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Abstract

It is now 40 years since bisphosphonates (BPs) were first used in the clinic. So, it is timely to provide a brief review
of what we have learned about these agents in bone disease. BPs are bone-specific and have been classified into
two major groups on the basis of their distinct molecular modes of action: amino-BPs and non-amino-BPs. The
amino-BPs are more potent and they inhibit farnesyl pyrophosphate synthase (FPPS), a key enzyme of the mavalonate/
cholesterol biosynthetic pathway, while the non-amino-BPs inhibit osteoclast activity, by incorporation into
non-hydrolyzable analogs of ATP. Both amino-BPs and non-amino-BPs can protect osteoblasts and osteocytes against
apoptosis. The BPs are widely used in the clinic to treat various diseases characterized by excessive bone resorption,
including osteoporosis, myeloma, bone metastasis, Legg-Perthes disease, malignant hyperparathyroidism, and other
conditions featuring bone fragility. This review provides insights into some of the adverse effects of BPs, such as gastric
irritation, osteonecrosis of the jaw, atypical femoral fractures, esophageal cancer, atrial fibrillation, and ocular inflammation.
In conclusion, this review covers the biochemical and molecular mechanisms of action of BPs in bone, particularly the
discovery that BPs have direct anti-apoptotic effects on osteoblasts and osteocytes, and the current situation of BP use
in the clinic.
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Introduction
Bone fragility, leading to fractures and disability, is impli-
cated in the pathogenesis of various bone-desorption
diseases induced by glucocorticoid excess, sex-steroid de-
ficiency, and tumors. Today, BPs are the first-line treat-
ment for osteoporosis [1], metastatic bone cancer [2], and
Legg-Calve-Perthes disease [3]. BPs are bone-specific and
have been used widely in the clinic. However, their exact
mechanisms of action remain incompletely understood.
Moreover, these medications have attracted much atten-
tion mainly because their complications and pathophysio-
logical aspects remain unclear.
In the present review, we summarize the biochemical

and molecular mechanisms of action of BPs in bone, par-
ticularly the discovery of BPs having direct anti-apoptotic
effects on osteoblasts and osteocytes [4,5]. The prospects
and caveats for the clinical use of BPs are also discussed.
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Pharmacokinetics
Absorption
BPs are administered intravenously or orally. Oral BPs
are absorbed into the bloodstream from the gastrointes-
tinal lumen by two routes: 1) transcellularly, transported
through epithelial cells into the blood, and 2) intercellu-
larly, whereby BPs gain access to the circulation via the
tight junctions between the epithelial cells [6].
Bioavailability is a measure of the rate and extent to

which a drug reaches the systemic circulation. The oral
bioavailability of BPs is low. The widely used amino-BPs
have an absorption of ~0.7%, and non-amino-BPs appear
to have a slightly higher absorption, of 2–2.5% [7]. Also,
oral absorption is impaired in the presence of food and
calcium-, magnesium-, or aluminum-containing drinks
and is enhanced with elevated gastric pH [6,8,9]. If the
drug is taken with a meal, the absorption may be re-
duced to zero [10]. Thus, food may have a marked influ-
ence on the absorption of BPs. For example, patients are
This is an open access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

mailto:pengjiang301@126.com
http://creativecommons.org/licenses/by/2.0


Xu et al. Journal of Translational Medicine 2013, 11:303 Page 2 of 8
http://www.translational-medicine.com/content/11/1/303
recommended to take their daily dose of oral BPs, such
as alendronate, at least 30 min before breakfast [11].

Distribution of BPs
Extra-skeletal
Previous studies of radio-labeled compounds showed
that BPs are taken up and adsorbed in to bone primarily,
but some also goes to soft tissues, such as the liver, kidney,
and spleen [12,13]. The distribution of BPs in extra-
skeletal tissue differs, with potential differences in plasma
protein binding and kidney concentrations. These differ-
ences in distribution may explain, in part, the direct effects
of BPs on tumor cells in some studies [14].

