resistance to apoptosis, and 
lead to carcinogenesis (so-called “oncogene addiction”). 
This idea is supported by successful identification of new 
cancer fusion drivers from the network hubs and their 
partners, as the fusion mutation can lead to functional 
de-regulation of multiple genes and pathways [89]. Inhi-
bition of the driver mutation has the potential to induce 
cell death, and thus becomes a strong candidate for tar-
geted therapy [90]. As cancer cells are addicted to this 
driver mutation, specifically blocking these hubs would 
theoretically be more effective and less toxic compared to 
conventional chemotherapy.

To date, many targeted therapies have been approved 
as a standard of care in various cancers with additional 
clinical studies underway. Identification of a true driver; 
however, remains one of the biggest challenges. Patho-
genesis of cancer development is usually complex and 
involves several molecules and pathways. Therefore, tar-
geting one particular molecule or pathway might not be 
effective, as cancer cells may utilize alternative pathways 
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Fig. 2  Biological networks of healthy (left panel) and diseased (right panel) individuals. Biological components in healthy individuals are represented 
as green nodes in a network. Pathological perturbation, represented by red nodes that lead to morbidity, can occur at different stages of the regula-
tion of key components: a presence and absence of key component (green for presence and red for absence), b mis-regulated gene expression, 
leading to over- or under-expression (node sizes represent expression levels), c absence or erroneous interactions with interacting partners (dotted 
lines represent erroneous interactions), d mis-regulated directions (mis-directed arrows), or e strengths of interactions (thicknesses of arrows and 
accompanying numbers denote interaction strengths)
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to promote cell survival. Additionally, with the advent of 
next-generation sequencing, the previously well-accepted 
but unproven concept of tumor genetic heterogeneity 
has been solidly confirmed [91]. Sequential use of more 
than one targeted cancer therapy to finish off resistant 
clones, such as in the case of tumor recurrence, is likely 
to become a trend in cancer genomic medicine [92].

Breast cancer network: mechanisms of resistance
The regulatory network in breast cancer is a particularly 
interesting case study, due to its heterogeneous histologi-
cal and molecular features, and clinical manifestations 
that lead to multiple molecular sub-types. Based on 
gene expression profiling, breast cancer can be catego-
rized into four main molecular sub-types: (i) basal-like 
breast cancer (mainly estrogen-receptor (ER)-negative, 
progesterone-receptor (PR)-negative, and human epi-
dermal growth factor receptor 2 (HER2)-negative); (ii) 
luminal-A cancer (ER-positive or ER+, and histologically 
low-grade); (iii) luminal-B cancer (ER+ and histologi-
cally high-grade); and (iv) HER2-positive (HER2+) can-
cer (over-expression and/or amplification of HER2). Each 
molecular sub-type has a distinct course of disease pro-
gression and responds differently to specific treatments, 
including endocrine therapy, anti-HER2 drugs and cyto-
toxic chemotherapy [93].

As shown in Fig.  3, ER and HER2 can be considered 
as hubs of the breast cancer network. The ER+ breast 
cancer cells depend on activation of ER by estrogen, a 
sex steroid hormone. ER acts as a transcription factor 
in the  nucleus  when bound by estrogen  in  the genomic 
(nuclear) pathway, resulting in tumor cell proliferation 
[94]. The signal can also be activated through the non-
genomic (non-nuclear) pathway, where estrogen binds to 
membrane-associated ER. Endocrine therapy against the 
ER hubs is one of the cornerstones of treatment for ER+/
HER2- breast cancers (luminal-A and B) [95]. The pre-
dominant endocrine therapies are a selective ER modula-
tor (SERM), an aromatase inhibitor (AI), and selective ER 
down-regulators (SERD), such as tamoxifen, anastrozole, 
and fulvestrant [96].

