Ichim et al. Journal of Translational Medicine (2015) 13:90
DOI 10.1186/512967-015-0441-0 JOURNAL OF

TRANSLATIONAL MEDICINE

RESEARCH Open Access

Induction of tumor inhibitory anti-angiogenic
response through immunization with interferon
Gamma primed placental endothelial cells:
VallovVax™

Thomas E Ichim"™, Shuang Li*", Hong Ma', Yuliya V Yurova®, Julia S Szymanski', Amit N Patel*, Santosh Kesari*®,
Wei-Ping Min” and Samuel C Wagner'

Abstract

Background: While the concept of angiogenesis blockade as a therapeutic intervention for cancer has been
repeatedly demonstrated, the full promise of this approach has yet to be realized. Specifically, drugs such as
VEGF-blocking antibodies or kinase inhibitors suffer from the drawbacks of resistance development, as well as
off-target toxicities. Previous studies have demonstrated feasibility of specifically inducing immunity towards
tumor endothelium without consequences of systemic autoimmunity in both animal models and clinical settings.

Method: Placenta-derived endothelial cells were isolated and pretreated with interferon gamma to enhance
immunogenicity. Syngeneic mice received subcutaneous administration of B16 melanoma, 4 T1 mammary
carcinoma, and Lewis Lung Carcinoma (LLC), followed by administration of control saline, control placental
endothelial cells, and interferon gamma primed endothelial cells (ValloVax™). Tumor volume was quantified.
An LLC metastasis model was also established and treated under similar conditions. Furthermore, a safety
analysis in non-tumor bearing mice bracketing the proposed clinical dose was conducted.

Results: ValloVax™ immunization led to significant reduction of tumor growth and metastasis as compared to
administration of non-treated placental endothelial cells. Mitotic inactivation by formalin fixation or irradiation
preserved tumor inhibitory activity. Twenty-eight day evaluation of healthy male and female mice immunized
with ValloVax™ resulted in no abnormalities or organ toxicities.

Conclusion: Given the established rationale behind the potential therapeutic benefit of inhibiting tumor
angiogenesis as a treatment for cancer, immunization against a variety of endothelial cell antigens may produce the
best clinical response, enhancing efficacy and reducing the likelihood of the development of treatment resistance.
These data support the clinical evaluation of irradiated ValloVax™ as an anti-angiogenic cancer vaccine.

Background

Tumors utilize a variety of molecular mechanisms to evade
the immune response, including loss of tumor specific an-
tigens [1-3], suppression of antigen presenting machinery
such as transporter associated protein and MHC expres-
sion [4-7], and the production of immunosuppressive fac-
tors, both soluble and surface bound [8]. Additionally,
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tumors lack expression of co-stimulatory molecules critical
for the activation of naive T cells, and suppress the expres-
sion of these molecules on antigen presenting cells [9].
Tolerogenic means elaborated by the tumor inhibit T cell
activation while creating a microenvironment conducive to
T cell exhaustion. Poor T cell function in the tumor micro-
environment allows tumors to escape immune-mediated
destruction promoting the developent of treatment resist-
ance through immunoediting [10]. The ability of tumors
to escape immune pressure and sculpt their immuno-
genic phenotype to evade immune destruction makes it
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exceedingly difficult to develop effective immunotherapies
targeting tumor-derived antigens. A novel approach to-
wards inducing anti-tumor immunity would be to target
not the tumor itself, but the blood supply feeding the
tumor, an essential mechanism of tumor growth.

Immunological targeting of tumor endothelium is ap-
pealing based on: a) For every tumor endothelial cell thera-
peutically neutralized approximately 200-300 tumor cells
perish, thus reducing ability of tumors to lose expression
of antigens; b) The immune system is in direct contact
with the tumor endothelium, while immune access inside
tumors is difficult due to areas of necrosis and high inter-
stitial pressure; and ¢) Demonstrated prior efficacy of other
anti-angiogenesis inhibitory compounds such as bevacizu-
mab [11,12]. Furthermore, the elevated expression of Fas
Ligand on the tumor endothelium mediates the selective
killing of CD8+ Tumor Infiltrating Lymphocytes (TIL)
allowing for a predominance of FoxP3+ T regulatory
cells (Treg) to infiltrate the tumor microenvironment,
demonstrating that the tumor blood vessels act as an
immunological barrier promoting tumor tolerance [13].
Immune-mediated destruction of the tumor endothelium
has been shown to significantly increase TILs in mouse
models, which was correlated with tumor regression [14].
Another further potential benefit of targeting the tumor
associated vasculature is the potential of sensitizing tu-
mors to radiotherapy [15], in part due to the selective
thrombotic and apoptotic effects irradiation has on the
tumor vasculature [16-19]. Current tyrosine kinase inhibi-
tors blocking angiogenesis systemically inhibit pro-
angiogenic factors such as Vascular Endothelial Growth
Factor (VEGF) or Angiopoetin, slowing blood vessel for-
mation without differentiating between tumor and healthy
angiogenesis. However, therapeutics that stimulate direct
damage to the tumor endothelium have been shown to ac-
tivate the coagulation cascade, effectively cutting off blood
supply to the tumor and creating a hypoxic microenvir-
onment conducive to necrosis and tumor regression [20].
A more effective anti-angiogenesis approach may be
to stimulate selective killing of the tumor endothelium
through immunotherapeutic vaccines.

