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Immunogenic FEAT protein circulates 
in the bloodstream of cancer patients
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Abstract 

Background:  FEAT is an intracellular protein that potently drives tumorigenesis in vivo. It is only weakly expressed 
in normal human tissues, including the testis. In contrast, FEAT is aberrantly upregulated in most human cancers. The 
present study was designed to investigate whether FEAT is applicable to tumor immunotherapy and whether FEAT is 
discernible in the bloodstream as a molecular biomarker of human cancers.

Methods:  Two mouse FEAT peptides with predicted affinities for major histocompatibility complex H-2Kb and H-2Db 
were injected subcutaneously into C57BL/6 mice before subcutaneous transplantation of isogenic B16-F10 mela-
noma cells. Intracellular localization of FEAT was determined by immunogold electron microscopy. Immunoprecipi-
tation was performed to determine whether FEAT was present in blood from cancer patients. A sandwich enzyme-
linked immunosorbent assay was used to measure FEAT concentrations in plasma from 30 cancer patients and eight 
healthy volunteers.

Results:  The vaccination experiments demonstrated that FEAT was immunogenic, and that immune responses 
against FEAT were induced without deleterious side effects in mice. Electron microscopy revealed localization of FEAT 
in the cytoplasm, mitochondria, and nucleus. Immunoprecipitation identified FEAT in the blood plasma from cancer 
patients, while FEAT was not detected in plasma exosomes. Plasma FEAT levels were significantly higher in the pres-
ence of cancers.

Conclusions:  These findings suggest that FEAT is a candidate for applications in early diagnosis and prevention of 
some cancers.
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Background
Accumulating evidence has indicated that more than half 
of cancers are preventable by lifestyle changes and known 
preventive strategies including screening, vaccines, 
drugs, and surgical interventions [1]. However, tumo-
rigenesis in humans also involves uncontrollable intrin-
sic processes, such as heavy mutational burdens owing 
to random errors in DNA replications and DNA damage 

caused by endogenous biochemical processes [2]. This 
view has been supported by the fact that the number of 
stem cell divisions explains most of the variation in can-
cer risks among tissues [3]. Although it has been shown 
that extrinsic factors contribute to 70–90  % of cancer 
development [4], the “extrinsic” processes include inflam-
matory mediators, immune responses, hormones, and 
the tissue microenvironment, which may not be easily 
modifiable.

Cancers typically develop over 10–30 years, providing 
a long-term opportunity for intervention. A promising 
approach for cancer prevention and screening is to tar-
get a common molecular marker associated with most 
tumors [5]. We previously found a tumor-promoting 
intracellular protein that is upregulated in most human 
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cancers, which is called faint expression in normal tis-
sues, aberrant overexpression in tumors (FEAT). FEAT is 
encoded by the METTL13 gene and has S-adenosylme-
thionine-binding motifs characteristic of methyltrans-
ferases. More than 80 % of transgenic mice that express 
FEAT in the thymus, spleen, liver, and lungs sponta-
neously develop malignant lymphoma and/or hepato-
cellular carcinoma. A tissue array study of 168 cancer 
patients demonstrated upregulation of FEAT in colorec-
tal, pancreatic, prostate, breast, ovary, thyroid, and non-
small-cell lung cancers [6]. It has been suggested that 
miR-16 suppresses tumorigenesis by targeting FEAT [7]. 
Although a recent report has demonstrated downregula-
tion of FEAT (METTL13) in bladder carcinoma [8], spec-
imens obtained from >3 cm from the tumors were used 
as normal controls. Multifocal occurrence and frequent 
recurrence are characteristic features of bladder cancers. 
A histologically normal but genetically altered area of 
epithelium has been hypothesized, which later produces 
multiple, ostensibly independent tumors (“field canceri-
zation”) [9, 10]. Whether FEAT is upregulated in appar-
ently normal tissues as a result of field cancerization is a 
subject of interest.

