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Estradiol induces HOTAIR levels via GPER-
mediated miR-148a inhibition in breast cancer
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Abstract

HOTAIR plays an important role in the regulation of cancer cell proliferation and cancer invasion in breast cancer.
The up-regulation of HOTAIR has been reported in both estrogen receptor (ER) positive and triple-negative (TN)
breast cancer. It has been reported that HOTAIR is regulated by estrogen (E2) via ERs in ER-positive breast cancer.
However, it is unknown how HOTAIR is regulated in TN breast cancer. In this study, we found that HOTAIR was
increased in the peripheral blood mononuclear cells and cancer tissues from breast cancer patients, and was
especially higher in patients with metastatic breast cancer. In addition, we found that estrogen promoted HOTAIR
through its receptor GPER and estrogen-induced breast cancer cell migration was reversed by deleting HOTAIR in
TN breast cancer cells MDA-MB-231and BT549. Furthermore, we identified that E2-GPER induces the level of HOTAIR
through the suppression of miR-148a. miR-148a level was negatively correlated with HOTAIR level in breast cancer
patients. After the mutation of the predicted miR-148a binding sites in HOTAIR, miR-148a had no effect on HOTAIR.
In conclusion, our findings offer important new insights into the ability of estrogenic GPER signaling to increase the

HOTAIR level by inhibiting miR-148a in breast cancer.
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Introduction
Breast cancer is one of the most common malignant dis-
eases in women. However, the molecular pathogenesis of
breast cancer remains poorly defined due to its hetero-
geneity [1]. Despite advances in the treatment of breast
cancer, the effective control of metastasis remains a
complex problem. It has been reported that over 90% of
the deaths of cancer patients are caused by metastasis,
which is formed by the spread of disseminated primary
tumor cells to distant anatomic sites [2]. Finding new
modalities to treat patients who do not respond to con-
ventional treatments has become increasingly important.
Non-coding RNA has become the focus of “next
generation” biology. Non-coding RNA includes micro-
RNAs (miRNAs) and long non-coding RNAs (IncRNAs).
Roles for miRNAs have been demonstrated in the regu-
lation of a broad range of biological activities and dis-
eases [3,4]. More recently, thousands of IncRNAs, which
are transcribed non-coding RNAs that have more than
200 nucleotides, were discovered and implicated in a
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variety of biological processes [5,6]. In these thousands
of IncRNAs, HOTAIR is a star that is highly expressed
in primary breast tumors [7], hepatocellular carcinoma
[8], colorectal cancer [9] and gastrointestinal stromal tu-
mors [10]. HOTAIR expression is augmented in primary
breast tumors and metastases, and HOTAIR expression
level in primary tumors is a powerful predictor of metas-
tases and death [7,11].Therefore, HOTAIR may be a
potential therapy target in breast cancer. HOTAIR pro-
motes cancer progression in various ways, including de-
pendents EZH2 to promote cell cycle progression [12],
regulating PTEN methylation [13] and maintaining the
stemness of cancer cells [14]. However, the mechanism by
which HOTAIR increases in breast cancer is unknown.
The hormone estrogen (17p-estradiol, E2) has a key
role in cell prolife[ration and differentiation through re-
ceptor binding and activation [15-17]. The effects of E2
have been widely analyzed in the human mammary
gland, where it is responsible for normal epithelial
growth and for the development of 70-80% of human
breast cancer tumors [18]. Approximately 70% of human
breast cancer is estrogen receptor-a positive (ER+) and
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up to 20% of breast cancer is triple-negative breast can-
cer (TNBC) [19].

In ER-positive breast cancer, HOTAIR is transcription-
ally induced by E2 through multiple functional estrogen
response elements (EREs) in the promoter region [20].
However, as a highly aggressive breast cancer subtype,
TNBC lacks a known signaling pathway amenable to
targeted therapy. G-protein-coupled estrogen receptor-
1 (GPER, formerly known as GPR30) has attracted
increasing interest, considering its ability to mediate
estrogenic signaling in breast cancer [21]. GPER has
also been proposed as a candidate biomarker in triple-
negative breast cancer [22]. In addition, in our previ-
ous study, we found that E2 can regulate miR-148a
expression through GPER [23]. Since HOTAIR increases
in both ER-positive and TN breast cancer [24,25], we sup-
posed that estrogen may regulate HOTAIR expression
through GPER.

