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Abstract

It has been argued that circadian dysregulation is not only a critical inducer and promoter of adverse health effects,
exacerbating symptom burden, but also hampers recovery. Therefore understanding the health-promoting roles of
regulating (i.e, restoring) circadian rhythms, thus suppressing harmful effects of circadian dysregulation, would likely
improve treatment. At a critical care setting it has been argued that studies are warranted to determine whether
there is any use in restoring circadian rhythms in critically ill patients, what therapeutic goals should be targeted,
and how these could be achieved. Particularly interesting are interventional approaches aiming at optimizing the
time of feeding in relation to individualized day—night cycles for patients receiving enteral nutrition, in an attempt
to re-establish circadian patterns of molecular expression. In this short review we wish to explore the idea of transiently
imposing (appropriate, but yet to be determined) circadian rhythmicity via regulation of food intake as a means of
exploring rhythm-setting properties of metabolic cues in the context of improving immune response. We highlight some
of the key elements associated with his complex question particularly as they relate to: a) stress and rhythmic variability;

and b) metabolic entrainment of peripheral tissues as a possible intervention strategy through time-restricted feeding.
Finally, we discuss the challenges and opportunities for translating these ideas to the bedside.

Introduction

Biological rhythms are major determinants of behavioural
outcome [1,2] and are controlled by a tightly regulated
network of genes and proteins entrained by external
signals (light and food). The suprachiasmatic nucleus
(SCN) is the fundamental, central, regulator of circadian
rhythmicity (biological rhythms of, roughly, 24 h period)
and is considered the master clock designed to align, and
coordinate the independent, self-sustained, peripheral
oscillators (a.k.a. peripheral clocks) found in every cell,
tissue and organ [3-6]. In that respect, understanding
the mechanisms by which the various pacemakers interact
to coordinate functions becomes a critical question [7].
Despite the fact that all peripheral clocks effectively utilize
the same time-keeping machinery [8-11] (Figure 1) each
peripheral entity is impacted by unique stimuli capable of
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setting clock rhythmicity locally, directly or indirectly. As
such, core physiological functions are strongly impacted
by the appropriate alignment of peripheral clocks to cen-
tral (SCN) rhythms [12,13] likely mediated via circulating
hormones [14,15]. While biological rhythms convey antici-
patory signals priming the host for periods of food intake,
increased activity and rest [16-18] (Figure 2) the loss of
these rhythms has deleterious effects on overall health
[19]. The interplay between a host’s well-being and its
biological rhythms is critical and bi-directional: disrupted
rhythms impact the response to stress whereas stress
alters the characteristics of biological rhythms [20-22].
Emerging evidence suggesting that rhythmic signals play
a major role in immune [25-27] and metabolic [28] func-
tions naturally leads to the possibility of exploring biological
rhythms as targets of intervention strategies, and in par-
ticular in the context of intensive care units (ICU) where
non-natural light schedules and time-invariant nutritional
and/or pharmaceutical interventions may deprive patients
of the rhythmic cues necessary to maintain appropriate
biological rhythmicity during the recovery phase [29,30]
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Figure 1 The periodic expression of clock genes is driven by Per and Cry inhibiting the activity of the CLOCK/BMAL1 dimer (negative
feedback) and stimulating Bmal1 gene transcription (positive feedback). Through a negative feedback loop, the heterocomplex CLOCK/
BMALT activates the transcription of period (Per) and cryptochrome (Cry) genes upon binding to the E-box promoter region. After the expression
of PER/CRY proteins in the cytoplasm, they translocate to the nucleus where they inhibit their own transcription by shutting off the transcriptional
activity of the CLOCK/BMALT heterocomplex . Through the positive feedback loop the nuclear compartment of PER/CRY protein (y3) activates
indirectly Bmall mRNA (y4) transcription, which after its translation to BMAL1 protein and its translocation to the nucleus, increases the expression
of CLOCK/BMALT heterodimer. However, the peripheral clocks are “entrained” by external signals — cortisol (F) in this case. The role of the entertainer is

to synchronize the responses across a collection of cells. Figure adapted from [23].