Despite widespread overexpression among human can-
cers, FEAT expression in normal adult tissues is limited 
to a moderate level in the testis, and weak levels in the 
brain and liver [6]. Such proteins expressed in cancers 
and the testis have been pursued as tumor-associated 
antigens for cancer immunotherapy [11]. Tumor-associ-
ated antigens are recognized by the innate and adaptive 
immune systems and elicit humoral and cellular immune 
responses that often control or even eliminate cancer 
cells [12, 13]. A previous SEREX (serological analysis of 
recombinant cDNA expression libraries) study detected 
antibodies against FEAT (METTL13) in sera from 
healthy persons [14], implying a lack of self-tolerance 
against FEAT. Self proteins to which the immune sys-
tem is not tolerant are promising targets for immuno-
therapy [15]. FEAT overexpression in the cytoplasm has 
also been seen in ductal carcinoma in situ of breast and 
liver cirrhosis adjacent to hepatocellular carcinoma [6], 
indicating that the immunotherapy targeting FEAT could 
potentially also eradicate premalignant lesions.

Although the brain is protected by the blood–brain 
barrier and the liver has a high regenerative capacity, 
immune responses may have serious adverse effects when 
the protein is expressed in a minor subpopulation of cells 
[16] such as somatic stem cells, which are critical for tis-
sue integrity. This aspect prompted us to test whether 
induction of cytotoxic T lymphocyte (CTL) reactions 
against FEAT is deleterious.

Early detection of cervical, colon, lung, and breast 
cancers reduces disease-specific deaths. However, 

overdiagnosis of “pseudocancer” is a general concern for 
sensitive cancer-screening procedures [17, 18]. None-
theless, detection and characterization is the first step 
toward the development of biomarkers that stratify 
patients into risk groups [19]. Conservative approaches 
such as active surveillance or “watchful waiting” [20] are 
employed for slow-growing tumors that do not affect a 
natural lifespan. Endoscopic resection and preventive 
surgery can be an option for lesions with higher risks. 
Chemoprevention or preventive therapy, if available [1, 
17], may be appropriate for patients with pre-malignant 
or pre-invasive lesions.

Proteins overexpressed at the early stages of tumo-
rigenesis, released from the cells, and detectable in the 
serum or plasma are good candidates for molecular 
biomarkers that assist early diagnosis of cancers [21]. If 
FEAT is released from cancer cells, blood FEAT may also 
be a response biomarker for immunotherapies to eradi-
cate FEAT-positive (pre)malignant cells [21]. However, it 
remains to be clarified whether FEAT is detectable in the 
blood of cancer patients.

Here we investigated whether FEAT is immunogenic 
and whether immune responses against intracellular 
FEAT are deleterious to the host. Our mouse experi-
ments using isogenic tumor transplantation demon-
strated that cell-mediated immunity against FEAT can 
be elicited without serious adverse effects. We further 
sought to determine whether FEAT is released from can-
cer cells into the bloodstream. FEAT was detected in the 
blood plasma from cancer patients and quantifiable by a 
sandwich enzyme-linked immunosorbent assay (ELISA). 
Thus, FEAT may facilitate prevention [22] and early 
detection [21] of some cancers.

Methods
Cell culture
HeLa, Lewis lung carcinoma, B16-F1, and B16-F10 cells, 
obtained from the American Type Culture Collection, 
were cultured in Dulbecco’s modified Eagle’s medium 
containing 10  % fetal bovine serum at 37  °C with 5  % 
CO2. Mouse embryonic stem (ES) cells (E14) were cul-
tured in StemMedium Serum Free Media for Mouse ES 
Cell (DS PHARMA BIOMEDICAL, Suita, Japan) con-
taining 0.1  mM β-mercaptoethanol and ESGRO Leu-
kemia Inhibitory Factor (Chemicon, Merck Millipore, 
Darmstadt, Germany) on tissue culture dishes gelati-
nized using ESGRO Complete Gelatin Solution (Merck 
Millipore).

Generation of a rabbit anti‑mouse FEAT antibody
A rabbit polyclonal antibody was produced and affinity 
purified by Eurofins Genomics (Tokyo, Japan) using His-
tagged mouse FEAT purified with TALON Metal Affinity 
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Resin (Clontech Laboratories, Takara Bio, Otsu, Japan) 
under denaturing conditions.

Selection and synthesis of major histocompatibility 
complex (MHC) class I‑restricted peptides
Prediction of 9-mer and 10-mer peptides with high affin-
ity for H-2Kb and H-2Db was performed using the mouse 
FEAT (Mettl13) sequence and BIMAS [23] and SYFPEI-
THI [24] software. Peptides with a purity of >90 % were 
synthesized by Eurofins Genomics.