To study whether HOTAIR is regulated by E2 via
GPER in breast cancer cells, we measured the mRNA
levels of HOTAIR in breast cancer cells after treatment
with E2. Furthermore, we investigated the regulation
mechanism of E2 on HOTAIR expression. We found
that E2 up-regulated HOTAIR in breast cancer cells
through GPER via the suppression of miR-148a. Taken
together, we are reporting a new mechanism of E2 regu-
lating HOTAIR expression in breast cancer.

Materials and methods

Patients and sample collection

Tumor and blood samples were obtained from breast
adenocarcinoma patients before surgical or other treat-
ment at Zhejiang University Medical School’s Affiliated
Second Hospital. Tissue and blood samples were de-
rived from two entirely independent populations. Each
patient gave written informed consent. The migration
status of tumor was determined by sentinel lymph node
biopsy. This study was approved by the Institutional
Review Board. The clinicopathologic data are stored in
a database in accordance with hospital privacy rules
and are summarized in Table 1. All tissue samples were
stored in liquid nitrogen within 15 minutes after exci-
sion (median delay of 9 minutes). Healthy control tissue
was obtained from breast reduction surgery. None of
the control samples showed pathological changes. In
total, 20 tumor samples and 20 healthy control samples
were included.

PBMC isolation

The blood was collected from a cubital vein with an anti-
coagulant (heparin sodium) and processed immediately.
The controls and patients were matched for age and
gender where possible. Peripheral blood mononuclear
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Table 1 Clinical variables
Breast cancer variables

Age (years) median (range) 5243
Tumor size

<2cam 8

>2.cm 12
Metastasis status

Metastasizing tumors 10

Non-metastasizing tumors 10
Estrogen receptor status

Positive 6

Negative 14
Tumor type

Invasive ductal carcinomas 20
Months surviving (mean) 124

cells (PBMCs) were separated by centrifugation on
Ficoll gradient.

Cell cultures

MDA-MB-231and BT549 cells were obtained from the
Cell Bank of the Chinese Academy of Sciences (Shanghai,
China). All cells were maintained in a humidified incubator
at 37°C and 5% CO,. For the E2 (Sigma-Aldrich, USA)
stimulation experiments, the cells were cultured for at least
3 days in phenol red-free RPMI1640 with 5% dextran-
coated charcoal-treated serum before the E2 treatment.

RT-PCR and real-time PCR

RNA was extracted using TRIzol. Total RNA (1 pg) was
reverse-transcribed using a RevertAid First Strand cDNA
Synthesis Kit (Fermentas). HOTAIR and miR-148a were
measured using qRT-PCR (Roche). The expression of
HOTAIR was determined in triplicate in three to six
separate experiments and normalized using GAPDH,
and miR-148a was normalized using U6. Real-time PCR
was performed in the ABI PRISM 7300 Sequence Detec-
tion System 2.1 (PE Applied Biosystems) using relative
quantification. Analysis and fold differences were deter-
mined using the comparative cycle threshold (CT)
method. Fold change was calculated from the 224CT
values with the formula 27°°<7,

The primers are miR-148a -F:5'-ACACTCCAGCTGG
GACAAAGTTCTG-3'; miR-148a -R:5'- CTCAACTGGT
GTCGTGGAGTCGGCAATTCAGTTGAGTCAGTGCAC -3
U6 -F:5'-CTCGCTTCGGCAGCACA-3’; U6- R:5'-AA
CGCTTCACGAATTTGCGT-3"; HOTAIR -E5'-TTTG
GACTGTAAAATATGGC-3'; HOTAIR -R:5-TTCTGA
CACTGAACGGACT-3'; GAPDH-F:5'- GTGAAGCAGGC
GTCGGA -3’ GAPDH-R5'- AGCCCCAGCGTCAAAGG -3
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RNA oligonucleotides and transfection

The siRNA sequences targeting human HOTAIR (siHO-
TAIR-1 UAACAAGACCAGAGAGCUGUU; siHOTAIR-
2 CCACAUGAACGCCCAGAGAUU; siHOTAIR 3 GA
ACGGGAGUACAGAGAGAUVU) or negative control RNA
(NC CUACAACAGCCACAACGUCATAT) were designed
and produced by Genepharma (Shanghai, China).
siRNA transfection was performed using Lipo2000
(QIAGEN). siRNAs with 20 nmol/L were used for
transfection in a serum-free medium. The total RNA
was prepared 24 ~ 48 hours after transfection and used
for quantity RT-PCR analysis.

