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Abstract

Background: Targeted therapies directed at commonly overexpressed pathways in melanoma have clinical activity
in numerous trials. Little is known about how these therapies influence microRNA (miRNA) expression, particularly
with combination regimens. Knowledge of miRNAs altered with treatment may contribute to understanding
mechanisms of therapeutic effects, as well as mechanisms of tumor escape from therapy. We analyzed miRNA
expression in metastatic melanoma tissue samples treated with a novel combination regimen of Temsirolimus and
Bevacizumab. Given the preliminary clinical activity observed with this combination regimen, we hypothesized that
we would see significant changes in miRNA expression with combination treatment.

Methods: Using microarray analysis we analyzed miRNA expression levels in melanoma samples from a Cancer
Therapy Evaluation Program-sponsored phase Il trial of combination Temsirolimus and Bevacizumab in advanced
melanoma, which elicited clinical benefit in a subset of patients. Pre-treatment and post-treatment miRNA levels were
compared using paired t-tests between sample groups (patients), using a p-value < 0.01 for significance.

Results: microRNA expression remained unchanged with Temsirolimus alone; however, expression of 15 microRNAs
was significantly upregulated (1.4 to 2.5-fold) with combination treatment, compared to pre-treatment levels.
Interestingly, twelve of these fifteen miRNAs possess tumor suppressor capabilities. We identified 15 putative oncogenes
as potential targets of the 12 tumor suppressor miRNAs, based on published experimental evidence. For 15 of 25
miRNA-target mRNA pairings, changes in gene expression from pre-treatment to post-combination treatment samples
were inversely correlated with changes in miRNA expression, supporting a functional effect of those miRNA changes.
Clustering analyses based on selected miRNAs suggest preliminary signatures characteristic of clinical response to
combination treatment and of tumor BRAF mutational status.

Conclusions: To our knowledge, this is the first study analyzing miRNA expression in pre-treatment and post-treatment
human metastatic melanoma tissue samples. This preliminary investigation suggests miRNAs that may be involved in
the mechanism of action of combination Temsirolimus and Bevacizumab in metastatic melanoma, possibly through
inhibition of oncogenic pathways, and provides the preliminary basis for further functional studies of these miRNAs.

Background with wild-type BRAF (BRAFY') do not benefit. Many

Targeted therapies directed at commonly overexpressed
pathways in melanoma have induced clinical responses.
The BRAF inhibitor vemurafenib was recently approved
by the FDA for BRAF-mutant metastatic melanomas [1].
However, the response duration is short, and patients
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other single-agent regimens have failed to achieve lasting
cures in melanoma patients, perhaps because of parallel
and redundant cell survival signaling pathways [2]. Thus,
there is a need to target multiple pathways.

The PI3K-AKT-mTOR pathway is constitutively activated
in many melanomas, leading to increased cell growth, pro-
liferation, and survival [3,4], and mTOR inhibition with
Temsirolimus or sirolimus [rapamycin] has antitumor ac-
tivity in preclinical models of melanoma [5,6]. However, in
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a phase II trial of single agent Temsirolimus in patients with
advanced melanoma, the overall response rate was only 3%
(1/32) [7].

The BRAFY®°°F mutation provides constitutive activa-
tion of the MAPK pathway, making it independent of
upstream growth factor signaling; however, melanomas
with a driver mutation other than the BRAF mutation
may be more dependent on growth factors and upstream
signaling. We have found that IGF-1, bFGF, HGF and
vascular endothelial growth factor (VEGF) serve both
autocrine and paracrine functions, to support melanoma
cell proliferation and migration [8] [Shada et al. manu-
script in preparation]. VEGF blockade is of particular
interest because of its antiangiogenic effects, but also be-
cause of the role of VEGF in autocrine growth stimulation
of VEGFR2" melanomas [6,8,9]. Single agent therapy with
Bevacizumab has had variable results, with response rates
of 0% (0/16) and 17% (6/35) in two studies [10,11]. How-
ever, our laboratory identified synergistic anti-tumor activ-
ity in vitro with combination mTOR inhibition and VEGF
blockade [6]. Additional synergy may be available in vivo
by blocking VEGF-mediated angiogenesis, independent
of tumor cell expression of VEGFR2. Thus, we evaluated
combination therapy with Temsirolimus and Bevacizumab
in advanced melanoma in a Cancer Therapy Evaluation
Program (CTEP)-sponsored phase II clinical trial (NCTO
0397982). Clinical activity, with objective responses by
RECIST (Response Evaluation Criteria in Solid Tumors),
was demonstrated in that study [12]. Correlative studies of
molecular effect of this combination therapy included ana-
lysis of miRNA expression changes with treatment, which
is the focus of the present report.