A fundamental question determining feasibility of vaccine-
induced killing of tumor vasculature is whether antigens
exist on the tumor endothelium that are not expressed on
physiologically normal blood vessels, and whether immun-
ity could be raised against such antigens. A few tumor
endothelium-specific antigens have been reported. The
roundabout receptor (ROBO)-4 is a transmembrane pro-
tein that was originally found to orchestrate the neuronal
guidance mechanism of the nervous system [21]. ROBO4
was found to be selectively expressed on tumor endothe-
lial cells but not healthy vasculature [22]. Zhuang et al.
demonstrated that mice immunized with the extracel-
lular domain of mouse Robo4, showed a strong antibody
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response to Robo4, with no objectively detectable adverse
effects on health, including normal menstruation and
wound healing. Robo4 vaccinated mice showed im-
paired fibrovascular invasion and angiogenesis in a rodent
sponge implantation assay, as well as a reduced growth of
implanted syngeneic Lewis lung carcinoma. The anti-
tumor effect of Robo4 vaccination was present in CD8 de-
ficient mice but absent in B cell or IgG1 knockout mice,
suggesting antibody-dependent cell mediated cytotoxicity
as the anti-vascular/anti-tumor mechanism [23]. An-
other antigen that is more ubiquitously found throughout
the body, but with higher expression on tumor endothelial
cells is the VEGF receptor 2 (VEGFR2) which is typ-
ically found on hematopoietic stem cells and endothelial
progenitor cells [24-29]. Despite expression on non-
malignant tissue, successful induction of antitumor im-
munity has been demonstrated using various immunization
means against this antigen. Yan et al. utilized irradiated
AdVEGEFR2-infected cell vaccine-based immunotherapy
in the weakly immunogenic and highly metastatic 4 T1
murine mammary cancer model. Lethally irradiated,
virus-infected 4 T1 cells were used as vaccines. Vaccin-
ation with lethally irradiated AAVEGFR2-infected 4 T1
cells inhibited subsequent tumor growth and pulmonary
metastasis compared with challenge inoculations. Angio-
genesis was inhibited, and the number of CD8+ T lympho-
cytes was increased within the tumors. Antitumor activity
was also caused by the adoptive transfer of isolated spleen
lymphocytes, thus demonstrating induction of tumor spe-
cific immunity [30]. Other approaches have been utilized
to induce immunity to VEGFR2, which resulted in in-
duction of tumor regression without systemic toxicities
[31-36]. Tumor endothelial marker 1 or endosialin is an-
other antigen found selectively on the tumor vasculature.
Facciponte et al. demonstrated that a DNA vaccination
targeting endosialin reduced tumor vascularity, increased
CD3+ T cell infiltration, and was correlated with signifi-
cant inhibition of tumor growth. Epitope spreading to
tumor antigens following the initial immune response
against the tumor vasculature gives evidence that targeting
the tumor endothelium may activate a cascade of path-
ways conducive to tumor regression. Additionally, the
DNA vaccination against endosialin did not affect other
angiogenesis dependent physiological processes, exhibiting
no adverse effects on menstruation, embryonic develop-
ment, pregnancy, and wound healing in mouse models
[14]. Other markers associated with tumor blood vessels
have been utilized therapeutically in animal models for
vaccination purposes including survivin [37-39], xenogen-
eic FGE2R [40], VEGF [41], VEGE-R2 [42], MMP-2 [43],
and endoglin [44,45].

