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Milk: an exosomal microRNA transmitter promoting
thymic regulatory T cell maturation preventing
the development of atopy?
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Abstract

Epidemiological evidence confirmed that raw cow’s milk consumption in the first year of life protects against the
development of atopic diseases and increases the number of regulatory T-cells (Tregs). However, milk's atopy-
protective mode of action remains elusive.

This review supported by translational research proposes that milk-derived microRNAs (miRs) may represent the
missing candidates that promote long-term lineage commitment of Tregs downregulating IL-4/Th2-mediated
atopic sensitization and effector immune responses. Milk transfers exosomal miRs including the ancient miR-155,
which is important for the development of the immune system and controls pivotal target genes involved in the
regulation of FoxP3 expression, IL-4 signaling, immunoglobulin class switching to Igk and FceRl expression. Boiling
of milk abolishes milk's exosomal miR-mediated bioactivity. Infant formula in comparison to human breast- or
cow's milk is deficient in bioactive exosomal miRs that may impair FoxP3 expression. The boost of milk-mediated

miR may induce pivotal immunoregulatory and epigenetic modifications required for long-term thymic Treg
lineage commitment explaining the atopy-protective effect of raw cow’s milk consumption.

The presented concept offers a new option for the prevention of atopic diseases by the addition of physiological
amounts of miR-155-enriched exosomes to infant formula for mothers incapable of breastfeeding.
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Introduction

Children who grow up on traditional farms are pro-
tected from atopic diseases [1]. Early-life consumption
of unboiled cow’s milk has been identified as the most
protective factor for the development of atopy [2-10].
Farm milk exposure has been associated with increased
numbers of CD4"CD25"FoxP3" regulatory T cells (Tregs),
lower atopic sensitization and asthma in 4.5-year-old
children [11]. Treg cell numbers are negatively associated
with asthma and perennial IgE levels [11]. However, po-
tential effectors of milk, which stimulate the development
of Tregs remain elusive. This review provides translational
evidence that milk-derived exosomal microRNAs may be
the potential stimuli for thymic Treg maturation and raw
milk-mediated atopy prevention.
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Atopic diseases are associated with reduced Treg
numbers

Atopic allergy is a Th2 cell-mediated disease that in-
volves the formation of specific IgE antibodies against
innocuous environmental substances. Both naturally oc-
curring thymus-derived and inducible Tregs of the per-
iphery prevent allergy development via suppression of
Th2 cells [12-14]. Decreased FoxP3" Treg numbers have
been detected in atopic mothers at the 34™ week of ges-
tation, in cord blood in association with high IgE levels,
in sputum, nasal secretions and blood of atopic patients
pointing to the pivotal role of FoxP3" Tregs in the
immunopathogenesis of atopy [15-18].

Scurfy is an X-linked recessive severe murine auto-
immune disease resulting from a Foxp3 mutant [18].
The human analog is the immune dysregulation, polyen-
docrinopathy, enteropathy, X-linked (IPEX) syndrome
associated with eczema and increased IgE levels caused
by impaired function of Tregs due to mutated FOXP3
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[19]. In the X-linked immunodeficiency disorder Wiskott-
Aldrich syndrome (WAS) the mutated WAS protein
(WASP) plays the key role in impaired Treg suppressor
function [20,21]. WASP knockout mice display decreased
numbers of Treg cells in both the thymus and peripheral
lymphoid organs [22]. Tregs control the severity of ana-
phylaxis [23], contribute to the resolution of Der pl-
induced allergic airway inflammation [24], and inhibit
allergen-specific effector cells important for the successful
outcome in allergen-specific immunotherapy [25]. Thus,
Tregs are central players in the pathogenesis and treatment
of atopy [26,27].

Thymic maturation of natural regulatory T cells

The vast majority of Tregs is generated in the thymic
medulla at the CD4" single-positive stage of thymocyte
development [28,29]. Tregs highly express FoxP3, the
master regulator for Treg cell differentiation and func-
tion [30-32]. Whereas naturally occurring Tregs are edu-
cated in the thymus, inducible Tregs can be generated in
the periphery [26,33-41]. FoxP3" T cells are detectable in
the periphery 3 days after birth during the period of col-
ostrum feeding [26]. Hassall's corpuscles in the thymic
medulla secrete thymic stromal lymphopoietin (TSLP)
that activates CD11c" dendritic cells (DCs), which in-
duce Foxp3 expression in immature CD4'CD8 CD25
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thymocytes [42,43]. Crucial for FoxP3 induction are
early signals from the T cell receptor (TCR), interleukin-
2 (IL-2), transforming growth factor-p (TGEF-f), and
Notchl [44,45] (Figure 1).