and loss of entraining inputs may significantly impact
recovery [10,31-34]. In fact circadian abnormalities correl-
ate with severity of illness and outcome [35]. Due to the
strong role rhythmicity plays in recovering from trauma
[36,37], its regulation and realignment are emerging as
potentially critical controllers influencing patient outcome
by regulating entraining signals in a non-invasive manner.
Circadian cues that control rest cycles and metabolism are

primarily driven by light and food [38,39]. These play a
fundamental role in that they maintain proper synchrony
between the peripheral clocks (Figure 3). The importance
of maintaining good coordination between the peripheral
oscillators is so critical that physicians have speculated
that “[...] healthy organs behave as biological oscillators,
which couple to one another during human development,
and that this orderly coupling is maintained through a
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A

communications network, including neural, humoral,
and cytokine components. [We] suggest that the systemic
inflammatory response syndrome initiates disruption of
communication and uncoupling, and further suggest that
progression into the multiple organ dysfunction syndrome
reflects progressive uncoupling that can become irreversible.
Resolution of the inflammatory response and reestablish-
ment of the communications network are necessary but
may not be, by itself, sufficient to allow organs to appro-
priately recouple” [40].

Exploring these cycles in order to realign patients’ bio-
logical rhythms during the recovery phase may prove to
be highly rewarding in terms of outcome [41]. Therefore,
understanding the mechanisms that entrain the central and
peripheral clocks, and the ways in which these rhythms
influence the ability of the host organism to respond to,
and recover from, external threats and challenges is critical
to developing new models of patient care capable of
engaging these rhythms in an attempt to, potentially,
improve outcome. It must be noted that although it is
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well established that ICU patients have abnormal circadian
patterns [35,42] the overall environment in the ICU,
including the patient’s condition, the lighting and noise
levels in ICU as well as — and likely very importantly — the
treatment the patient receives, induces significant circa-
dian alterations [43,44].

In this short review we focus on one particular approach
to resetting biological rhythmicity in the context of time-
restricted feeding (TRF; access to food is restricted for
specific time intervals during the day without calorie
restrictions) and explore the possibility of pursuing circa-
dian re-alignment via nutritionally-inspired interventions.
Although the focus of the review is on the implications
of restoring circadian rhythms we should point out that
appropriate sampling and analysis of biochemical and
physiological circadian data requires careful design and
execution and these have been the subject of numerous
excellent reviews [45].

Circadian reprogramming as an intervention
strategy: opportunities for time-restricted feeding
Stress-induced loss of circadian rhythmicity

Evidence establishing the strong links between biological
rhythms and stress response is overwhelming and, by now,
very well established and accepted [14,46]. However, the
translational implications, opportunities and challenges of
how to manipulate rhythms in an ICU environment are
only now beginning to emerge in the scientific discourse
[30]. A number of recent, and older, reviews have discussed
the connections between immune function and biological
rhythms [46] where the bi-directional relationship between
disrupted rhythms and immune dysfunction; and its impli-
cation on the bedside have been clearly identified [36,37].
What is even more interesting is the fact that we begin to
realize that circadian dysfunction following stress may have
long lasting ramifications [47] pointing to possible sources
of comorbidities. In fact, it has been argued that different
procedures impact post-operative circadian disruption in a
differential manner, thus affecting recovery, raising the
possibility of guiding operative procedures based on their
capacity to minimize impact on biological rhythms [48].
Clinical studies specifically emphasized that biological
night and day cycles (measured by urinary 6-sulfatoxyme-
latonin) were phase-delayed and normal features of sleep
were lacking (REM sleep was identified only in 2 patients
out of 21) in the critical care patients [49]. Studies on
patients undergoing elective maxillofacial surgery showed
that strengthening circadian rhythms in anticipation of
disruption following surgery can be efficacious for improv-
ing the recovery phase. Patients whose circadian rhythms
were adjusted pre-operatively by combined sleep/wake
cycle alteration and timed food and caffeine ingestion
had reduced disruption in their body temperature cycles
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throughout their recovery in comparison to the control
group [50].