Mouse experiments
Female C57BL/6J mice (6  weeks old) were purchased 
from Charles River Japan (Yokohama, Japan). Experi-
ments were approved by an animal experiment commit-
tee at Kyushu University and performed in accordance 
with national and institutional guidelines for animal use 
in research.

Immunization was conducted subcutaneously with 
20  μg peptide A (EWYGTYLEL) and/or 20  μg peptide 
B (ALLRNPELL) in 100  μl phosphate-buffered saline 
(PBS) containing 10 μg AbISCO-100 adjuvant (Isconova, 
Novavax, Gaithersburg, MD, USA) in the left flank twice 
at a 1-week interval. Control mice only received PBS or 
the adjuvant. One week after the second immunization 
the mice were injected subcutaneously with 1 × 105 B16-
F10 cells into their right flank. The tumor size was moni-
tored daily. Mice were sacrificed when the largest tumor 
in the experiment reached 10 mm in diameter. Vaccina-
tion experiments were conducted four times using three 
mice per treatment group.

Mice were euthanized by neck dislocation, dissected, 
and fixed with 3.7 % formaldehyde in PBS. Tissues were 
cut into 2-mm-thick sections and placed into tissue cas-
settes (Tissue-Tek Uni-Cassette, Sakura Finetek Japan). 
Fixed tissues were embedded in paraffin, sectioned with 
a microtome, and stained with hematoxylin and eosin 
(H&E) by the Laboratory of Technology, Medical Insti-
tute of Bioregulation, Kyushu University.

Blood samples were collected from the peri-orbital 
sinus of mice, allowed to clot, and centrifuged at 800×g 
for 15  min. Serum aspartate aminotransferase (AST)/
glutamate oxaloacetate transaminase (GOT), alanine 
aminotransferase (ALT)/glutamate pyruvate transami-
nase (GPT), and creatinine were measured with a FUJI 
DRI-CHEM 3500v and FUJI DRI-CHEM slides (Fujifilm, 
Tokyo, Japan).

Immunohistochemistry
Paraffin-embedded sections were deparaffinized with 
Clear-Advantage (Polysciences, Warrington, PA, USA), 
rehydrated, treated with Citrate-based Antigen Unmask-
ing Solution (Vector laboratories, Burlingame, CA, USA), 

and stained with a mouse anti-CD3-ζ monoclonal anti-
body (6B10.2) (1:500 dilution; Santa Cruz Biotechnol-
ogy, Dallas, TX, USA) and a rabbit polyclonal anti-CD8 
antibody (1:200 dilution; Bioss Antibodies, Woburn, MA, 
USA) using a Multiview (mouse-HRP/rabbit-AP) IHC kit 
and IHC background blocker (Enzo Life Sciences, Farm-
ingdale, NY, USA). The sections were counterstained 
with Mayer’s Hematoxylin (Merck), and coverslips were 
mounted with CC/Mount Aqueous Permanent Mounting 
Medium (Diagnostic BioSystems, Pleasanton, CA, USA). 
Images were acquired using a BZ-9000 Fluorescence 
Microscope (KEYENCE, Osaka, Japan) and a Zeiss Axi-
oskop 2 plus microscope equipped with a Zeiss AxioCam 
camera controlled by AxioVision software (Carl Zeiss 
Microscopy, Jena, Germany).

Heparinized human blood plasma from healthy volunteers
After receiving written informed consent, blood was col-
lected from three healthy volunteers by venipuncture 
into a tube containing sodium heparin and centrifuged 
at 1200 rpm for 10 min at 21 °C. Five samples of normal 
human plasma in sodium heparin were purchased from 
Cosmo Bio (Tokyo, Japan).

Immunoprecipitation
ImmunoCruz IP/WB reagents (Santa Cruz Biotechnol-
ogy) were used to immunoprecipitate FEAT from 1 mg of 
plasma.