Role of microRNAs in thymic FoxP3™ Treg cell maturation
MicroRNAs (miRs) are fundamental regulators of post-
transcriptional programs that play a role in maturation
and differentiation of Tregs in the thymus [46-49]. Sub-
stantial evidence underlines that miR-155 is required for
the development of the Treg lineage [47]. MiR-155-
deficient mice have reduced numbers of Tregs both in
the thymus and periphery [47]. FoxP3, which is highly
expressed in Tregs, binds to the promoter of bic, the
gene encoding miR-155 [40,50,51]. TCR and Notch sig-
naling upregulates the IL-2R a-chain (CD25), rendering
thymocytes receptive to subsequent cytokine signals that
foster their development into fully functional FoxP3*
Tregs [52-54]. IL-2 is capable of transducing signals in
CD4"FoxP3" Tregs as determined by STAT5 phosphor-
ylation [54]. Deletion of miR-155 results in limited IL-2/
STAT5 signaling and reduced Treg numbers [55]. Re-
markably, miR-155 enhances FoxP3 expression by tar-
geting suppressor of cytokine signaling 1 (SOCS1), an
important negative regulator of IL-2R/STAT5 signaling
(Figure 1). MiR-146a targets STAT1 and regulates Treg-
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Figure 1 Potential mechanisms of milk exosome miR-155-mediated FoxP3 expression in Tregs. TCR activation upregulates CD25 and
subsequent IL-2/STATS signaling, which cooperatively with TGF3-activated SMADS5 stimulate the FOXP3 promoter. MiR-155 attenuates the expression
of SOCST, the inhibitor of STATS, thus amplifying IL-2/STAT5-mediated FoxP3 expression. FoxP3 activates the bic promoter enhancing the synthesis of
miR-155, which suppresses mRNAs of GATA3 and IL-4, pivotal transcription factors of Th2-mediated IgE-driven atopic immune responses.
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mediated suppression function and maintains Treg iden-
tity [48]. Deletion of miR-146a in Tregs causes a severe
autoimmune phenotype akin to Dicer knockout animals,
characterized by increased numbers of poorly functional
FoxP3" Tregs in the periphery [56]. MiR-21 is highly
expressed in Tregs and positively regulates FOXP3 [57].
MiRs are processed in the cytoplasm by the ribonuclease
Dicer. Conditional knockout of Dicer in CD4" cells results
in depletion of thymic Tregs and suppressed TGF-p-
mediated induction of Foxp3 in naive CD4" cells associ-
ated with increased IL-4 levels [50]. Dicer knockout mice
as well as mice with conditional knockout of Dicer in
FoxP3" cells develop severe autoimmune diseases [58,59].
In the later model, FoxP3 expression is unstable and Treg
revert to an effector phenotype producing IL-4 and IFN-y.
Notably, miR-155 negatively regulates mRNA levels of
GATA-3 and IL-4 [60]. It is well known that GATA-3 pro-
motes Th2 responses [61]. In miR-155 null mice increased
Th2 cell differentiation has been reported [62,63].

Exosomal microRNAs in immune cell communication
Valadi et al. [64] were the first who demonstrated that
exosome-mediated transfer of mRNAs and microRNAs
is a novel mechanism of genetic exchange between cells.
Secreted miRs represent a newly recognized layer of
gene regulation and intercellular communication [65-67].
MiRs bind through partial sequence homology to the 3'-
untranslated region of target mRNAs and cause either
translational block or mRNA degradation [68]. Exosomal
miRs, enclosed by membranous microvesicles, play a piv-
otal role for horizontal miR transfer [69]. Raposo et al
[70] provided first evidence for exosome-mediated im-
mune cell communication. Unidirectional transfer of miR-
loaded exosomes from T cells to antigen-presenting cells
has recently been confirmed [71]. For immune cell-cell in-
teractions exosome transport exchanging genetic mes-
sages over distances has been demonstrated [72,73]. In the
human thymic medulla miR-transporting exosomes that
may provide genetic signals required for Treg formation
have recently been characterized [74].