One of the most active areas of research pointing dir-
ectly to circadian disruption and biological rhythm-setting
interventions relate to mood disorders [51-55]. A vast
literature exists on enhancing circadian rhythms for treat-
ing depression, bipolar disorder and other related mood
disorders either via pharmacological (melatonin) [55,56]
or non-pharmacological means (light) [57] aimed at boost-
ing circadian rhythms.

Circadian (re)alignment and time-restricted feeding

Time restricted feeding (TRF) is essentially imposing
rhythms on nutrient availability. Entrainment by TRF
has generated significant interest due to the possibility
of synchronizing peripheral clocks without clear influences
on (or from) the central pacemaker (SCN) [28,58]. It
has been speculated that restricted feeding (RF) entrains
rhythms in peripheral tissues (liver and lung) [6] is likely
independent of the SCN. These works challenge the basic
hierarchical paradigm that light entrains the SCN which
subsequently entrains the peripheral clocks and empha-
sized the role of RF as an entraining signal. The hypothesis
of independently entrained peripheral clocks has been
further reinforced by the observation that even lesions
in brain nuclei do not eliminate food anticipatory activity,
thus pointing to likelihood of a distributed system main-
taining and regulating food-anticipatory activities [59,60].
One of the main justifications is that when food acces-
sibility adopts specific rhythmic characteristics so will the
physiology and behaviour to match nutritional resource
availability [61]. It has been shown that feeding mice
during the day completely reverses the phase of circadian
oscillators (specifically, four clock components, PerI, Per2,
Per3, Cryl; and the two circadian transcription factors
DBP and Rev-erba) in multiple peripheral cells (liver,
kidney, heart and pancreas), but has little if any effect
on the central oscillator in the SCN [62]. However, we
must point out that RF entrains the rhythm of clock
protein Per2 even in the SCN as was shown in studies
that eliminated photic stimulation by keeping mice in
constant darkness [63], or at constant light conditions
[64], thus raising the possibility of peripheral oscillators
resetting the central clock.

In a carefully designed study of a murine obesity model
[53] the authors convincingly show the intimate relation-
ship between the signalling and transcriptional components
of energy metabolism and the circadian system. The study
hypothesized that TRF improves diurnal rhythms; drives
lipid homeostasis while preventing weight gain, hepatostea-
tosis and liver damage; improves adipose homeostasis
and reduces inflammation. The study demonstrated that
preserving natural feeding rhythms significantly dampens
metabolic disruption induced by a high fat diet, including
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improving oscillations of the liver circadian clock compo-
nents. Therefore, while the total calorie intake and food
composition (high fat) remained constant, the study clearly
demonstrated that an apparent lifestyle, i.e.,non-pharma-
cological, intervention prevented obesity, and related co-
morbidities, possibly by resetting metabolic cycles. The role
of food-anticipatory activity has also been explored with a
focus on energy metabolism, defined by oxygen consump-
tion [65]. Animals were allowed access to food for only few
hours during either the light or the dark phases. Locomotor
activity, body temperature, clock gene expression in liver
and energy metabolism were recorded and their changes
assessed as the time window over which food became
available was changing. Continuous monitoring of energy
metabolism and core body temperature indicated expected,
robust diurnal rhythmic characteristics but also rapid
re-entrainment and adaptation to restricted food access.