miRNAs are non-coding RNAs consisting of 17-25
nucleotides that regulate protein expression by directly
binding and negatively regulating messenger RNAs, by
either translational inhibition or degradation [13]. They
are implicated in nearly all cellular processes, including
cell growth, apoptosis, differentiation, proliferation and in-
vasion/metastasis [13-15]. A growing body of evidence in-
dicates that miRNAs are deregulated in cancer: miRNAs
that bind tumor suppressors are often overexpressed, and
those that bind oncogenes are under expressed (reviewed
in [13], examples in [16-18]). miRNA expression profiling
holds promise for predicting and monitoring therapeutic
response to targeted therapies [19]. However, little is known
about how targeted therapies impact miRNA expression in
melanoma, and there are limited data on miRNA expres-
sion in vivo in melanoma metastases [20]. We are unaware
of prior reports of miRNA profiling of melanoma meta-
stases after mTOR or VEGF inhibition. A more intimate
knowledge of the effect of targeted therapies on miRNA ex-
pression will help to identify miRNAs involved in targeted
drug pathways and, ultimately, to suggest how miRNA ex-
pression changes may guide therapy decisions.
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We have investigated miRNA expression in metasta-
tic melanoma tissue samples treated with combination
Temsirolimus and Bevacizumab. Samples were obtained
prior to treatment, after Temsirolimus alone, and after
combination treatment. We identified the most signifi-
cantly altered miRNAs and conducted a preliminary in-
vestigation of the significance of these alterations for the
action of combination Temsirolimus and Bevacizumab
therapy in melanoma.

Methods

Clinical study

From 5/8/2007 to 2/8/2011, 17 patients with stage III
or IV melanoma were enrolled in a CTEP-sponsored
phase II clinical trial of combination Temsirolimus
and Bevacizumab. Tumor was accessible for biopsy in
13 patients; for 12 of these, tumor samples were evalu-
ated for miRNA expression by Exiqon’s 6th generation
microRNA Array (see Additional file 1: Table S1). Pa-
tients were assessed every 8 weeks, using clinical sta-
ging (CT scans, MRI, physical exam). Clinical tumor
responses were measured using RECIST criteria modified
to account for tumor biopsies. Tumor biopsies were ob-
tained at study entry on day 1 (Cycle 1, Day 1), day 2
(Cycle 1, Day 2, 24 h after treatment with Temsirolimus
alone), and day 23 (Cycle 2, Day 9, after treatment with
both Temsirolimus and Bevacizumab). All of the research
involving human subjects was approved by the University
of Virginia’s IRB (Human Investigation Committee, HIC
5202, 10598, and 12471), in accordance with assurances
filed with and approved by the Department of Health and
Human Services.

Cells and tissues

Cell lines were cultured from tumor-involved lymph
nodes resected from patients at the University of Virginia
(VMM18, VMM39) or Duke University (DM13, DM122),
as previously described [21-24]. Their BRAF and NRAS
mutation status and expression of VEFR2 are included in
Additional file 2. Cell lines were cultured in RPMI-1640
(Mediatech, Inc.,, Manassas, VA) supplemented with 5%
fetal bovine serum, 2 mmol/L L-glutamine, penicillin (100
units/mL), and streptomycin (100ug/mL) at 37°C in 5%
CO,, unless otherwise indicated. Tissue biopsies were pre-
pared immediately upon excision by transfer to Bio Re-
pository and Tissue Research Facility (BTRF) staff directly
in the operating room or procedure room. In accord with
the protocol, a portion was placed in liquid nitrogen after
removal and stored at -80°C, and another portion was
formalin-fixed and subsequently paraffin-embedded (FFPE).
Additional file 1: Table S1 lists samples available and ana-
lyzed for each patient.
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RNA isolation and quality control