Distribution in bone
The skeletal distribution and retention of BPs are essential
to their effects on bone. Although the uptake and distribu-
tion of BPs have been investigated extensively, in vivo and
in vitro, knowledge in humans is incomplete. The amount
of BP taken up by bone during the first passage is difficult
to quantify. Moreover, the precise route of transfer of BPs
from the systemic circulation to bone remains elusive.
The distribution in bone is not homogeneous, with the
use of 14C and 99mTc-labeled BPs in animals and humans,
respectively. Studies investigating the important steps in
the distribution of the BPs in properly performed human
studies is necessary. Additionally, some evidence suggests
that BPs bind preferentially to bones with high turnover.
For example, the uptake of BP in the femur neck and
spine is higher than in the femur shaft [15,16].

Different binding ability
Competitive bone uptake can occur when two or more
BPs are co-administered at high doses [17]. For example,
a high concentration of etidronate competes with alen-
dronate binding. Bone uptake may also be influenced by
age and gender. The bone turnover rate for modeling
and remodeling is age-dependent. Some studies have in-
dicated that the bone turnover rates may differ between
young male and female rats, but not older male and fe-
male animals [18].

Elimination
In vivo, only the non N-BPs etidronate and clodronate
are metabolized intracellularly to cytotoxic adenosine
triphosphate (ATP) analogs; most BPs are not metabo-
lized [19]. BPs are excreted unchanged in urine, as
shown by 14C-labeled studies. Moreover, active tubular
secretion of BPs may also be important [20]. After they
attach to bone, BPs are liberated again only when the
bone in which they are present is resorbed. They can then
be taken up again by the skeleton or released into blood.
Some amount of BPs can be further embedded in bone
during continued bone formation. Thus, the half-life of
BPs in bone depends on the rate of bone turnover [6,21].
Cellular mechanisms of action of BPs
Effects on osteoblasts
Despite the well-documented inhibitory effect of BPs
on osteoclasts, increasing attention is being focused
on their effects on other effector cells, such as osteocytes
and osteoblasts. Several early studies showed that BPs
could down-regulate “receptor activator of NF-κB ligand”
(RANKL) and up-regulate osteoprotegerin (OPG) in
osteoblasts, which is one mechanism by which BPs—
indirectly—affect resorption [22-26] (Figure 1). Recent
studies have shown that BPs affect the expression of
OPG and “macrophage colony-stimulating factor” (M-CSF),
both essential in osteoclastogenesis (Figure 1). BPs can
increase OPG expression and decrease M-CSF expression;
in consequence they might inhibit osteoclastogenesis [25].
Substantial evidence has accumulated that BPs modulate
the proliferation and differentiation rates of osteoplastic
cells, albeit with varying or conflicting effects, in relation to
the concentration of BPs [5,27-31]. BPs can promote the
growth and differentiation of osteoblasts at lower concen-
trations, ranging from 10−9 to 10−6 M but had inhibitory
effects at >10−5 M [5].
Previous reports have revealed that enhanced viability of

osteocytes and osteoblasts may be involved in the benefi-
cial effects of BPs on bone [32]. Early studies showed that
BPs suppressed apoptosis in osteocytes and osteoblasts in-
duced by glucocorticoids in mice [33]. Consistently, alen-
dronate has also been shown to exert an inhibitory effect
on osteocyte apoptosis induced by fatigue cyclic loading in
rats and mice [33-37]. Thus, increasing attention has
focused on this and differing mechanisms of action for
the anti-apoptotic effects of BPs have been proposed
(Figure 1). Recent studies have suggested that the apop-
totic effects of BPs depend strictly on the opening of chan-
nels formed by connexin43 (Cx43), a member of the
connexin family of proteins expressed in osteoblasts and
osteocytes [32,33,36-38]. The opening of Cx43 hemichan-
nels results in the activation of kinases, including Src and
“extracellular signal-regulated kinases”(ERKs), which initi-
ates the sequential phosphorylation of the ERKs’ cytoplas-
mic target, p90RSK kinase, and final target substrates,
BAD and C/EBPβ, thus suppressing apoptosis [5,33].
Although Cx43 is prerequisite for the prosurvival effect of
BPs, recent studies have demonstrated that Cx43 is not
required for cell binding of BPs [5,39]. Furthermore,
the anti-apoptotic effects of BPs do not depend on
inhibitory effects on osteoclasts because analogs that
lack anti-resorptive activity could still inhibit apoptosis
in osteoblasts and osteocytes without decreasing osteo-
clast viability [40]. Thus, future studies should address the