A series of publications has focused on comparing
protein synthesis under a continuous and, a likely more
physiologically realistic, intermittent bolus feeding regimen,
delivered by orogastric tube, in neonatal pigs in the context
of regulating protein synthesis [66-68]. The analysis
demonstrated that intermittent feeding (delivered every
4 hrs as a bolus feed) enhances muscle protein synthe-
sis by imposing pulsatile patterns of amino-acid and
insulin-induced translation initiation. In this very inter-
esting series of papers it has been argued that bolus
feeding promotes a more physiological surge of intes-
tinal hormones. The studies effectively hypothesize that
“I...] ¢yclic surge of amino acids and insulin is needed
to maximally stimulate protein synthesis in skeletal
muscle” and that “[...] bolus compared to continuous
feeding has been advocated to promote more normal
feed-fast hormonal profiles”. It has been further demon-
strated that either advancing or delaying meal time in
young adult mice results in reversible alterations of
temperature and overall cage activities [69]. Longer
time restriction (one week) alters rhythms in glucose,
triglyceride and HDL levels. Food restriction results in
behavioral arousal in anticipation of food presentation
and induces a shift in the circadian phase of many
physiological variables, likely independent of the SCN. As
such, RF is expected to exert changes in organs “handling
nutrients” (such as liver). As previous work had suggested
RF could be associated with significant stress due to hy-
perphagia, In a study examining the effect of restricted
feeding on stress markers, no marked changes in body
weight, retroperitoneal decrease in lipid deposits and peak
in glucocorticoids accompanying expectation to food ac-
cess were identified [70]. Given the probable relationship
between stress and metabolic alterations (in this case
interest was in liver) the study explored whether an in-
crease in acute phase proteins (APR) or pro-inflammatory
state occurred after 2 weeks of 2hr food restriction. The
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“positive control” for APR consisting of a group injected
with LPS showed a significant increase in systems APR
while neither the ad libitum nor restricted feeding induced
a marked increase in any of the inflammatory markers.
Furthermore, a marked change in the diurnal patterns of
circulating cytokines was observed as a consequence of RF.
The authors advance an interesting hypothesis stating that
RF may establish a distinctive state (“rheostatic response”
earlier introduced in [71]) likely enabling the system to
adopt a transient functional state “change in set-point”,
boosting the rhythms and the overall fitness of the host.

Time-restricted feeding and disease progression
Peripheral circadian de-synchrony may be an early indica-
tor of metabolic disruption in shift workers due to sleep
deprivation mediated disruption of circadian rhythms. By
extension, strengthening the peripheral circadian rhythm, by
imposing metabolic rhythms via limiting food intake during
the night, may counteract comorbidities seen in human shift
workers [72]. This study further implies that the manipula-
tion of circadian rhythms need not be such that it aims
at restoring the homeostatic nature of the internal clock.
Rather it implies that, at least in the short term, strength-
ening other rhythmic frequencies may be more beneficial.

Particularly interesting is the work investigating the effect
of resetting circadian clocks in peripheral tissues using
non-photic signals on tumor growth rate in rats [73,74].
Restricting the timing of meals to light time in contrast
to restricted feeding during the night (active phase of
rats) thereby, imposing a reversed metabolic rhythm,
induced, what is referred to as, “internal desynchronization”
(described as loss of phase relationship between central —
light entrained — and peripheral clocks) resulted in pro-
longed survival and slowed down tumor growth. The
authors speculate that meal timing during the light period
amplifies host rhythms and assigns their peak in a time
window when the tumor is most susceptible to host-
mediated control and that tumor growth is hampered
when the internal (metabolic) clock adopts specific
rhythmic characteristics, interestingly the opposite of
what would have been otherwise considered “natural”.
Therefore, the emerging hypothesis is that, a radically
different metabolic rhythmicity appears to be most effect-
ive at least in the short term.