For miRNA microarray analysis, RNA was isolated from
sections cut from FFPE tissue using the miRNeasy FFPE
kit (Qiagen, Valencia, CA). For in vitro microarray valid-
ation, total RNA was extracted from cell lines using
Qiazol (Qiagen). For mRNA target analysis after com-
bination treatment, 20 samples were evaluated in 10 pa-
tients: for 16 samples, frozen tumor pieces were allowed to
thaw in RNAlater-ICE (Life Technologies, Grand Island,
NY) overnight at —20°C and then were mechanically ren-
dered into powder at —180°C in vapor-phase N,. The pow-
der was placed in lysis buffer, and RNA was isolated using
the RNeasy Midi Kit for Fibrous Tissue (Qiagen). For the
remaining four samples (see Additional file 1: Table S1),
extraction was performed with Qiazol crude extraction
(Qiagen), followed by cleanup with the RNeasy Mini Kit
(Qiagen). For all RNA extractions, concentration and purity
were assessed with Nanodrop 8000 technology.

MicroRNA microarray

Microarray analysis was conducted at Exiqon, using their
miRCURY LNA microRNA Array (6th gen) with probe
sets for over 1,300 human miRNAs and using the Bio-
analyser2100 (Agilent, Santa Clara, CA) and Nanodrop
instrument for quality control. Following hybridization,
signals were background-corrected and then normalized
using the global Lowess regression algorithm. Further de-
tails regarding Exiqon’s protocol can be found in supple-
mentary data (see Additional file 2). The data are available
in GEO (GSE37131). Unsupervised hierarchical clustering
was performed on all samples and on the top 50 miRNAs
with the highest standard deviations across the sample set.
In addition, aliquots of miRNA extract from 5 samples
were resubmitted to Exiqon for analysis, to control for
shipping conditions and intraassay variability.

Data analysis

To compare pre- and post-treatment miRNA levels, paired
t-tests were performed between sample groups, using a
p-value < 0.01 for significance. A permutation-based statis-
tical test resulted in highly similar ranking of genes, corrob-
orating the results from the t-tests [25]. Delta log median
ratios (ALMR) were calculated by subtracting the pre-
treatment log median ratio [log2 (Hy3/Hy5)] (LMR; Hy3,5
are fluorescent labels) from the post-treatment LMR.

In vitro analysis

Bevacizumab (25 mg/mL) was obtained from the Uni-
versity of Virginia Infusion Center and used at 50 ug/mL.
Rapamycin (R-500) was purchased from LC Laboratories,
and a stock solution was made in dimethyl sulfoxide
(DMSO) and used at 10 nmol/L. Melanoma cells were
plated on 100 mm plates and allowed to adhere over-
night. After 24 h, cells were washed and either harvested
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(untreated, 0 hour samples), or treated with serum alone,
rapamycin, Bevacizumab, or both. Cells were harvested at
24 h or 48 h. RNA was extracted, and qRT-PCR per-
formed as described below. P-values were obtained by a
ratio paired t-test.

Quantitative reverse transcription-PCR (qRT-PCR)

For in vitro analysis, qRT-PCR was performed in triplicate
with the TagMan MicroRNA assays kit (Applied Biosys-
tems, Carlsbad, California), following manufacturer’s direc-
tions. The U6 small nuclear RNA, RNU6, was used for
normalization (Applied Biosystems). For mRNA target val-
idation, RNA was extracted from eight post-combination
treatment tumor samples, and 3—4 micrograms total RNA
was reverse-transcribed using High Capacity cDNA Archive
kit (Applied Biosystems), followed by qPCR with Power
SYBR Green Master Mix (Applied Biosystems) in triplicate.
Housekeeping genes used for normalization of mRNA
levels included ActB and HPRT1. Primer sequences for
ActB, HPRT1 and the 18 target genes are in the supple-
mental data (see Additional file 2).