Milk-derived exosomal miRs: boosters for thymic Treg
maturation?

Recently, we have suggested that milk is an endocrine sig-
naling system that promotes mTORC]1 signaling by trans-
fer of essential branched-chain amino acids and exosomal
regulatory miRs to the milk recipient [75]. Zhang et al.
[76] published that diet-derived plant MIR168a reaches
the plasma compartment of human subjects and affects
LDLRAPI1 metabolism in the liver [76]. However, Dickinson
et al. [77] were unable to detect plant miRs after feeding
in mice. Breast milk in comparison to all other body fluids
contains the highest amounts of total RNAs [78]. Bovine
and human milk contain substantial amounts of exosomal
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miRs that may be transferred to the infant to promote
immune regulatory functions [79-81]. MiR-containing
exosomes of 30-100 nm diameter have been identified
in human breast milk, cow’s milk, bovine whey and col-
ostrum [83-85]. Exosomes from bovine colostrum and
mature milk are able to deliver miRs into cultured cells
thereby increasing cytoplasmic miR levels [85]. Al-
though not proven vyet, several investigators regard
milk-derived miRs as important effectors for the devel-
opment of the infant’s immune system and proposed
that milk’s miRs may reach the infant’s circulation and
organ systems [81,85-87]. Admyre et al. [82] demon-
strated that incubation of human PBMCs with isolated
human milk exosomes increased the number of CD4
"CD25"FoxP3" Tregs in a dose-dependent manner. Hu-
man and bovine milk contain significant amounts of
those immune regulatory miRs (miR-155, miR-146a,
miR-21) that play a known role in thymic Treg differen-
tiation [80,81,85,87]. Bovine colostrum in comparison
to mature milk contains the highest amounts of miR-
155 and miR-21 [80,81]. Substantial exosomal miR-155
content has been detected in bovine whey [81]. The
lipid bilayer of milk exosomes protects their miR-cargo
against harsh degrading conditions like low acidic pH of
1-2 and RNase-mediated degradation [81,86]. Boiling of
milk, however, results in complete miR degradation
[87]. Raw cow’s milk contains the highest amounts of
bioactive miRs, whereas pasteurized milk contains lower
levels and milk powder used for infant formula produc-
tion only exhibits trace amounts of detectable RNAs
[80,81].

Milk exosome CD81: an exosomal antigen required

for thymocyte maturation?

The increased intestinal permeability during the postnatal
period may support milk exosome traffic into the infant’s
blood circulation. Intestinal cells release exosomes of 30-
90 nm in diameter from their apical and basolateral sides
[87]. Milk exosomes are specifically characterized for the
presence of CD81, CD63 and Hsc70 and the absence of
calnexin [83]. The tetraspanins CD81 and CD63 are also
present on intestinal cell-derived exosomes [88] and circu-
lating exosomes in human plasma [89]. Blood is regarded
as a physiological fluid for exosome circulation in the
body supporting exosome traffic for cell-cell and organ-
organ communications [67,71-73,90]. Importantly, exo-
somes have been observed in murine and human thymus
[74,91]. Milk exosomes and thymic exosomes are of com-
parable size and contain TSG101, CD81, CD63 and milk
fat globulin (MFG)-8 [74,83,91-93]. A monoclonal anti-
body against CD81 blocked the appearance of aff T cells
in fetal murine thymic organ cultures. In reaggregation
cultures with CD81-transfected fibroblasts, CD4 CD8
thymocytes differentiated into CD4"CD8" T cells. Thus,
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interaction between immature thymocytes and CD81 is
required for the transition of thymocytes from the CD4~
CD8 to the CD4"CD8" stage [93]. CD81 of thymic stro-
mal cells but also milk exosome-derived CD81 may play a
role in CD81-mediated thymocyte development.