Figure 1 Effects on osteoblasts. BPs can down-regulate “receptor activator of NF-κB ligand” (RANKL) and up-regulate osteoprotegerin (OPG) in
osteoblasts, indicating indirect effects on the resorption. BPs can inhibit apoptosis of osteoblasts and osteocytes through Cx43 hemichannels. The
opening of Cx43 hemichannels results in the activation of kinases, including Src and “extracellular signal-regulated kinases” (ERKs), which initiates the
sequential phosphorylation of the ERK cytoplasmic target, p90RSK kinase, and final target substrates, BAD and C/EBPβ, thus suppressing apoptosis.
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binding proteins of BPs and new analogs that do not in-
hibit bone remodeling.

Effects on osteoclasts
The significant selectivity of BPs for bone accounts for
their efficacy and safety in clinical medicine. Their target-
ing to bone and their selective uptake by mineral surfaces
on bones brings them closely in contact with osteoclasts
[4,41]. The uptake of BPs by osteoclasts in vivo has been
demonstrated using radiolabeling techniques. Previous
studies have shown that BPs can affect osteoclast function
in various ways, including osteoclast recruitment, differen-
tiation, and resorptive activity, and some may cause apop-
tosis of osteoclasts [42].
Currently, BPs are classified into two major groups

[4,43,44] on the basis of their distinct molecular mecha-
nisms of action (Figure 2). Members of the first group
contain a nitrogen atom; members of this group inhibit
the mevalonate biosynthetic pathway, which leads to the
synthesis of cholesterol and other sterols. Three major iso-
prenoid lipids produced in the mevalonate pathway are
FPP, isopentenyldiphosphate, and geranyl geranyldipho-
sphate (GGPP). BPs can inhibit farnesyl pyrophosphate
synthase (FPPS), the main enzyme in this pathway
[45-47]. FPP and GGPP are required for the prenylation of
small GTPases, such as Ras, Rab, Rho, and Rac. Loss of
GTPases inhibits the formation of the ruffled border, traf-
ficking of lysosomal enzymes, and transcytosis of degraded
bone matrix [48,49].
The second group comprises the non-amino-BPs, such

as etidronate and clodronate. Members of this group of
BPs can be incorporated metabolically into methylene-
containing analogs of ATP [50]. The metabolite analog
of ATP is AppCH2p, which contains the P-C-P moiety
of medronate in place of the β,γ pyrophosphate (P-O-P)
moiety of ATP and results in non-hydrolyzable (AppCp)
nucleotides [2,51,52]. Furthermore, the accumulation of
AppCp-type metabolites of BPs is associated with cyto-
toxicity [53-55].
Clinical applications of bisphosphonates
Forty years have now passed since the first description of
BPs [4,56]. BPs have played an important role in the diag-
nosis and treatment of various diseases during this period.
BPs have become crucial for bone imaging and an import-
ant treatment for various diseases, such as osteoporosis,
myeloma, bone metastasis, Legg-Perthes disease, malig-
nant hyperparathyroidism, and other conditions involving
bone fragility [57]. Most of these diseases are character-
ized by extensive osteoclast activity.
Bone scans
According to their diagnostic utility, sensitivity, specificity,
and predictive power, BPs were used as agents for bone
imaging in the early period. In 1975, 99mTc bone imaging
agents were found to be a useful diagnostic method
[58,59]. Today, 99mTc diphosphonates are used with 18 F
fluorodeoxyglucose in metastatic cancer diagnosis because
99mTc has an affinity for sites where bone is actively
remolded, while 18 F fluorodeoxyglucose is taken up by
tumor cells [60,61].