Migration and invasion assays

For the transwell migration assay, the breast cancer
cells were trypsinized and placed in the upper chamber
of each insert (Corning, Cambridge, USA) containing
the non-coated membrane. Then, a medium supple-
mented with 20% fetal bovine serum (600 pl) was added
to the lower chambers. After 24, 36 and 48 hours of in-
cubation at 37°C, the upper surface of the membrane
was wiped with a cotton tip, and the cells attached to
the lower surface were stained for 10 min with crystal
violet. The cells in five random fields of view at x 100
magnification were counted and expressed as the aver-
age number of cells per field of view. All assays were
performed in triplicate.

Immunoblotting

MDA-MB-231 cells were stimulated with 1uM G1
(Sigma-Aldrich, USA) with or without 100 nM G15
(Sigma-Aldrich, USA) for 6 h. Then cell lysates were har-
vested in a cell lysis buffer (Boster, Wuhan, China), dis-
solved in 9% SDS—PAGE buffer, and subjected to western
blotting using primary detection antibodies against total
or phosphorylated ERK1/2 (diluted 1:1000; BioWorld, St
Louis Park, MN, USA). Membranes were incubated over-
night at 4°C before incubation with the appropriate HRP-
conjugated secondary antibodies. Immunodetection was
conducted using the enhanced chemiluminescence system
(Amersham Pharmacia Biotech).

Luciferase reporter assay

The full length of HOTAIR was amplified and cloned
into downstream of PGL3-control vector (Promega).
Cells plated on 24-well plates were transfected with
100 ng plasmid and 200 nmol/L of miR-148a mimics
(RiboBio Co., Ltd., Guangzhou, China), miR-148a in-
hibitors (RiboBio Co., Ltd., Guangzhou, China) or their
negative control (RiboBio Co., Ltd., Guangzhou, China).
The miRNA mimics were a sequence of synthetic ma-
ture miRNAs used for functional studies of miRNAs.
The miRNA inhibitors were synthetic antisense oligo-
nucleotides, which are complementary to the mature
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miRNA sequence and used for loss-of-function studies
of miRNAs. After 48 hours, the cells were lysed and
assayed with a dual luciferase assay (Promega) accord-
ing to the manufacturer’s instructions. For HOTAIR
promoter analysis, the HOTAIR promoter (-35 to —2286)
was amplified and cloned into a PGL3-basic vector
(Promega).Transfection efficiency was estimated by co-
transfecting the cells with SV-40 Renilla luciferase.
Luciferase activity was measured using the dual lucifer-
ase assay system (Promega) and a 96-well luminometer
(Fluoroskan Ascent Fl, Labsystems). Three independent
experiments were performed in triplicate.

Statistics

A statistical analysis was performed using Prism 5.0.
One-way analysis of variance (ANOVA) and Tukey post
hoc tests were used for comparisons within a group. The
student t test was used for comparing two different treat-
ments for one cell. All tests were two-sided and p < 0.05
was considered significant. The association analysis was
evaluated with Fisher’s exact test.

Results

The HOTAIR level was increased in the PBMCs and tumor
tissues from the breast cancer patients

To investigate whether the expression of HOTAIR is
changed in breast cancer patients, we collected PBMCs
from 20 breast cancer patients and 20 normal women,
and measured the HOTAIR levels using real-time PCR.
The results showed that the HOTAIR levels in breast
cancer were significantly higher than those in normal
women (p = 0.0007) (Figure 1A). Moreover, we mea-
sured the expression of HOTAIR in breast cancer tissues
(n = 20) and normal breast tissues (n = 20). As shown in
Figure 1B, HOTAIR was significantly increased in the
breast cancer tissues (p = 0.0003). In addition, we also
compared the differential expression of HOTAIR in the
PBMCs and breast cancer tissues from the patients with
migrated breast cancer and non-migrated breast cancer.
The results showed that HOTAIR expression was sig-
nificantly up-regulated in the PBMCs (p = 0.0285)
(Figure 1C) and tissues (p = 0.0048) (Figure 1D) from
the migrated breast cancer patients.