Immunoblotting
Proteins were subjected to sodium dodecyl sulfate-pol-
yacrylamide gel electrophoresis (SDS-PAGE) and semi-
dry transfer as described previously [6]. The membrane 
was stained with primary and secondary antibodies using 
Can Get Signal Immunoreaction Enhancer Solution 
(TOYOBO, Osaka, Japan). Signals were visualized with 
Amersham ECL Select Western blotting detection rea-
gent and an ImageQuant LAS 500 (GE Healthcare Life 
Sciences, Little Chalfont, UK). Antibodies used were: a 
rabbit polyclonal antibody against peroxiredoxin 1 (Atlas 
Antibodies, Stockholm, Sweden) and mouse monoclonal 
antibodies against β-actin (Santa Cruz Biotechnology) 
and FEATΔC (7F2) (MBL, Nagoya, Japan).

Immunogold electron microscopy
Adherent cells were washed once with PBS and exposed 
to a prefixation solution (4  % paraformaldehyde, 0.4  % 
glutaraldehyde, 3.4 % sucrose, and 3 mM CaCl2 in 0.1 M 
cacodylate buffer, pH 7.4) for 10  min at room tempera-
ture. The cells were detached by a cell scraper (Nunc, 
Thermo Scientific) and centrifuged at 2000  rpm for 
10  min in a swing-bucket rotor. After overnight fixa-
tion at 4 °C, the cell pellet was washed with PBS for 1 h 
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at room temperature, dehydrated in a graded series of 
ethanol solutions on ice, embedded in LR White resin 
(Medium grade, Electron Microscopy Sciences, Hatfield, 
PA, USA) at −20 °C, exposed to ultraviolet radiation for 
3 days at −20  °C, and then incubated for 24 h at 45  °C. 
Resin-embedded cells were sectioned at 100-nm thick-
nesses using a Leica EM UC7 Ultramicrotome (Leica 
Microsystems, Wetzlar, Germany) and collected on 
Formvar carbon-coated nickel grids. Grids were blocked 
with 3  % bovine serum albumin (BSA)-PBS for 15  min 
at room temperature, stained with rabbit anti-human 
FEATΔN or anti-mouse FEAT antibodies in 0.3 % BSA-
PBS overnight at 4 °C, and then incubated with colloidal 
gold (10-nm)-conjugated goat anti-rabbit IgG (1:50 dilu-
tion in PBS; EY Laboratories, San Mateo, CA, USA) for 
2  h at room temperature. Postfixation was performed 
with 0.5  % osmium tetroxide in PBS for 5  min at room 
temperature, followed by staining with 2 % uranyl acetate 
for 5  min to confer a light contrast. Cell sections were 
examined using a Tecnai 20 transmission electron micro-
scope (FEI, Hillsboro, OR, USA). Images were acquired 
with an Eagle 2k CCD camera with a high resolution 
scintillator (FEI).

ELISA
A solid phase sandwich ELISA kit for human FEAT 
(FEAT Assay Kit; Lot. 1H-512 and 1L-517) was produced 
by the contract manufacturing service of Immuno-Bio-
logical Laboratories (Fujioka, Japan). To 96-well plates 
coated with the rabbit polyclonal anti-human FEATΔC 
antibody, 100 μl EIA buffer (1 % BSA and 0.05 % Tween-
20 in PBS) and 100  μl sample were added, followed by 
overnight incubation at 4  °C. The plates were treated 
with 100  μl/well mouse anti-human FEATΔC mono-
clonal antibody (MBL) for 30  min at 37  °C, 100  μl/well 
anti-mouse IgG (H +  L) goat IgG Fab′ conjugated with 
horseradish peroxidase for 30  min at 37  °C, and then 
100  μl/well tetramethylbenzidine solution for 30  min at 
room temperature. The reaction was stopped with 100 μl/
well 1  N H2SO4. Optical density was read at 450  nm 
using an EnSpire Multimode Plate Reader (PerkinElmer, 
Waltham, MA, USA). Purified His-tagged recombinant 
human FEAT was used to generate a standard curve.

Plasma C-reactive protein (CRP) was measured with a 
Quantikine ELISA Human CRP Immunoassay kit (R&D 
Systems, Minneapolis, MN, USA).

Exosome purification
Exosomes were purified from plasma using a Total Exo-
some Isolation (from plasma) kit (Invitrogen, Thermo 
Fisher Scientific, Waltham, MA, USA). Exosomes in the 
pellet were resuspended in SDS-PAGE sample buffer and 
incubated for 3 min at 95 °C.