Figure 2 Effects on osteoclasts. Osteoclasts release BPs from the bone matrix. N-containing BPs potently inhibit farnesyl pyrophosphate synthase
(FPPS), a key enzyme in the mevalonate/cholesterol biosynthetic pathway. Non-N-BPs are incorporated metabolically into non-hydrolyzable cytotoxic
analogs of ATP (AppCp).
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Osteoporosis
Today, BPs are an essential first-line therapy for osteo-
porosis. Early studies showed that BPs could improve
bone mineral density (BMD) and decrease the risk of
fracture, especially hip fracture [62-68]. Three BPs, alen-
dronate, risedronate, and ibandronate are most widely
used in the clinic. Recently, a potent new bisphospho-
nate, zoledronic acid, has shown high affinity. It can be
taken once per year [69,70], which enhances patient will-
ingness to take the medicine. Some studies showed that
zoledronic acid had a dose-dependent cytotoxic effect
on odontoblast-like cells under clinical conditions [71],
drawing attention to the optimal dose and drug “holidays”
with these drugs.

Anti-cancer
Many kinds of cancers, especially breast, lung and pros-
tate cancers, can metastasize to bone in their disease
progression. There are various hypotheses as to how BPs
affect tumor cells. Many early studies focused on indir-
ect anti-tumor effects of BPs, the anti-resorptive effects
of BPs [72-75]. Recent evidence has shown that BPs can
be taken up by other tissues, so they may also have dir-
ect effects on tumors [41,76,77]. Some studies showed
the BPs could inhibit tumor cell angiogenesis, invasion,
proliferation, and survival in vitro. For example, zoledronic
acid can downregulate the expression of Bcl-2, an anti-
apoptotic factor, to induce apoptosis in breast and prostate
cancers [76-78]. More recent evidence showed that BPs
may inhibit proliferation markers , suppressing the prolif-
eration of tumors [79-84].

Bone inflammation diseases
Early studies showed that BPs could be used to suppress
the lysis induced by glucocorticoids during rheumatoid
arthritis (RA) treatment [85,86]. Recent studies showed
that BPs could inhibit some proinflammatory factors, such
as interleukin 1(IL-1), IL-6, and tumor necrosis factor-α,
[87-91], idicating an anti-inflammatory action of BPs.
Also, studies showed that BPs could decrease pain and im-
prove function in osteoarthritis patients [92]. However,
the mechanism(s) of these phenomena remain(s) unclear.

Safety
Despite the widespread use of BPs in the clinic, they have
adverse effects, such as gastric irritation, osteonecrosis of
the jaw, atypical femoral fractures, esophageal cancer,
atrial fibrillation, and ocular inflammation [93].

Upper gastrointestinal tract irritation
Gastrointestinal irritation is common with oral BPs, and is
the most common reason for treatment discontinuation
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[94,95]. Alendronate, an oral nitrogen-containing BP,
may cause gastrointestinal symptoms such as dyspepsia,
esophagitis, esophageal reflux, and gastritis [96].
Bisphosphonate-related osteonecrosis of the jaw
Early in the 21st century, the first description of osteo-
necrosis of the jaw was reported in patients with BP ex-
posure [97]. The adverse effect increased with intravenous
injection of BPs [98]. Since then, growing numbers of re-
ports have attempted to describe the effect [65,99-103].
Today, the definition of BRONJ is current or previous
treatment with a BP, exposed necrotic bone in the max-
illofacial region that has been present for at least 8 weeks,
and no history of radiation therapy to the jaws [104,105].
Interestingly, recent studies have shown osteonecrosis of
the jaw with the use of denosumab, another anti-
resorptive drug [106], and bevacizumab [107-110], an
anti-angiogenic agent, so the effect may not be specific to
BPs. Thus, many researchers have suggested renaming the
condition to “drug-associated osteonecrosis of the jaw.”
Because of the lack of clarity regarding the mechan-