Milk- and thymus-derived exosomes promote Treg
maturation

MiR-155 exhibits highest expression in colostrum and is
still a predominant exosomal miR of bovine whey
[84,85]. MiR-155, miR-146a and miR-21 are components
of human plasma [86,94,95]. Human and bovine milk
exosomes are taken up by macrophages and thereafter
increase cellular miR levels [85,92]. Notably, isolated hu-
man breast milk exosomes incubated with human
PBMCs increase CD4"CD25"FoxP3" Treg numbers [82].
Intriguingly, murine thymic exosomes induce the con-
version of CD4"CD25  thymic T cells into CD4*CD25
"FoxP3" Tregs in a dose-dependent manner [91]. Thus,
both human breast milk exosomes and thymic exosomes
are able to induce CD4"CD25"FoxP3" Tregs [82,91]. We
thus propose that milk may function as a miR messenger
system boosting thymic Treg cell maturation by transfer
of milk-derived exosomes donating miRs required for
appropriate thymic Treg maturation by the evolutionar-
ily conserved process of breastfeeding. Notably, phylo-
genetic studies demonstrate that miR-155 is conserved
across species [96]. There is a high homology between
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human (hsa-mir-155) and bovine miR-155 (bta-mir-155)
(www.mirbase.org).

MiR-mediated FOXP3 demethylation

Farm milk exposure increases the numbers of demethy-
lated CD4"CD25FoxP3" Tregs [11]. Stable expression
of Foxp3 in Tregs depends on DNA demethylation at
the Treg-specific demethylated region (TSDR), a con-
served, CpG-rich region within the FOXP3 locus [97].
Binding of the transcription factor Ets-1 to the demethy-
lated Foxp3 gene stabilizes Foxp3 expression in Tregs
[98] (Figure 2). Atopic individuals express lower num-
bers of demethylated FoxP3" Tregs [99]. DNA methyla-
tion is often associated with inhibition of transcriptional
activity and plays a fundamental role during develop-
ment and genomic imprinting [100]. Milk, the “starter
cocktail” of postnatal mammalian life, may function as
an epigenetic regulator for thymic Treg maturation.
There are two potential mechanisms of DNA demethyla-
tion: 1) passive demethylation through inhibition of
DNA methyltransferases (DNMTs) and 2) active de-
methylation mediated by ten-eleven-translocation (TET)
2 and 3 [100]. TET2 binding to CpG-rich regions re-
quires the interaction of TET2 with the protein IDAX
(also known as CXXC4) [101]. Intriguingly, the CXXC
DNA-binding domains can bind unmethylated DNA and
recruit TET2 via IDAX [102]. Both DNMTI1 and
DNMT3b are associated with the Foxp3 locus in CD4"
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Figure 2 Proposed mode of action of milk miR-mediated demethylation of FOXP3. Milk-derived miR-29b, -21, and -148a may reduce the
expression of DNMTs resulting in TSDR hypomethylation required for IDAX binding, which finally attracts TET2 to the TSDR resulting in complete
TSDR demethylation, important for permanent FOXP3 stabilization.
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cells [103]. Methylation of CpG residues represses Foxp3
expression, whereas complete demethylation is required
for stable Foxp3 expression [103]. There is increasing
evidence that miRs modify the regulatory network of
TET2 expression [104]. MiR-21 indirectly down-regulates
DNMT1 by targeting ras guanyl nucleotide-releasing
protein 1 (RASGRP1). MiR-148a, a highly expressed miR-
species in colostrum and mature milk [80,81,87], directly
targets DNMT1 expression [105]. MiR-29b, another miR
species of milk [81], contributes to DNA hypomethylation
of CD4" T cells in systemic lupus erythematosus indirectly
targeting DNMT1 [106]. Milk-miR-mediated hypomethy-
lation of CpG-regions of the TSDR FOXP3 locus may thus
promote the final step of active TSDR demethylation. In
fact, IDAX-mediated TET2 binding results in complete
and permanent FOXP3 demethylation. TSDR demethyla-
tion occurs during the CD4-single positive stage of thy-
mocytes and the presence of 5-hydroxymethylcytosine
(5-hmC), a product of TET-mediated 5mC hydroxylation,
within the TSDR region and the induction of TET2/3
during Treg maturation points to active TET-mediated
demethylation of FOXP3 TSDR [97]. We thus speculate
that the immunoregulative miR network of milk may
induce lineage-specific epigenetic modifications of FOXP3
required for long-term Treg lineage stability and atopy
prevention.