Restricted-time feeding vs. calorie restriction

It is important to draw a distinction between time-
restricted feeding and caloric restriction. The former
entails the delivery of a certain amount of calories albeit
at specific time intervals of specific duration. Therefore
subjects still receive a standard nutritional intake. Calorie
restriction entails an overall reduction in caloric intake,
albeit without malnutrition. While evidence for the bene-
fits of calorie restriction in animals has been promising,
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the issue as it relates to humans is still debated as con-
ducting long term studies assessing the implications of
prolonged calorie restriction in a controlled manner is
rather complicated [75]. Although studies have shown
calorie restriction improves post-trauma outcomes [76-78],
it is likely that the long term effects of calorie restriction
are related to alterations of biological mechanisms respon-
sible for maintenance of health [79]. Recent work has
indicated the possibility of caloric restriction impacting
circadian clocks as well [80]. However, it is argued that
this may be a secondary effect of calorie restriction
resulting in time restricted feeding imposing specific
rhythms on metabolic function and entraining periph-
eral clocks. Nevertheless, the focus of this discussion is
on TRF and not on calorie restriction.

Clinical studies comparing continuous vs. bolus feeding

A number of fairly comprehensive clinical studies have
considered the impact of temporal delivery of enteral feed-
ing in critical patients [81-88]. Although these studies have
to be acknowledged in the context of our discussion, one
should be aware of the fact that clinical studies comparing
continuous vs. bolus feeding were motivated mostly by
the need to address some of the key practical limitations
associated with delivering nutritional support, such as in-
terruptions of continuous feeding leading to an inability to
achieve nutritional goals, gastrointestinal complications,
modulation of aspiration pneumonia, stool frequency etc.,
rather than as an attempt to capitalize on potentially advan-
tageous physiological and/or biochemical routes linking
metabolic rhythms and immune response. Earlier stud-
ies examined various parameters influenced by delivering
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enteral nutrition in the form of either continuous or bolus
(intermittent) delivery and the conclusions are still de-
bated in the clinical community [84]. Studies comparing
continuous to intermittent tube feeding in adult burn
patients concluded that patients continuously fed had
reduced stool frequency and time required to achieve
nutritional goals. More recent studies, however, despite
minor differences in specific goals and targets, in general
do not provide evidence of significant difference in terms
of patient outcome. Results show that patients intermit-
tently fed have a higher total intake volume, are extubated
earlier, and have a lower risk of aspiration pneumonia.
Postoperatively, feeding at night only is more energy effi-
cient than is feeding continuously for 24 h, but is associ-
ated with poorer nitrogen balance [82]. In one of the very
few studies which complemented intermittent feeding
in a clinical setting with monitoring of biomarkers, the
observed decrease in urinary catecholamine secretion
indicated a possible role of sympatho-adrenal mechanisms.
This study provides a link between feeding patterns and
putatively modulated pathways. However, no studies have
been performed where time restricted feeding has been
compared to either bolus or continuous feeding in the ICU.

Concluding remarks

Time restricted delivery of metabolites imposes rhythmic
availability of nutrients which resets peripheral clocks
in a way that potentially exerts a positive impact on the
immune response. Recent clinical evidence indicates that
restoring circadian rhythms in critically ill patients is
important. We hypothesize that providing circadian cues
in the ICU could be explored as a mechanism to improve
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ICU outcome by reinforcing appropriate rhythms of
hormonal release [30,34] (Figure 4). As it is becoming
increasingly more evident that exploring alternatives
measures to re-establish circadian patters of molecular
expression via non-pharmacological means could hold
significant potential, feeding entrainment through the
possibility of optimizing the time of feeding in relation to
the light/dark cycle for patients receiving enteral nutrition
appears to beg for more investigation [29].

In this brief review we elaborated on the idea that
establishing abolished rhythms would have a beneficial
effect on the host response to stress. We highlighted some
of the key elements associated with this complex question
particularly as they relate to: a) stress and rhythmic vari-
ability; and b) metabolic entrainment of peripheral tissues
as a possible intervention strategy through time-restricted
feeding. Positive effects have been shown in the context
of psychological stress, mood disorders etc., using either
pharmacologic agents, aiming at restoring circadian sig-
nals, or using photic signals to activate the central pace
maker. The question, however, remains whether imposing
appropriate metabolic rhythms, likely not maintaining
homeostatic phase relations with the central clock, through
time-restricted feeding would lead to beneficial entrainment
of peripheral clocks resulting in improved health outcomes
with a host under stress.
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