E2-induced HOTAIR increases the migration of breast
cancer cells

To determine whether HOTAIR is a target gene of E2 in
triple-negative (TN) breast cancer cells, TN breast can-
cer cells MDA-MB-231 and BT549 were treated with
E2, and HOTAIR expression was measured by using
quantitative PCR. HOTAIR expression was significantly
up-regulated by E2 in both cell lines (Figure 2A and B).
Dose—response experiments revealed maximal HOTAIR
reduction with 100 nM after 24 h of treatment in the
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Figure 1 HOTAIR level increased in the PBMCs and tumor tissues from the breast cancer patients. A): PBMCs were collected from 20 patients
with breast cancer and 20 healthy women. Then the expression of HOTAIR was detected using real-time PCR. B): Fresh 20 human breast cancer
tissues and 20 normal human breast tissues were collected and HOTAIR expression was assessed with real-time PCR. C): PBMCs were collected
from 10 patients with breast cancer migration and 10 without migration. Then the expression of HOTAIR was detected using real-time PCR.
D): Fresh 10 breast cancer tissues from patients with breast cancer migration and 10 without migration were collected and HOTAIR expression
was assessed by using real-time PCR. *p < 0.05, **p < 0.01.

MDA-MB-231 and BT549 cells, about 2.7 fold of the
control group (Figure 2A). Because 10 nM is close to
physiological concentration, this concentration is used in
the following experiment. Then we detected the E2-
induced migration in the breast cancer cells. As shown in
Figure 2C, the migration of the MDA-MB-231 (p < 0.01)
and BT549 (p < 0.01) cells was significantly increased after
treatment with 10 nM E2 for 36 h. Furthermore, we inves-
tigated the roles of HOTAIR in E2-induced cancer cell mi-
gration. Before E2 treatment, HOTAIR-specific siRNAs
(si-HOTAIRI, si-HOTAIR2 and si-HOTAIR3) were trans-
fected into MDA-MB-231 and BT549 cells. The efficiency
of the HOTAIR-specific siRNAs was checked with qRT-
PCR after transfecting into MDA-MB-231 for 24 h. As
shown in Figure 2D, si-HOTAIR1, si-HOTAIR2 and si-
HOTAIRS3 inhibited the level of HOTAIR to 21.2%, 18.9%
and 17.9%, respectively. After deleting HOTAIR with spe-
cific siRNAs, the E2-induced cancer cell migration was re-
versed (Figure 2E).

GPER mediates the promotion effect of E2 on HOTAIR
levels

Because classical estrogen receptors were negative in the
TN breast cancer cells, we speculated that GPER may
mediate the effects of E2. First, we checked the inhib-
ition effect of G15 (GPER inhibitor) on GPER signaling.

Luo et al. reported that GPER signaling can activate ERK
signaling [26]. We treated the MDA-MB-231 cells with
GPER agonist G1 (1puM) with or without 100 nM G15
for 6 h. Then we detected the expression of the p-ERK
levels. As shown in Figure 3A, the p-ERK level was in-
creased after G1 treatment, while it was reversed by
G15. Then, the MDA-MB-231 and BT549 cells were
pretreated with 100 nM G15 for 6 h before E2 treat-
ment. As shown in Figure 3B, E2 can induce HOTAIR
levels in both MDA-MB-231 and BT549 cells. However,
G15 blocked the E2-induced increase of HOTAIR, indi-
cating that GPER mediated this response. Furthermore,
we wanted to investigate whether E2/GPER induce
HOTAIR by affecting the HOTAIR promoter. First we
constructed the HOTAIR promoter including PGL3-
basic luciferase reporter plasmid and transfected them
into the MDA-MB-231 and BT549 cells, then 10 nM E2
was added into these transfected cells. After E2 treat-
ment for 24 h, the luciferase activity was detected. As
shown in Figure 3C, E2 had no effect on luciferase activ-
ity, indicating that E2/luciferase may induce HOTAIR
expression in a different way.