MiR-155 and atopy-related target genes

MiR-155 inhibits suppressor of cytokine signaling 1 (SOCS1)
[60]. SOCS1 is a negative regulator of phosphorylated
STATS5. TCR, IL-2 and TGF-B1 are pivotal signals for
Treg differentiation associated with phosphorylation of
STAT5 and SMAD5, which enhance FoxP3 expression.
MiR-155-mediated suppression of SOCS1 augments
FoxP3 expression promoting further miR-155 synthesis
[47] (Figure 1).
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The transcription factor c-Maf promotes IL-4 expres-
sion and is induced during normal precursor cell differen-
tiation along the Th2 lineage [107,108]. c-Maf binds to the
c-Maf response element in the proximal IL-4 promoter
(Figure 3A). Importantly, c-Maf is a target of miR-155
[62,109]. In accordance, CD4" cells transfected with anti-
miR-155 expressed higher levels of GATA-3 and IL-4 [60].
Thus, miR-155-mediated c-Maf suppression promotes
FoxP3" Treg activity and impairs IL-4/Th2 cell-mediated
atopic immune deviations (Figure 3B).

The lipid phosphatase SHIP1 (Src homology-2 domain-
containing inositol 5-phosphatase 1) plays an increasing
role for immune regulation [110,111]. Myeloid-specific
ablation of SHIP leads to the expansion of Treg cell
numbers, confirming the role of SHIP in the control of
Treg numbers [112]. Notably, SHIP1 mRNA is a primary
target miR-155 [113].

The transcription factor PU.1 is a direct target of miR-
155 and is involved in the regulation of immunoglobulin
(Ig) class-switch of plasma cells [114]. Ig heavy chain
class switching to IgE is directed by IL-4 and IL-13 by
inducing transcription from the IgE germline promoter
[115]. IL-4-induced IgE germline gene transcription rep-
resents an early step during IgE isotype switch differenti-
ation and is orchestrated by the coordinated action of
the transcription factors STAT6, PU.1, NF-kB, and C/
EBP on the promoter region of the IgE germline gene
[115-117]. MiR-155-mediated suppression of PU.1 and
c-Maf may thus attenuate IL-4-induced IgE synthesis.
Notably, PU.1 cooperatively with GATA-1 transactivates
the a-chain of the high affinity receptor of IgE (FceRI)
[118]. FceRI plays an important role in IgE-mediated
atopic sensitization as well as in IgE-mediated atopic im-
mune reactions.

Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4)
is a surface molecule of activated T cells and a negative
regulator of T-cell activation. The mean percentage of T
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cells expressing CTLA-4 in patients with atopic dermatitis
was higher than in the control group [119]. miR-155 was
identified as a direct target of CTLA-4 [120]. CTLA-4 has
been shown in mice to control Foxp3+ regulatory T cell
function [121].

Increased maternal LPS-exposure during farming
enhances miR-155 release

Pregnancy in a farm environment reduces the infant’s
risk of atopic diseases [1-9]. TLR-mediated innate re-
sponse pathways are believed to attenuate allergic Th2-
driven immune responses [122]. Blood cells of infants of
farming-exposed mothers exhibit upregulated expression
of TLR2 and TLR4 [123,124]. MiRs are fine-tuners of
TLR signaling and play a crucial role in endotoxin toler-
ance [125,126]. Enhanced exposure of lipopolysaccharides
(LPS) in the farm environment may result in stronger
LPS-mediated TLR4 activation in monocyte/macrophages
and DCs that increase expression of miR-155, miR-146a,
and miR-21, crucial regulatory miRs involved in thymic
Treg maturation [127-133]. Notably, activated macro-
phages release exosomes that can activate and recruit im-
mune cells [134].

Placental trophoblasts, which form the interface be-
tween the maternal environment and the fetus, on stimu-
lation secrete miR-loaded exosomes [135]. Low dose
injection of LPS induces miR-155 and pre-eclampsia-like
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symptoms in the rat and elevated placental miR-155 in
pre-eclampsia patients [136]. A time-and dose-dependent
accumulation of miR-155 following LPS stimulation has
been observed in human trophoblast cells [136]. LPS-
stimulated placenta-derived exosomal miR-release may
modify fetal immune regulation [137]. Thus, enhanced
prenatal LPS-induction of miR-155 may explain the higher
Treg numbers in umbilicial cord blood of newborn infants
of farming exposed mothers [138]. LPS-mediated miR-
155-expression with subsequent SOCS1 inhibition could
result in robust TLR4/JAK-STAT signaling further ampli-
tying LPS-induced miR-155 responses [139,140].