Statistical analysis
Statistical analyses were performed using the Statcel4 
add-in package (OMS Publishing, Tokorozawa, Japan) 
for Microsoft Excel. The Kruskal–Wallis test, a non-par-
ametric one-way analysis of variance, was used for AST/
GOT and ALT/GPT because homogeneity of variances 
was unlikely according to Bartlett’s test. The Kruskal–
Wallis test followed by the Steel test, a multiple compari-
son test for non-parametric data, were used for ELISA 
data, because a normal distribution was unlikely accord-
ing to Pearson’s Chi-square goodness-of-fit test.

Results
Immune responses induced in mice by FEAT peptides
We developed a novel antibody that recognized mouse 
FEAT, because the available antibodies against human 
FEAT are not cross-reactive with mouse FEAT. The anti-
body detected mouse FEAT in Lewis lung carcinoma, 
B16-F1 melanoma, and B16-F10 melanoma cells (data 
not shown), indicating the feasibility of these C57BL/6 
mouse-derived cell lines as cellular targets for CTL 
responses against FEAT.

CTL-epitope peptides from tumor-associated anti-
gens have been used to treat melanoma patients [25]. 
BIMAS [23] and SYFPEITHI [24] software, which have 
been widely validated in vitro [26], selected two peptides, 
named A and B, which were predicted to have affinities 
for H-2Kb and H-2Db, respectively, for presentation to 
CTLs by dendritic cells [26].

Mice were immunized with peptides A and/or B in 
combination with AbISCO-100 adjuvant based on Quil-
laja saponin mixed with cholesterols and phospholip-
ids. Next, the animals were challenged subcutaneously 
with B16-F10 cells and sacrificed at 9–17  days after 
transplantation. Peptides or adjuvant did not affect the 
growth of tumors as estimated by tumor sizes. Inter-
estingly, however, tumors were soft and friable in mice 
injected with peptide A and/or B (Fig. 1) in contrast to 
rubbery hard tumors in mice injected with the adju-
vant alone. These results suggested that at least some 
tumor cells had died because of immune responses 
to the peptides and some cells that underwent immu-
noediting had survived and proliferated. H&E-stained 
sections revealed that the peptides induced infiltra-
tion of lymphocytes, neutrophils, and macrophages. 
In particular, marked infiltration of lymphocytes at the 
periphery of tumors was observed in mice injected with 
both peptide A and B (Fig. 2, upper left panel), as sup-
ported by immunohistochemical staining for CD3 and 
CD8 (Fig. 2, upper right panel). However, infiltration of 
macrophages and proliferation of fibroblasts were pre-
dominant in some tumors (Fig.  2, lower panels), illus-
trating immunosuppressive environments mediated by 
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peptide A peptide B peptide A + B

Fig. 1  Representative images of B16-F10 tumors that developed in mice. Tumors formed by transplanted B6-F10 cells were stained with H&E. Note 
the necrosis and artifactual destruction of friable tumors despite sectioning after fixation. Scale bars 300 μm

H&E

peptide A + B

peptide B

IHC

CD3 CD8
Fig. 2  Effects of FEAT peptides on B16-F10 tumors. Left panels Representative images of H&E-stained sections of tumors. Right panels Double immu-
nohistochemical staining for CD3 (brown) and CD8 (red). Scale bars 100 μm



Page 6 of 12Li et al. J Transl Med  (2016) 14:275 

myeloid-derived suppressor cells [27] and tumor-associ-
ated macrophages [28].

Tumors in mice injected with the peptides had fewer 
and smaller blood vessels (Fig. 3a) than controls (Fig. 3b), 
suggesting anti-angiogenic effects of the immuniza-
tion, and activation of Kupffer cells in the liver (Fig. 3c). 
These results indicate that the peptides caused systemic 
immune responses against the FEAT peptides.

Adverse effects of immune responses against FEAT
The peptide vaccine was well tolerated without serious 
adverse effects as examined by overall behavior, body 
weight, macroscopic observations at dissection, H&E 
staining of the liver (Fig. 4a) and lungs (Fig. 4b), and anal-
yses of serum AST/GOT and ALT/GPT at 7 and 23 days 
after peptide injection (Fig.  5). The kidneys in all mice 
showed no abnormal histological changes (Fig.  4c), and 
mice had normal serum creatinine levels of 0.1–0.3 mg/
dl. We did not notice any correlation of AST/GOT and 
ALT/GPT with tumor sizes. Periarteriolar lymphocyte 
infiltration was noted in the lungs of a mouse injected 
with peptide B (Fig.  3d), indicative of an autoimmune 
response. However, no signs of respiratory distress were 
noted. These results suggest that immune responses 
against FEAT are not deleterious to normal tissues, and 

that immunotherapy targeting FEAT is possible without 
serious adverse events in the host.