Although tumor endothelial cells are more genetically
stable then the tumor cells, thus reducing the possibility of
immune mediated antigen loss, some mutational activity



Ichim et al. Journal of Translational Medicine (2015) 13:90

has been reported in tumor associated vascular cells
[46,47]. Accordingly, a polyvalent vaccine approach tar-
geting the immune system toward a plethora of endothe-
lial cell antigens specific to the tumor endothelium may
be more effective. With this approach comes a heightened
theoretical risk of autoimmunity. Despite these theoretical
concerns successful immunization against tumor endothe-
lium has been performed utilizing Human Umbilical Vein
Endothelial Cells (HUVEC). Wei et al. demonstrated that
vaccination of mice with fixed xenogeneic whole endothe-
lial cells (in the form of HUVEC) as a vaccine was effective
in affording protection from tumor growth, inducing
regression of established tumors, and prolonging the sur-
vival of tumor-bearing mice. Additionally, the authors
found that, immunity targeted to tumor vasculature was
induced and was responsible for the anti-tumor activity,
which was not associated with any noticeable toxicity to-
ward non-malignant tissues [48,49]. From a clinical per-
spective, a 17 patient trial demonstrated that HUVEC
vaccine therapy significantly prolonged tumor doubling
time and inhibited tumor growth in patients with recur-
rent glioblastoma, inducing both cellular and humoral
responses against the tumor vasculature without any
adverse events or noticeable toxicities [50]. The clinical
efficacy of using HUVEC vaccination to break tolerance to
tumor angiogenesis has also been demonstrated in pa-
tients with colorectal cancer and malignant brain tumors
without any observable adverse effects on healthy angio-
genesis [20].

In this current study it was demonstrated that placen-
tal endothelial cells that are interferon gamma primed
potently inhibit tumor growth in 3 histologically distinct
animal models, as well as suppress pulmonary metastasis
subsequent to intravenous tumor administration. Fur-
thermore, the therapeutic effect was retained when pla-
cental endothelial cells have been mitotically inactivated
by either formalin or irradiation. The success of this new
approach may provide a new way to develop clinical ef-
fective placental cells vaccination against a wide variety
of tumors by targeting tumor angiogenesis.

Materials and methods

Animals and cells

Female C57BL/6 and BALB/c mice aged 8-12 weeks
were purchased from The Jackson Laboratory. Animals
were housed under conventional conditions at the Animal
Care Facility, University of Western Ontario, and were
cared for in accordance with the guidelines established by
the Canadian Council on Animal Care. A murine melan-
oma cell line established from a C57BL/6 mouse and
designated B16F10 was obtained from the American
Type Culture Collection (ATCC) and was maintained in
RPMI 1640 medium (Sigma-Aldrich) with 10% FBS, I-
glutamine, penicillin, and streptomycin at 37°C in 5%
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CO,. The murine mammary carcinoma 4 T1 cells (ATCC)
were grown DMEM medium (Sigma-Aldrich) with 10%
EBS, l-glutamine, penicillin, and streptomycin at 37°C
in 5% CO,. Lewis Lung Carcinoma (LLC) is a murine
lung carcinoma originating from C57/BL6 mice. The cells
were maintained in RPMI 1640 supplemented with 10%
fetal bovine serum, 2 mM glutamine (Gibco-BRL, Life
Technologies, Inc.). The cell line was cultured at 37°C in a
5% incubator.

Preparation of vaccine

Full term human placentas were collected from delivery
room under informed consent. Fetal membranes were
manually peeled back and the villous tissue is isolated
from the placental structure. Villous tissue was subse-
quently washed with cold saline to remove blood and
scissors used to mechanically digest the tissue. Lots of
25 grams of minced tissue were incubated with approxi-
mately 50 ml of HBSS with 25 mM of HEPES and 0.28%
collagenase, 0.25% dispase, and 0.01% DNAse at 37 Celsius.
The mixture of minced placental villus tissue and digest-
ing solution was incubated under stirring conditions for
three incubation periods of 20 minutes each. Ten minutes
after the first incubation period and immediately after the
second and third incubation periods, the DNAse was
added to make up a total concentration of DNase, by vol-
ume, of 0.01%. In the first and second incubations, the in-
cubation flask is set at an angle, and the tissue fragments
allowed to settle for approximately 1 minute, with 35 ml
of the supernatant cell suspension being collected and re-
placed by 38 ml (after the first digestion) or 28 ml (after
the second digestion) of fresh digestion solution. After the
third digestion the whole supernatant was collected. The
supernatant collected from all three incubations was then
pooled and is poured through approximately four layers of
sterile gauze and through one layer of 70 micrometer poly-
ester mesh. The filtered solution was then centrifuged for
1000 g for 10 minutes through diluted new born calf
serum, said new born calf serum diluted at a ratio of 1 vol-
ume saline to 7 volumes of new born calf serum. The
pooled pellet was then resuspended in 35 ml of warm
DMEM with 25 mM HEPES containing 5 mg DNase L.
The suspension was subsequently mixed with 10 ml of
90% Percoll to give a final density of 1.027 g/ml and centri-
fuged at 550 g for 10 minutes with the centrifuge brake off.
The pellet was then washed in HBSS and cells incubated
for 48 hours in complete DMEM media. After 3—4 pas-
sages cells were incubating in media containing 100 IU of
[FN-gamma per ml. Subsequent to incubation cells were
either used: a) unmanipulated; b) used as a lysate, with 10
freeze thaw cycles in liquid nitrogen, subsequent to which
lysate was filtered through a 0.2 micron filter; ¢) mitotically
inactivated by irradiation at 10 Gy; or d) inactivated by fix-
ation in 0.5% formalin and subsequently washed.
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Immunization schedules and tumor assessment