Bioactive exosomal miR-155 in raw cow’s milk

Feeding raw, unpasteurized cow’s milk in the first year
of life exerts atopy-preventive effects, increases the num-
ber and function of FoxP3" Tregs and decreases IgE
plasma levels [1-9]. Boiling of milk degrades bioactive
miRs in cow’s milk [87]. Especially the whey protein
fraction of milk has been implicated to mediate the
atopy-protective effect of raw farm milk [3,8]. Note-
worthy, miR-155 and miR-146a have not been detected
in the lipid fraction of human breast milk [141]. MiR-
155 is expressed in highest amounts in colostrum and is
a substantial component of the whey fraction of mature
bovine milk [80,81,85]. Exosome membrane integrity is
essential for the uptake of milk miRs into cultured cells

Raw
cow’s milk

Breast milk

LPS

Mother

Placenta
Figure 4 Perinatal scenario of milk-and LPS-induced miR-155-exosome-signaling promoting thymic Treg maturation. Fetuses and infants
raised in an active farming environment are exposed to abundant sources of LPS and raw cow'’s milk that either stimulate or provide miR-155
compared to infants raised under civic conditions and artificial formula feeding.
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[85]. The boiling process may disrupt the lipid bilayer of
milk exosomes exposing their miR content to RNase-
mediated degradation.

Breastfeeding of non-atopic versus atopic mothers and
Treg maturation

A history of breastfeeding is associated with a reduction
of the risk of asthma and atopic dermatitis [142]. Appar-
ently, after termination of placenta-mediated signaling
towards the thymus, the immunoregulatory program
featured by the mammary gland may tune final miR-
dependent events for the proper development of the in-
fant’s immune system. We speculate that atopic mothers
who exhibit lower numbers of FoxP3" Tregs and who
may accordingly express lower levels of FoxP3-stimulated
miR-155 may provide deficient amounts of breast milk
miR-155 to their infants. This may explain why atopic
mothers transmit atopic diseases more frequently than
atopic fathers [143-145].

Artificial formula feeding and Treg maturation

Breastfeeding compared to artificial formula feeding ex-
erts atopy-preventive effects [142,146,147]. Formula pro-
duction is based on bovine milk protein powder, which
in comparison to raw cow’s milk only contains minimal
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amounts of RNA [81]. Extensively hydrolyzed formula
made for “atopy prevention” exhibits the lowest miR
levels compared to standard formula [81,148]. According
to the American Academy of Pediatrics Committee on
Nutrition and Section on Allergy and Immunology, there
is only “modest evidence” that the onset of atopic dis-
ease may be delayed or prevented by feeding hydrolyzed
formulas compared with standard formula [146].

Conclusion

Exosomal cargo transfer plays an increasing role for
intercellular communication [149,150]. Accumulating
translational evidence sheds a new light on the potential
role of milk as a transmitter of exosome-derived im-
mune regulatory miRs for thymic Treg maturation. Milk
miRs may promote the two-step selection process turn-
ing self-reactive thymocytes into stable Treg cells. TCR
stimulated IL-2/STAT5 signaling may be enhanced by
milk miR-155-mediated SOCS1 suppression, which aug-
ments upregulation of FoxP3. FoxP3 promotes miR-155
expression further enhancing this feed forward regula-
tory circuit. In a second step FoxP3 expression may be
stabilized by milk-miR-mediated hypomethylation of the
TSDR region of FOXP3. This hypomethylation may allow
IDAX binding, which finally attracts TET2 promoting

Table 1 Translational evidence for milk-microRNA-mediated thymic Treg maturation

Potential function of milk microRNA

Comment

References

Milk contains abundant miRs
Milk contains miR-155, miR-146a, and miR-21
The majority of milk's miRs are transported in exosomes

MiR-155 is a component of colostrum and bovine whey and
is found to be transported in exosomes