Intracellular localization of FEAT protein
Previous immunofluorescence studies have shown dif-
fuse localization of FEAT in the cytoplasm and nucleus 
[6]. To assess whether FEAT is present in secretory vesi-
cles, we performed immunogold electron microscopy. 
FEAT was detected in the cytoplasm, mitochondria, 
and nucleus of HeLa cells (Fig.  6a) and mouse ES cells 
(Fig. 6b). The specificity of the immunogold staining with 
the rabbit anti-mouse FEAT antibody was evaluated by 
parallel staining of FEAT-deficient (Mettl13−/−) ES cells 
(KK and AT, unpublished observations). The results were 
contradictory to the possibility of FEAT secretion by the 
conventional secretory pathway.

Detection of FEAT in the blood plasma of cancer patients
Previously, we found that caspase-3 cleaves human FEAT 
after Asp112, Asp274, and Asp288. We raised antibod-
ies against two major fragments produced by caspase-3, 
FEATΔN (amino acids 289–699 of human FEAT) and 
FEATΔC (amino acids 1–274) [6]. First, we tested 
whether these antibodies immunoprecipitated FEAT, 
if present, from the plasma of cancer patients. FEAT 

peptide B

peptide Apeptide A

adjuvant only

a

b

c

d

Fig. 3  Effects of FEAT peptides on B16-F10 tumors and normal tissues. H&E staining of tumors (a, b), liver (c), and lungs (d). Scale bars 100 μm
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was immunoprecipitated from plasma with rabbit anti-
human FEATΔN and FEATΔC antibodies, but not with 
the mouse anti-human FEATΔC monoclonal antibody 
(Fig. 7a). This result indicates that blood contains FEAT 
detectable by specific antibodies.

To quantify FEAT in the plasma samples, we developed 
a sandwich ELISA in which FEAT was captured by the 
rabbit anti-human FEATΔC antibody. The mouse anti-
human FEATΔC monoclonal antibody, which was highly 
specific as shown by immunoblotting (data not shown), 
was used for detection. We chose non-gastrointestinal 
cancers because non-radiological screening procedures 
are available for common gastrointestinal cancers (i.e., 
colorectal, gastric, esophageal, hepatic, and pancreatic 
cancers) such as fecal occult blood tests, endoscopy, 
and ultrasonography. Plasma was analyzed from 30 can-
cer patients and eight healthy volunteers (Table  1). All 
patients had advanced cancer with distant metastasis. 
Plasma FEAT concentrations were significantly higher 
in cancer patients than healthy individuals (Fig.  8a), 
particularly those with ovarian and non-small cell lung 

cancers (Fig. 8b). The presence of FEAT in some samples 
was confirmed by immunoprecipitation (Fig. 7b). We did 
not notice any correlation of FEAT concentrations with 
tumor burden or cancer aggressiveness. These findings 
suggest that FEAT is released from cancers, and that 
plasma FEAT is exploitable as a risk biomarker [21] for 
FEAT-expressing tumors.

To test the possibility that intracellular FEAT is 
released by inflammation, we measured CRP in the 
plasma samples. FEAT levels were not significantly cor-
related with plasma CRP (Fig. 8c).

Released cytoplasmic proteins may be enclosed in 
extracellular vesicles called exosomes that are pro-
duced by the fusion of multivesicular endosomes with 
the plasma membrane [29]. Exosomal cancer biomark-
ers are a topic of intensive research because circulating 
exosomes are potential sources for liquid biopsies [30]. 
A previous report identified FEAT (CGI-01; KIAA0859; 
METTL13) in human thymic exosomes [31]. Exosomes 
may lyse in the extracellular space via an unknown mech-
anism. To assess whether FEAT enclosed in exosomes 