ism, several hypotheses have made to explain how osteo-
necrosis of the jaw occurs. However, their discoveries
share a common feature, infection. Some consider that
bone coated with BPs, especially amino-bisphosphonates
increases bacterial adhesion, resulting in bone necrosis
and osteomyelitis [111-113]. Others consider that inhib-
ition of bone turnover causes necrosis, then infection
occurs [114]. Most recently, a study found that osteo-
necrosis of the jaw can move to adjacent bone and occur
in micro-vascular iliac bone grafts used for reconstruc-
tion after a partial mandibulectomy [115]. Thus, more
research is needed to determine the mechanism of
osteonecrosis of the jaw and the connection with BPs.
Atypical femoral fracture
Since 2005, increasing numbers of studies of the in-
creased risk of atypical femur fractures in patients taking
BPs have been conducted [116-120]. However, later evi-
dence [121,122] showed a lower incidence of atypical
femur fractures.
An atypical femoral fracture is located in the femur

from just distal to the lesser trochanter to just proximal to
the supracondylar flare, associated with no trauma or min-
imal trauma, a transverse or short oblique configuration,
and non-comminuted and complete fractures extending
through both cortices with incomplete fractures involving
only the lateral cortex [123]. Other features include pro-
dromal pain, increased cortical thickness, bilateral frac-
tures, and delayed healing were also reported [93,124].
How such fractures occur is unknown. Possible

mechanisms of BP-related atypical femur fractures
include alterations in collagen cross-linking, micro-damage
accumulation, increased mineralization, suppression of
bone turnover rates, and anti-angiogenic effects [125].
Compared with the considerable benefits of BPs, the

incidence of atypical femoral facture is low. Thus, the
benefit of continuing therapy may outweigh the possible
risk of atypical femoral fracture.

Esophageal cancer
In 2009, the US Food and Drug Administration reported
the development of esophageal cancer in several patients
with a history of oral BP use. Since then, four large data-
bases have been analyzed but conflicting results were
reached [114,126,127]. Three of the studies did not find
any increased risk, and one found a dose-dependent in-
creased risk of esophageal cancer. Thus, more data are
required to assess causality between BPs and esophageal
cancer.

Atrial fibrillation
An increased incidence of atrial fibrillation was found in
the 3-year Health Outcomes and Reduced Incidence
with Zoledronic Acid Once Yearly (HORIZON)-Pivotal
Fracture Trial of yearly intravenous administration of
zoledronate in postmenopausal women with osteopor-
osis [70]. However, recent studies showed that the risk
of atrial fibrillation (AF) or cardiac dysrhythmia was not
increased in cancer patients receiving intravenous zole-
dronic acid [104,128,129]. Moreover, there was no in-
creased risk in postmenopausal women receiving oral
alendronate or risedronate [130]. Thus, more effort
should be made to discover whether BPs cause an in-
creased risk of atrial fibrillation and, if so, the mechan-
ism(s) of this side effect.

Conclusions
It is well-established that BPs have become a clinically
successful anti-resorptive agent for treating bone disor-
ders. After 40 years of clinical use, the pharmacokinetics
of BPs are now clear. They are hardly absorbed through
the gastrointestinal lumen , have affinity to the skeleton,
and are eliminated slowly. We still have a limited under-
standing of the cellular mechanism of action of BPs. The
biochemical and molecular effects of BPs on osteoclasts
can be divided into two distinct mechanisms: direct and
indirect. However, the effects on other cell types, such as
osteoblast, osteocytes, and monocytes, have not yet been
explained fully. Although BPs have been a successful ap-
proach to the therapy of bone diseases, exposure to BPs
also causes various adverse effects, which have limited
their applications. Further studies are required to fully
understand the distribution of BPs in extra-skeletal tis-
sues, the effects of BPs on osteocytes, osteoblasts, and
monocytes, and to provide new analogs of BPs with
fewer limitations in bone turn over and optimal dose
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and routes of administration. In clinical studies, more at-
tention should be paid to the application of BPs in
osteoarthritis patients and in inflammatory bone disease.
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