For induction of tumor growth, 5 x 10° B16, LLC, or 4 T1
cells, American Type Culture Collection (Manassas, VA)
cells were injected subcutaneously into the hind limb
flank. Four weekly vaccinations of 5 x 10° test cells were
administered subcutaneously on the contralateral side to
which tumors were administered. Vaccination was per-
formed on the day of tumor inoculation and on days 7, 14,
and 21. Tumor growth was assessed every 3 days by two
measurements of perpendicular diameters by a caliper,
and animals were sacrificed when tumors reached a size
of 1 cm in any direction. Tumor volume was calculated by
the following formula: (the shortest diameter” x the lon-
gest diameter)/2.

Results

Successful utilization of placental endothelial cells in
induction of anticancer immunity regardless of tumor
type

While it has previously been demonstrated that vaccination
with autologous and allogeneic endothelial cells results in
tumor regression [51-55], and safety of this approach has
been reported in clinical studies [20], current means of
extracting endothelial cells are limited to the need for tissue
culture expansion. Generally endothelial cells proliferate
poorly in vitro and require the addition of recombinant
growth factors that add expense, as well as possibility of
contamination during production of clinical grade produc-
tion. Accordingly, a more practical source of endothelium
would be the placental body, which contains up to 2—10
billion primary endothelial cells per placenta [56-58].
We immunized mice bearing LLC, B16 and 4 T1 cells.
The immunization schedule was a therapeutic one in that
time of immunization occurred concurrently with the
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administration of tumor challenge. As seen in Figures 1, 2
and 3, a trend towards reduction of tumor growth was ob-
served with non-IFN-gamma pretreated endothelial cells,
while a potent reduction of tumor growth was seen in ani-
mals treated with cells that were first stimulated with
interferon gamma. Interferon gamma pretreatment was
shown to upregulate HLA I and HLA II (data not shown).

Mitotically inactivated endothelial cell vaccine retains
antitumor activity across histologically different tumors
For clinical development of a cancer angiogenesis vac-
cine, it is imperative to generate cells that are mitotically
inactivated. Part of the reason for this is that administra-
tion of viable endothelial cells could potentially result in
acceleration of tumor growth through enhancement of
angiogenesis [59]. Furthermore, in previous clinical tri-
als, endothelial cells were pretreated with a fixative to
avoid this potential issue [20]. As seen in Figures 4, 5
and 6, for all tumor models tested, mitotic inactivation
utilizing irradiation was mildly superior to formalin fix-
ation. Additionally, no therapeutic effect was observed by
administration of endothelial cell lysate, with activity being
retained in activated endothelial cells.

Endothelial cell vaccine inhibit tumor metastasis

In addition to reduction of tumor size growth, an im-
portant aspect of cancer immunization is reduction in
lung metastasis. Importantly, in the utilization of vac-
cines against cancer, the ability of the immune system to
seek and destroy metastatic cells is one of the key en-
ticing factors of this approach. When intravenous ad-
ministration of LLC was performed in C57BL/6 mice,
immunization with ValloVax™ resulted in inhibition of
tumor lung metastasis colonies (Figure 7). The inhibition
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Figure 1 ValloVax™ treatment inhibits B16 melanoma growth. Female C57BL/6 mice (10 mice per group) were immunized with saline
(diamond), or 5 x 10(5) placental endothelium cells (square) or placental endothelium cells pretreated with interferon gamma (triangle) on days 0,
7,14, and 21. Tumor growth was initiated by subcutaneous administration of 5x 10(5) B16 cells and quantified every third day.