MicroRNA-mRNA correlations

To assess correlations between miRNA changes and pro-
posed target gene expression changes, we assessed fold-
induction of the 15 differentially expressed miRNAs
24“MR) and the log-transformed change in gene expres-
sion level for each patient: log;o (post-treatment normal-
ized expression value divided by pre-treatment value).
Plots were constructed for each miRNA-log;omRNA pair
(25 total). Trend lines were added; correlation coefficients
and their significance were calculated using MedCalc soft-
ware (Mariakerke, Belgium).

Clustering analyses

To obtain preliminary data on whether pre-treatment
miRNA levels or miRNA changes with treatment correl-
ate with clinical outcome, clustering analyses were per-
formed with expression values (log median ratios, LMRs
and delta log median ratios, dLMRs) for combinations
of miRNAs. Ward’s method was used to hierarchically
cluster patients with similar expression signatures. Simi-
larities among miRNA expression profiles of patients
were quantified using Pearson correlation coefficients.
Three types of analyses were performed: before and
after treatment, responders versus non-responders,
and BRAF"' versus BRAFV*°° tumors. For each ana-
lysis, unsupervised clustering was performed using ex-
pression values for all miRNAs and a second “semi-
supervised” analysis was performed using a subset of
miRNAs, selected based on t-test p-value and effect
size cut-offs.
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Results

miRNA expression profiles of melanoma tumor samples
from the same patient cluster together, and expression
measurements are reproducible

To identify changes in miRNA expression with treatment,
31 tumor samples were evaluated for over 1,300 miRNAs
using microarray analysis. miRNA was extracted from
tumor biopsies: (i) pre-treatment (n=11), (ii) 24 h after
Temsirolimus alone (n=11), and (iii) after combination
therapy with Temsirolimus and Bevacizumab, day 23 (n =9,
Additional file 1: Table S1). The heat map (Figure 1)
depicts relative expression levels (log median ratios, LMR)
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of the 50 miRNAs whose values varied most over the sam-
ple set, based on standard deviation. miRNA expression
among different patients varies more than expression
among different tumor samples from an individual patient.
Samples resubmitted for quality assurance clustered with
the corresponding originally submitted samples, supporting
the reproducibility of the data.

miRNA expression changes with Temsirolimus alone

To identify miRNAs significantly altered by Temsirolimus,
we compared miRNA expression levels after Temsirolimus
alone to pre-treatment levels. miRNA had to meet two

~ Pre
o Post-temsirolimus treatment
@ Post-combination
treatment (temsirolimus + bevacizumab)
) Technical replicates

miRNA expression
Log Median Ratio

4

Figure 1 Unsupervised clustering analysis of miRNA expression. The heat map illustrates the result of the two-way hierarchical clustering of
miRNAs and samples. Each row represents one miRNA and each column represents one sample, including pre-treatment, post-Temsirolimus
alone, or post-combination treatment samples from patients #1 through 12. Samples resubmitted for quality assurance purposes are marked by a
shaded oval enclosing the duplicate samples. The color scale illustrates the relative expression level (log median ratio, LMR) of a miRNA across all
samples: red color represents an expression level above the mean, blue color represents expression lower than the mean. Clustering was
performed on all samples and on the 50 miRNAs with the highest standard deviation across the sample set.
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criteria to be considered significantly altered: 1) two-tailed
t-test p-value <0.01, and 2) absolute difference between
normalized expression values (delta-log median ratio,
dLMR) > 0.5. Three miRNAs (miR-2115, -488, -2116) were
significantly differentially expressed after treatment with
Temsirolimus alone; however, none met the second criter-
ion (Figure 2A). miR-100, known to target mTOR [26],
had a dLMR > 0.5, but was not significantly different in the
two-tailed t-test.