peptide A

peptide A + B

peptide B peptide A + B

peptide Bpeptide Aa

b

peptide Bpeptide A peptide A + B

c

Fig. 4  Representative sections of the liver, lungs, and kidneys from mice. The liver (a), lungs (b), and kidneys (c) of the same mouse shown in Fig. 1 
were stained with H&E. Scale bars (a, b) 300 μm and (c) 100 μm
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circulates in the bloodstream, we isolated exosomes from 
the plasma of 18 cancer patients and eight healthy volun-
teers. Purification was confirmed by immunoblotting for 
peroxiredoxin 1 [32]. However, FEAT was not detected 
in the plasma exosomes (Fig. 9), excluding the utility of 
exosomal FEAT as a cancer biomarker. These results sup-
port the notion that FEAT is released by disruption of the 
plasma membrane [33].

Discussion
In an effort to translate the cancer biology of FEAT 
into therapeutic and diagnostic applications, we dem-
onstrated that induction of immune responses against 
FEAT did not cause serious adverse effects in mice. 
We also found that FEAT circulates in the bloodstream 

of cancer patients. FEAT was not detected in plasma 
exosomes, and blood FEAT was amenable to quantifica-
tion by sandwich ELISA using anti-FEAT antibodies.

With the advent of sensitive screening procedures, the 
anxiety of cancer diagnosis may become a psychosocial 
problem for some cancers that are not detectable by diag-
nostic imaging and endoscopy (“detected cancer that 
cannot be found”) [21]. Thus, it is desirable to develop 
secondary prevention of cancer in parallel. Chemopre-
vention and “cancer-preventive vaccines” [22, 34] can 
treat such patients. Although neoantigens due to random 
mutations have been shown to elicit stronger immune 
responses than shared antigens [16], including FEAT, 
such neoepitopes are highly patient-specific and difficult 
to use for preventive vaccines.

FEAT was shown to be immunogenic by histological 
analyses. It is notable that the combination of two MHC 
class I-restricted FEAT peptides stimulated the infiltra-
tion of lymphocytes surrounding B16-F10 melanoma 
cells. Indeed, the presence of tumor-infiltrating lympho-
cytes is a prerequisite for responses to immune check-
point inhibitors such as antibodies against CTLA-4, 
PD-1, and PD-L1 [35]. Combined use of peptides and an 
immune checkpoint inhibitor [36] may address the lim-
ited immune responses in the present study, which were 
insufficient to eradicate the tumors [37]. The NetMHC-
pan 2.8 program [38], which has been the best validated 
in  vitro [26], predicted that the peptides A and B are 
weak and high binders, respectively. An additional three 
and two high binders for H-2Kb and H-2Db, respectively, 
were selected from mouse FEAT by the program, raising 
the possibility that stronger CTL responses can be trig-
gered by the combination of additional peptides. Further 
studies are necessary to determine whether such robust 
T cell responses lead to severe toxicity.

The limitations of short peptide vaccines restricting 
their effectiveness include poor migration of dendritic 
cells to regional lymph nodes, tolerance induction by 
nonprofessional antigen-presenting cells, and the lack of 
CD4+ T cell responses that support CTL activation and 
maintenance of CD8+ memory T cells [39]. Synthetic 
long peptides have been exploited to circumvent toler-
ance induction and activate CD4+ helper T cells [39]. 
Tumors create immunosuppressive environments that 
recruit regulatory T cells [40], myeloid-derived suppres-
sor cells [27], and tumor-associated macrophages [28]. 
Indeed, infiltration of neutrophils and macrophages was 
observed around B16-F10 tumors. Use of a water-in-
oil emulsion such as incomplete Freund’s adjuvant has 
been associated with recruitment of CTLs to sites of 
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immunization rather than the tumor [41]. However, the 
present study used the AbISCO-100 adjuvant that does 
not require emulsification of antigens. It remains to be 
clarified whether the new generation of immune-stim-
ulating complex adjuvants have a similar problem (i.e., 
recruitment and apoptosis of CTLs).

Significantly higher plasma FEAT levels in cancer 
patients than healthy subjects suggest that FEAT is 
released from the cytoplasm of tumor cells. Tumors 
without intensive angiogenesis may undergo hypoxia-
induced necrosis that releases intracytoplasmic pro-
teins [33]. In addition, cancers are often associated with 
chronic inflammation, leading to inflammation-associ-
ated programmed necrosis such as necroptosis [42] and 
pyroptosis [43]. However, we could not find a correla-
tion between plasma CRP and plasma FEAT, implying 
that the release of cellular FEAT does not require intense 
inflammatory reactions. Further studies should provide 
insights into the unconventional protein secretion [44] of 
cytoplasmic FEAT.