Ichim et al. Journal of Translational Medicine (2015) 13:90

Page 5 of 9

4500
4000
3500
'é‘ 3000
’: —a— Salinecontrol
g 2500 -
=
5
s 2000 o Placental
£ endothelial control
S 1500 -
1000 . Placental
I ~ endothelial + IFN-g
(vallovax)
500
0 : - : : . T :
0 5 10 15 20 25 30 35
Time (days)
Figure 2 ValloVax™ treatment inhibits 4 T1 mammary carcinoma growth. Female BALB/c mice (10 mice per group) were immunized with
saline (diamond), or 5 x 10(5) placental endothelium cells (square) or placental endothelium cells pretreated with interferon gamma (triangle) on
days 0, 7, 14, and 21. Tumor growth was initiated by subcutaneous administration of 5x 10(5) 4 T1 cells and quantified every third day.

was significantly more profound when placental endo-
thelial cells were treated with interferon gamma.

Safety evaluation

Seven male and female mice per group were treated with
control, or 500,000, 2 million or 4 million ValloVax™ ir-
radiated cells subcutaneously. Cells were administrated
as in the therapeutic protocol, in that they were given on
day 0, 7, 14, and 21. Body weights were calculated every
three days and organ sizes, biochemical and hematological
parameters were evaluated. No significant deviation was
noted, nor were signs of autoimmunity present (online
Additional file 1). These preclinical data support the safety
of the irradiated ValloVax™ approach.

Discussion

The concept of targeting tumor associated endothelium
has been a holy grail of cancer therapists since the original
work of Judah Folkman demonstrated that tumors cannot
grow more than 1-2 millimeters without the stimulation
of new blood vessel formation (angiogenesis) [60]. Specif-
ically blocking angiogenesis is intellectually enticing be-
cause the tumor-associated endothelium is derived from
non-mutated tissue; therefore the possibility of devel-
opment of a drug resistant phenotype is very low. Unfor-
tunately several angiogenesis-targeting drugs that have
demonstrated promising results in animal trials have failed
in pivotal clinical trials. Examples include angiostatin,
endostatin, and shark cartilage extract (Neovastat) [61,62].
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Figure 3 ValloVax™ treatment inhibits LCC lung carcinoma growth. Female C57BL/6 mice (10 mice per group) were immunized with saline

(diamond), or 5 x 10(5) placental endothelium cells (square) or placental endothelium cells pretreated with interferon gamma (triangle) on days 0,
7,14, and 21. Tumor growth was initiated by subcutaneous administration of 5x 10(5) LLC cells and quantified every third day.
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Figure 4 Mitotically inactivated ValloVax™ retains activity against B16 melanoma growth. Female C57BL/6 mice (10 mice per group) were
immunized with saline, ValloVax™, ValloVax™ lysate, formalin fixed ValloVax™, or irradiated Vallovax™ at a concentration of 5 x 10(5) cells or cell
equivalents on days 0, 7, 14, and 21. Tumor growth was initiated by subcutaneous administration of 5 x 10(5) B16 cells and quantified every
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More recent studies using the VEGF pathway blocking
antibody, bevacizumab (Avastin), have demonstrated posi-
tive results in specific types of tumors, which led to regu-
latory approvals [63]. Unfortunately the use of these
antibodies requires co-administration of chemotherapy,
and is associated with signification toxicity [64]. Further-
more, for reasons unknown, bevacizumab is ineffective in
several tumor types, and in the tumors that it is effective,
resistance often ensues, limiting long-term therapeutic
utility [65].

The possibility of inducing selective immunity to pro-
liferating blood vessels has been previously reported in
animal models as well as pilot clinical trials. Unfortu-
nately, a major limiting factor to clinical implementation
has been the utilization of HUVEC cells as an antigenic
source, which is limited in availability. Here we utilized