HER2, a member of the epidermal growth factor recep-
tor tyrosine kinase family, is a hub in the HER2+ breast 
cancer network. Over-expressed and/or amplified HER2 
is found in approximately 20–30% of invasive breast 
cancers [97]. HER2 activates intracellular signaling cas-
cades, leading to tumor cell proliferation. Inhibition of 
HER2 through the use of anti-HER2 drugs significantly 
prolongs survival in HER2+ breast cancer patients. Cur-
rently, several anti-HER2 drugs are FDA-approved for 
HER2+ breast cancer, including trastuzumab, lapatinib, 
pertuzumab, and trastuzumab emtansine (T-DM1). 
Resistance to each of these specific treatments has been 

observed, as well as interactions between the ER and 
HER2 hubs (Fig.  3) [94, 98]. Since ER+/HER2+ tumor 
cells depend on both hubs, endocrine therapy alone 
cannot completely inhibit signals with tumor cell pro-
liferation continuing to be activated through HER2 (so-
called “cross-talk”). This has been identified as a primary 
mechanism of resistance in ER+/HER2+ breast cancer 
patients with a low response to endocrine therapy. With a 
better understanding of global gene regulation networks 
and the interplay between the two hubs, a combined 
treatment of endocrine therapy and anti-HER2 drugs was 
proposed. Several phase 3 clinical studies have already 
demonstrated increased efficacy of endocrine therapy 
in the ER+/HER2+ breast cancer when combined with 
anti-HER2 drugs [99–101].

On the other hand, ER+/HER− breast cancer does not 
depend on the HER2 hub, and is thus usually responsive 
to the first line endocrine therapy. However, resistance 
can still occur leading to less effective endocrine therapy. 
Blocking the ER hub with any endocrine therapy would 
inhibit only the genomic pathway, but not the non-
genomic pathway where abnormal activation of the PI3K/
Akt/mTOR pathway by somatic mutations can result in 
either de novo or acquired endocrine therapy resistance 
[102, 103]. Understanding this relationship has led to 
a second line of endocrine therapy using mTOR inhibi-
tors. A large phase 3 clinical study of metastatic ER+/
HER2− breast cancer patients, who failed the first line AI 
treatment, reported longer progression-free survival in a 
group treated with a combination of an mTOR inhibitor 
and another different AI [104, 105].

Having a comprehensive understanding of the interac-
tions between network components of specific disease 
should lead to improved efficacy in treatments, similar 
to those elucidated using the breast cancer model above. 
Indeed, a number of groups have already begun utilizing 
network biology to address different aspects of cancers 
with the goal to improve diagnosis and treatment. A model 
to identify genes potentially associated with high risks of 
breast cancer has been developed by integrating data from 
co-expression, biochemical, and protein interaction net-
works. Using this model, Pujana and coworkers success-
fully identified Hyaluronan Mediated Motility Receptor 
(HMMR), a hub of the integrated network, as a novel high 
risk associated locus [31]. The gene regulatory network 
for breast cancer has also been constructed [106]. Taylor 
and colleagues merged spatial gene expression informa-
tion with the protein interaction network to highlight the 
interactions that are active in specific tissues, where the 
interacting partners are also co-expressed [107]. This work 
also revealed the loss of key interactions between the net-
work hubs, such as BRCA1 and their binding partners, in 
patients who died of breast cancer due to mis-regulation 
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of the partner proteins. In contrast, the expression of hubs 
and their partners were strongly correlated in surviving 
patients. The complexity of the disease network is not only 
restricted to the gene–gene and gene-drug interactions, 
but also hinges upon the interactions between disease/
drug and the host (i.e. genetic background of the patients), 
as we discuss in the next section.

From individual network to personalized medicine
As we are approaching the so-called personalized and 
precision medicine era, where does network biology fit in 
the picture? Figure 4 depicts our view on how networks 
can be an important tool to help clinicians understand 
the physiological complexity of individual humans, pre-
dict possible failure of certain components that may lead 

Fig. 3  A simplified diagram of the therapeutic breast cancer network. The main targetable hubs are ER and HER2 receptor. The PI3K/Akt/mTOR hub 
was relatively recently identified to be the common mechanism of targeted therapy resistance. Circles and rectangles represent cellular receptors 
and signaling pathways, respectively. The pentagons represent other unspecified molecules interacted with the hubs. Arrows represent the direc-
tions of signals. (E estrogen, ER estrogen receptor, PR progesterone receptor, HER2 HER2 receptor, RTKs receptor tyrosine kinases)
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to morbidity, and deduce the most suitable preventa-
tive and treatment plans for individual patients. Genetic 
variation between human individuals is estimated to be 
less than 1% of the human genome, but through sophis-
ticated regulation of genes and other genetic elements, 
this small amount of genetic variation accounts for much 
greater differences in terms of our appearance, intellect, 
and health [108]. On top of genomes, which encode indi-
vidual sets of gene products (e.g. proteins, mRNA), indi-
vidual networks represent the unique interplay between 
different components in each patient. Understanding the 
extent of variations between individual networks may 
allow clinicians to statistically and quantitatively distin-
guish normal variations in healthy individuals (Fig.  4, 
upper panel) from critical perturbations that lead to dis-
eases and disorders (Fig. 4, lower panel). Network biology 
enables researchers to assess multiple components that 
do not show distinguishable differences between healthy 
individuals and those with cancers, but are collectively 
dysfunctional in cancers. A sub-network in which overall 