FEAT circulating in the blood of cancer patients could 
facilitate the diagnosis of some cancers, which would be 
dependent on whether it becomes detectable in the early 
stages of tumorigenesis. Detection of plasma or serum 

FEAT by sandwich ELISA is noninvasive, convenient, 
and inexpensive, supporting the feasibility for repeated 
screening of the general population [21]. Screening is 
more efficient and economical with increased incidence 
of the target disease in the population. If FEAT is released 
from a wide range of cancers, screening would provide an 
advantage over other markers applicable to one or a few 
types of cancer, such as prostate-specific antigen [17]. 
However, it should be noted that cancers are highly het-
erogeneous [45], and the secretion of cytoplasmic FEAT 
may be limited to certain cancer subtypes. In addition to 
further studies involving hundreds of healthy volunteers 
and patients with various stages of cancers, analyses of 
patients with non-cancerous disorders are required to 
demonstrate the diagnostic efficacy of circulating FEAT. 
Nonetheless, even if blood FEAT increases in non-can-
cerous diseases, serial measurements of blood FEAT 
might be useful for the follow-up of high-risk individuals 
such as patients with BRCA1/2 mutations for develop-
ment of breast and ovarian cancers [46].

A possible limitation of blood FEAT is the inability to 
predict localization of cancers. However, high levels of 
FEAT in the bloodstream may warrant intensive whole 
body diagnostic imaging if the elevation of blood FEAT is 
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Fig. 6  Transmission electron microscopy of FEAT intracellular localization. Immunogold labeling of FEAT in HeLa (a) and mouse ES cells (b). Scale 
bars 2 μm (left panels) and 500 nm (right panels). M mitochondria, N nucleus



Page 10 of 12Li et al. J Transl Med  (2016) 14:275 

highly specific for cancer. Another limitation of the cur-
rent ELISA technique is reduced resolution at <10 ng/ml. 
This limitation hindered our efforts to determine a cut-
off level that discriminated between cancer patients and 
healthy volunteers. With integrated efforts to increase 
the sensitivity, the FEAT sandwich ELISA could serve as 
a promising test for cancer screening.
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Fig. 7  Immunoprecipitation of FEAT from blood plasma. FEAT was 
immunoprecipitated from the plasma of healthy volunteers and 
patients with the indicated cancers using rabbit polyclonal anti-
human FEATΔN (a, pN; b) and anti-human FEATΔC (a, pC) antibodies 
and a mouse anti-human FEATΔC monoclonal antibody (a, mC). Blots 
are probed with the rabbit polyclonal anti-human FEATΔN antibody. 
Arrows indicate FEAT protein. Asterisks denote heavy chains of IgG. b 
Plasma FEAT concentrations (ng/ml) measured by ELISA are shown 
below the panels. The age and sex of healthy volunteers are indicated. 
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Table 1  Characteristics of cancer patients and healthy vol-
unteers

Tumor type Age, median (range) Male Female

Breast 56 (36–57) 4

Ovarian 54 (50–57) 4

Lung

 Non-small cell 59 (37–80) 10 7

 Small cell 62 (57–69) 5

None (normal volunteer) 36.5 (24–55) 3 5
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Fig. 8  Plasma FEAT concentrations in healthy volunteers and cancer 
patients. a Values denote the mean ± SEM of plasma FEAT in healthy 
volunteers (n = 8) and cancer patients (n = 30). **P < 0.01, Welch’s t 
test. b Each dot represents a sample, while the red bars indicate the 
mean ± SEM (P < 0.01, Kruskal–Wallis test). NSCLC non-small cell lung 
cancer, SCLC small cell lung cancer. *P < 0.05, Steel’s test. c Correlation 
between plasma CRP and plasma FEAT. A regression line is shown 
(Spearman correlation coefficient = 0.18; P > 0.26)
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Conclusions
In summary, our encouraging preliminary data suggest 
that immunogenic FEAT protein circulating in the blood-
stream provides a resource for applications in early diag-
nosis and secondary prevention of some cancers [47].
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