miR-148a targets HOTAIR in breast cancer cells
It has been reported that IncRNAs can be regulated by
miRNAs. We have found that E2 regulated miR-148a
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concentration of E2 for 24 hours and the expression of HOTAIR was assessed using real-time PCR. B): MDA-MB-231 and BT549 cells were treated
with 10 nM E2 for varying hours and the expression of HOTAIR was assessed using real-time PCR. C): MDA-MB-231 and BT549 cells were treated
with 10 nM E2 for varying hours and the migrated cells were counted. D): siHOTAIR RNA sequences (si-HOTAIR1, si-HOTAIR2 and si-HOTAIR3)
were transfected into MDA-MB-231 for 24 h, and then the HOTAIR level was detected by using gRT-PCR. E): MDA-MB-231 and BT549 cells were
transfected with the control sequence or siHOTAIR RNA sequences before treatment with 10 Nm E2 for 36 hours and the migrated cells were
counted. The results are shown as mean =+ SE. from three representative independent experiments. *p < 0.05, **P < 0.01 compared with 0 h or
control. *p < 0.05 The results are shown as mean + SE. from three representative independent experiments. **P < 0.01 compared with control.

o < 0.05 compared with E2.

expression in breast cancer cells. miR-148a is an anti-
migration miRNA in cancer cells. Of note, we predicted
that HOTAIR has miR-148a binding sequences using
DIANA Tools (http://diana.imis.athena-innovation.gr/
DianaTools/index.php?r=IncBase/indexbio) (Figure 4A).
Furthermore, we found that the miR-148a level in the
PBMCs from the breast cancer patients was also nega-
tively correlated with the HOTAIR level (R* = 0.6492,
P < 0.001) (Figure 4B). The miR-148a level in the can-
cer tissues from the breast cancer patients was also
negatively correlated with the HOTAIR level (R* =
0.6251, P < 0.001) (Figure 4C). Next, before the lucifer-
ase reporter assay, we checked the transfection
efficiency of the miR-148a mimics and miR-148a inhib-
itors. As shown in Figure 4D, the miR-148a level was
97.3%, 1697% and 34.4% compared to control after
transfection with negative miRNA, miR-148a mimics
and miR-148a inhibitors, respectively. The luciferase re-
porter assay demonstrated that miR-148a significantly

suppressed the expression of a luciferase reporter gene
fused full sequence of HOTAIR, which could be reversed
by further introduction of the miR-148a inhibitor in the
MDA-MB-231 and BT549 cells (Figure 4E). To further
identify that the sequence shown in Figure 4A was
miR-148a binding sites, we muted TGCAC (1185-
1189) to CCTTG. Then we found that miR-148a could
not affect the luciferase activity after the mutated
HOTAIR was cloned into the luciferase reporter
plasmid (Figure 4F). Furthermore, we found that E2-
induced HOTAIR could be reversed by adding miR-
148a (Figure 4G).

Discussion

LncRNAs are of high interest as potential breast cancer
therapeutics. However, their expression and function in
breast cancer still need to be elucidated. Estrogen sig-
naling is important in the development and progression
of breast cancer [15]. HOTAIR, one of the important
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Figure 3 GPER mediates the promotion effect of E2 on HOTAIR expression. A): MDA-MB-231 cells were treated with 1 uM G1 with or without
100 nM G15 for 6 h. Then the expression of the p-ERK level was checked with a western blot. B): MDA-MB-231 and BT549 cells were pretreated
with 100 nM G15 for 6 h before the addition of 10 nM E2 for 24 h. Then the expression of HOTAIR was determined by real-time PCR. C): The
HOTAIR promoter sequence was cloned into PGL3-basic luciferase reporter plasmid, and then the control plasmid and HOTAIR promoter including
plasmid were transfected into the MDA-MB-231 and BT549 cells. Then 10 nM E2 was added into these transfected cells. After E2 treatment for 24 h,
the luciferase activity was detected. The results are shown as mean + S.E. from three representative independent experiments. **P < 001 compared

with control. *p < 0.05 compared with E2. ns p > 0.5.