activity can be discriminated between patients versus 
controls has been shown to be a more reproducible prog-
nostic marker of diseases than individual genes in the 
sub-network, which are not significantly differentially 
expressed [109, 110].

Single nucleotide polymorphisms (SNPs) and other 
genetic variations add another dimension of disease-host 
interaction to disease networks. SNPs can provide clini-
cians with a good indication on how likely an individual 
might be to develop certain genetic diseases, assuming 
that all genetic elements associated with diseases are 
eventually identified. In addition, networks of individuals 
can, in part, aid pharmacogenomic progress by explain-
ing why the efficacy and toxicity profiles for the same 
drug may differ in each patient. For instance, tamoxifen 
is metabolized by CYP2D6 and variations in this gene 
among individuals may affect the response to the drug 
[111].

No matter how comprehensive, a genetic map cannot 
capture environmental factors (e.g. lifestyle, contact with 

Fig. 4  Healthy (top panel) and diseased (bottom panel) individual networks. Healthy individuals might show slight variations in their individual 
networks, which also differ over time. However, diseased networks are expected to show greater disparity than that between healthy individuals. In 
the example shown, the network component Z is controlled by its upstream components through the interactions of b and d (the molecule Z is a 
function of b and d). If the expression of Z is greater than a defined limit (e.g. 1 in this case), morbidity can be predicted (d(Z)/dt: change of expres-
sion level of molecule Z over time)
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pathogens) that heavily influence biochemical stages. Thus, 
outcomes for the interplay between genetics and environ-
ment may be absent in the analysis. Having a network that 
combines both the genetic variations and measurable bio-
chemical outcomes, such as gene expression, should assist 
in turning conceptual ideas into more quantitative models, 
which in turn would enhance the accuracy of prognosis 
and predictions of disease progression in each patient (as 
demonstrated in Fig.  4). Such a complete individual net-
work may not be possible in the near future; however, we 
start to see that the integration of genetic variations and 
biochemical outcomes (gene expression and protein inter-
action profiles) has utility in helping identify new disease-
associated marker genes [110, 112, 113].

Thanks to considerable effort and resources the com-
munity has put into developing computational tools for 
biological network analysis, we are now well-equipped 
with a range of user-friendly software that can be 
employed to handle, visualize, and analyze large-scale 
datasets. Importantly, the tools that will be particularly 
useful for translational medical research need to be able 
to combine multiple layer datasets (e.g. genomics, tran-
scriptomics, proteomics, and metabolomics) and/or 
heterogeneous datasets (e.g. from different platforms or 
formats) [3]. The most commonly known network analy-
sis tools currently available are Cytoscape [114], NAViGa-
TOR [115], VisANT [116], CellDesigner [117], and the 
commercial software Ingenuity IPA (Ingenuity Systems 
Inc., Redwood City, CA). More recently introduced tools 
include NaviCell, which has been developed for online 
network visualization and curation [118], and BNOmics 
[119], which can be used for inference and visualization 
of Bayesian networks of large heterogeneous data. Com-
prehensive guides to network biology tools, as well as 
detailed discussion on their key features and functional-
ity can be found in earlier review articles [3, 120].

Conclusions
Network biology provides an opportunity to image a 
clear global picture of drug-disease-host interactions and 
the biological complexity of diseases more easily from an 
unprecedented top-down vantage. This will allow a bet-
ter understanding of the relationships between multiple 
genes and other biological entities, as well as identify 
the missing links in our knowledge. These strategies are 
required to fully grasp the intricacies of diseases, which 
cannot be obtained by studying an individual or a smaller 
set of genes. The complexity of the therapeutic networks 
is ever-growing, and many new nodes are being discov-
ered every day. In the future, some of these nodes may 
become new hubs for targeted therapy.
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