Milk exosomes are resistant against RNase-degradation and
acidic conditions (pH1-2)

Mir-155, miR-146a and miR-21 are components of human
blood plasma

Bovine colostrum and bovine milk and human breast milk
exosomes containing miRs are taken up by cells and increase
cytoplasmic miR levels

Exosomal transfer is a known mechanism of communication
between immune cells

Human breast milk exosomes when added to PBMCs induce
FoxP3* Tregs

Exosomes have been detected in the murine and human
thymus

Murine thymic exosomes when added to thymus CD4*CD25"
T cells induce CD4"CD25FoxP3™ Treg cells

MiR-21 and miR-29b inhibit DNMT1 expression in T cells

From all body fluids human milk contains the highest amounts
of RNAs and miRs

MiR-155, miR-146a and miR-21 are crucial miRs involved in Treg
maturation and function

Exosomes transfer genetic information for cell-cell communications
over short and long distances

[78-82,84-87,92]

[79-81,84,85,87]

[81,82,84-87,92]

MiR-155 is an ancient highly conserved miR involved in immune [84,85]
regulation

Milk exosomes may survive the acidic environment of the [80,81,86]
stomach. Boiling of milk destroys the biological activity of

milk miRs

Milk miR-containing exosomes may be transported in circulation [94,95]
and may reach the thymus

Milk-derived miRs may be taken up by exosome endocytosis in [82,85,92]
recipient cells. Physical destruction of exosomal lipid bilayer

structure abolishes cellular miR uptake

Macrophages, B-cell, T cells and thymocytes communicate via [70-73,91]
exosome transfer

Breast milk miR-155 may induce the expression of FoxP3™ by [82]
inhibiting SOCS1 signaling

Milk-derived exosomes may augment Treg cell maturation in [74,91]
the thymus

Milk-derived exosomes may promote Treg cell formation of [74,91]
developing thymocytes within the human thymic medulla

Milk miR-21 and miR-29b may promote stable expression of [105,106]

demethylated FoxP3 and thus lineage commitment of thymic
Treg cells
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active demethylation stabilizing FoxP3 maturation and
long-term Treg lineage commitment.

Furthermore, functionally active FoxP3 Treg cells sup-
press the development of Th2 cell-dependent immune
responses. Milk miR-155 may impair atopic sensitization
by suppression of c-Maf/SHIP1-mediated IL-4 synthesis,
PU.1-mediated Ig class switch to IgE as well as PU.1-
driven FceRI a-chain synthesis. Thus, the milk miR sys-
tem may not only augment thymic Treg maturation but
may apparently prevent Th2-mediated atopic sensitization
and atopic effector responses. Boiling of milk obviously
destroys the miR-signaling system of milk, whereas
LPS-mediated miR-155 release from stimulated mater-
nal macrophages and trophoblast cells as well as fresh
cow’s milk-mediated miR-155 transfer may promote
thymic Tregs maturation explaining synergistic atopy-
preventive effects of perinatal farm exposure (Figure 4).
Milk appears to function as an evolutionarily highly
conserved miR-dependent epigenetic modifyer imprint-
ing appropriate changes required for long-term thymic
FoxP3-mediated Treg differentiation. Milk-derived exo-
somes in synergy with thymic exosomes may play the
essential role for stable maturation of CD4'CD25
"FoxP3" Tregs, which themselves following TCR activa-
tion produce CD73-containing exosome-like structures
that mediate their suppressive activity [151].

Obviously, atopic individuals are “Treg weaklings”
exhibiting lower numbers and function of FoxP3 Tregs
compared to non-atopic subjects. Breast milk of atopic
mothers may thus provide less FoxP3-induced miR-155
explaining the increased maternal transmission of atopic
diseases compared to the lower paternal atopy transmis-
sion. Accumulating evidence supports our concept that
milk’s exosomal miR system may represent “the missing
candidate” inducing the atopy-preventive effects of raw
cow’s milk consumption (Table 1). Deviations of miR
processing and miR-regulated transcriptional activity
may play a future role for a deeper understanding of the
immunopathogenesis and treatment of atopic diseases.
Future prevention of atopic diseases might be possible
by addition of appropriate miR-155-enriched exosomes
to artificial infant formula.
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