IncRNAs in the promotion of breast cancer migration,
increases in both ER-positive and TN breast cancer
[24,25], indicating that estrogen may regulate HOTAIR
in a different way other than through ER. In the present
study, we found that HOTAIR was increased in breast
cancer patients, and was especially higher in migrated
breast cancer. In addition, we found that estrogen pro-
moted HOTAIR through its receptor GPER and
estrogen-induced breast cancer cell migration was re-
versed by deleting HOTAIR. Furthermore, we identified
that E2-GPER increases the level of HOTAIR through
the suppression of miR-148a.

HOTAIR can regulate gene expression through
changes in chromatin states and epigenetic modifica-
tions [27,28]. Recently, the up-regulation of HOTAIR
was observed in several cancers, including breast can-
cer [7,28-30], hepatocellular carcinoma [11,31], colo-
rectal cancer (CRC) [9,32], pancreatic cancer [33],
non-small cell lung cancer (NSCLC) [34] and esopha-
geal squamous cell carcinoma (ESCC) [32,33]. Further-
more, HOTAIR has promoted the migration and
invasion of breast carcinoma cells [32], CRC cells [9],
pancreatic cancer cells [33], NSCLC cells [34] and

ESCC cells [32,33]. Therefore, to investigate the way
HOTAIR regulates cells is very important for cancer
clinical therapy.

In ER-positive breast cancer cells, it has been dem-
onstrated that HOTAIR is transcriptionally induced by
E2 through multiple functional EREs in its promoter
[20]. Estrogen receptors (ERs), along with various ER
coregulators such as histone methylases mixed-lineage
leukemia 1 (MLL1) and MLL3 and CREB-binding pro-
tein/p300, bind to the promoter of HOTAIR in an E2-
dependent manner. The level of histone H3 lysine-4
trimethylation, histone acetylation and RNA polymer-
ase II recruitment is enriched at the HOTAIR pro-
moter in the presence of E2. The knockdown of ERs
and MLLs downregulated the E2-induced HOTAIR ex-
pression [20]. However, in TN breast cancer, HOTAIR
is also up-regulated, indicating that HOTAIR may be
regulated in a different way. Here, we found that E2
could up-regulate HOTAIR levels through GPER in
TN breast cancer cells. Our findings further confirm
the important role of GPER in cancer development.

E2 regulates the HOTAIR level through the down-
regulation of miR-148a. Several miRNAs have been
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reported to regulate HOTAIR levels. miR-141 sup-
presses HOTAIR in an Ago2-dependent manner [34].
In addition, HOTAIR can also regulate miRNA levels
[35]. miR-148a functions as a tumor suppressor in
cancer cells. It has been reported that miR-148a in-
hibits tumor metastasis by targeting IGF-IR and IRS1
[36]. Moreover, miR-148a suppresses the epithelial-
mesenchymal transition and metastasis of hepatoma
cells by targeting Met/Snail signaling [37]. We found

bl

GPER
miR-148a l

” miR-148a % HOTAIR —>*

Cell migration

ER

Figure 5 Model of E2-induced breast cancer cell migration via
up-regulation of HOTAIR expression.

that the miR-148a level was negatively correlated with
the HOTAIR level in breast cancer patients. In
addition, we predicted and proved that there are miR-
148a binding sequences in HOTAIR. Tumor suppres-
sor miRNA inhibits tumor promoting IncRNA, which
may be an important regulation method in cancer.

In summary, HOTAIR level is increased in breast can-
cer patients and associated with cancer migration. GRER
mediates E2-induced HOTAIR levels in breast cancer
cells, and E2/GPER promote HOTAIR levels through
miR-148a. Therefore, as shown in Figure 5, E2-ER can
promote HOTAIR by binding ERE in the promoter of
HOTAIR in ER-positive breast cancer. While in TN
breast cancer, E2-GPER promotes HOTAIR by inhibiting
miR-148a, which can identify the sequence in HOTAIR.

Conclusions

HOTAIR is becoming a potential therapy target in
many cancers. However, its transcription regulation
method is unknown. Our findings offer important new
insights into the ability of estrogenic GPER signaling to
increase the HOTAIR level by inhibiting miR-148a.
These findings provide new targets for breast cancer
therapy.
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