placental derived endothelial cells as a source of antigen
found on proliferating endothelium such as the tumor. The
utilization of placenta derived tissues for immunization to
cancer was initially introduced in the 1970s by Dr. Valentin
Govallo (reviewed in Harandi [66]) who demonstrated that
immunity to placental trophoblast extract resulted in re-
duction of immune suppression using the PHA stimu-
lation assay, as well as radiological tumor reductions.
Dr. Govallo noted the immunological similarities between
pregnancy and cancer. Later along with the advancement
in molecular biology development founding placental cells
and tumor endothelial cells share the molecules of angio-
genesis such as VEGF, placental growth factor, angio-
poietin, FGF, EGF, and TGF-beta, and as well placental
endothelium expresses many of the novel tumor endothe-
lial markers (TEM) such as ROBO4 [67], CLEC14A [68],
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Figure 5 Mitotically inactivated ValloVax™ retains activity against 4 T1 mammary carcinoma growth. Female BALB/c mice (10 mice per
group) were immunized with saline, ValloVax™, ValloVax™ lysate, formalin fixed ValloVax™, or irradiated Vallovax™ at a concentration of 5x 10(5)
cells or cell equivalents on days 0, 7, 14, and 21. Tumor growth was initiated by subcutaneous administration of 5x10(5) 4 T1 cells and

quantified every third day.
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Figure 6 Mitotically inactivated ValloVax™ Retains™ activity against LLC lung carcinoma. Female C57BL/6 mice (10 mice per group) were

third day.

immunized with saline, ValloVax™, ValloVax™ lysate, formalin fixed ValloVax™, or irradiated Vallovax™ at a concentration of 5x 10(5) cells or cell
equivalents on days 0, 7, 14, and 21. Tumor growth was initiated by subcutaneous administration of 5x 10(5) LLC cells and quantified every

and endosialin [69] suggested parallels between the pla-
cental and tumor microenvironment, namely immune
suppression, active angiogenesis, and the secretion of
matrix metalloproteinase associated with metastasis, not
just a functional, but also a molecular homology between
placenta, tumor cells and tumor-associated endothelium.
Based on the safety and possible efficacy of the Govallo
vaccine, we sought to utilize placental endothelial cells as
a polyvalent antigenic source for stimulation of immunity
against proliferating endothelial cells that have been
primed with interferon gamma to stimulate immunogen-
icity. We termed this product “ValloVax™”.

Visible lung metastasis
»n
o

Control EC ValloVax™

Figure 7 Reduction in lung metastasis after ValloVax™
immunization. Female C57BL/6 mice (10 mice per group) were
immunized with saline, placental endothelial cells, and placental
endothelial cells pretreated with IFN-gamma. Immunization was
performed subcutaneously at same time as 5 x 10(5) LLC cells were
administered intravenously. Mice were sacrificed after 3 weeks and
lung colonies were quantified by counting per visual field.

Here we demonstrate the therapeutic activity of ValloVax™
against a wide range of histologically distinct tumor types,
suggesting that the effect is acting against new blood ves-
sels and not against shared tumor antigens. Additionally,
the main concern of utilization of an antiendothelial vac-
cine would be the possibility of inducing autoimmunity
against the endothelium. This has not been observed in
the 28 day safety study. We have demonstrated that tumor
inhibiting activity was preserved when cells were mitoti-
cally inactivated, however was substantially reduced when
cell lysate was utilized. It is important to note that adju-
vants were not administered as part of the vaccination
inoculum. Accordingly, manipulation of the vaccine ad-
ministration either by modification of dosage or frequency

i may induce more potent therapeutic responses. One of
% the deficiencies of the current study is the lack of direct

demonstration that inhibition of endothelial proliferation
30 was responsible for reduction in tumors. Although it is un-

likely that direct tumor immunity was induced to all three
tumor types assessed by the administration of ValloVax™,
this possibility cannot be excluded. Supporting the possi-
bility that anti-endothelial immunity was induced is data
demonstrating sera of immunized mice was able to inhibit
proliferation of endothelial cells in vitro. These data are
currently the subject of an additional manuscript looking

10
at more detailed mechanisms of immunity and tumor biol-
5 ogy. As well further studies on combination of ValloVax™
with standard of care treatments will be studied.
0

Conclusion

Based on existing preclinical and clinical data demonstrat-
ing safety of endothelial cell vaccination, combined with the
recent data described herein, ValloVax™ appears to be a
promising antiangiogenic vaccine platform. Demonstration
of efficacy in 3 different animal models supports possibility
utilization against a broad spectrum of tumors.
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Additional file

Additional file 1: Seven male and female mice per group were
treated with control, or 500,000, 2 million or 4 million ValloVax™
irradiated cells subcutaneously. Cells were administrated on days 0, 7,
14, and 21. Body weight was assessed on days 1, 14 and 28, whereas,
biochemical and hematological parameters were evaluated at the
termination of the experiment on day 28.
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