15 miRNAs are differentially expressed in melanoma
tumor samples following combination treatment with
Temsirolimus and Bevacizumab

Using the same methods and criteria to identify miRNAs
significantly altered with Temsirolimus alone, we identi-
fied 15 miRNAs significantly differentially expressed in
melanoma tumor samples following combination treat-
ment compared to pre-treatment (Table 1). The same 15
miRNAs, plus the hsa-miRPlus-A1086, were identified
when using a false discovery rate cut-off of 13% from a
permutation-based statistical test (instead of p<0.05
using a t-test). All fifteen were significantly upregulated
and were increased by 1.4- to 2.5-fold compared to pre-
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Figure 2 Significant differential expression of miRNA with
treatment. Volcano plots were generated to facilitate identification
of significantly differentially expressed miRNAs with Temsirolimus
alone (A) and with combination treatment (B). The plot shows fold-
change (dLMR) on the x-axis and -log10 (p-value) on the y-axis.
Criteria used to identify significantly differentially expressed miRNAs
included 1) two-tailed t-test p-value < 0.01 and 2) absolute delta-log
median ratio (dLMR) value > 0.5. miRNA marked by solid red circles

are putative tumor suppressors.
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treatment levels (Figure 2B). Twelve of these 15 miRNAs
(Table 1, Figure 2B) possess tumor suppressor functions
in various cancer types (citations in Table 1), including
melanoma.

In vitro analysis
To determine the extent to which the observed alterations
in miRNA expression may be explained by induction of
the miRNAs in melanoma cells themselves, expression of
the 15 significant miRNAs was measured by qRT-PCR in
four melanoma cell lines after culturing with media alone,
rapamycin (Temsirolimus analogue), Bevacizumab, or com-
bination of rapamycin and Bevacizumab. qRT-PCR was
chosen over microarray analysis for the superior sensitivity,
accuracy, and higher dynamic range of qRT-PCR. We first
tested five miRNAs (miR-125b, let-7c, -29¢, -100, -99a) at
24 h and 48 h and found that all were upregulated at least
2-fold with combination treatment after 24 h, 48 h or both
(except one miRNA in one cell line: let-7c in VMM39;
Additional file 3: Figure S1). Less upregulation was ob-
served with rapamycin. Bevacizumab alone had minimal
effect except for one VEGFR2" line. The effect of combin-
ation treatment was more than additive.

We then tested the remaining 10 miRNAs at 48 h. For
3 cell lines (VMM18, VMM39, DM122), there was at
least a 2-fold upregulation with combination treatment
for 5, 9, and 1 of the miRNAs, respectively (Additional
file 4: Figure S2). Among these, most striking were in-
creases of let-7b for VMM18 and VMM39 (28 and 18-fold,
respectively). In all cases with at least 2-fold upregulation,
combination treatment induced greater upregulation than
either agent alone.

Target identification for the significant tumor

suppressor miRNAs

To explore further the mechanism by which combined
Temsirolimus and Bevacizumab may elicit tumor control,
we sought potential oncogenic targets of the 12 tumor
suppressor miRNAs (Figure 2B) identified in the micro-
array analysis—targets whose altered expression was likely
to have a functional effect relevant to melanoma and/or to
the treatments used in this study. We used the computa-
tional target prediction program TargetScan and published
experimental evidence of miRNA-target interactions to
identify potential targets. Among the numerous genes
identified, we chose to focus on 15 targets likely to play a
role in melanoma and in tumorigenesis generally, relying
primarily on published evidence of a potential miRNA-
mRNA interaction (Table 1). The sources cited in Table 1
include two types of evidence: the 3’'UTR luciferase reporter
assay supports a direct interaction between a miRNA and
its mRNA target, where an inverse relationship between
miRNA and target protein or mRNA levels is indirect evi-
dence of a relationship.
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Table 1 miRNAs differentially expressed after combination treatment with Temsirolimus and Bevacizumab
miRNA dLMR Fold-change p-value (-log10) Disease Target*
125b 1.30 246 7.37E-05 (4.13) Melanoma [27,28] AKT?
Hepatocellular cancer [29] LIN28B™3
320a 0.83 1.78 6.10E-04 (3.21) miR-320 family: Insulin-resistant adipocytes [30], Diabetic PI3-K?
seoarsig e o ot s Gl e b oy
320c 0.80 1.74 6.65E-04 (3.18)
320d 0.78 1.72 6.32E-04 (3.20)
320e 0.80 1.74 1.36E-03 (2.87)
let-7 family Lung cancer [33] HMGA2'%3
Lung cancer [16] RAS'23
Hepatocellular cancer [34] LIN28B'
7b 0.79 1.73 6.40E-03 (2.19) Melanoma [35] CCND1'?
7c 0.83 1.78 2.75E-03 (2.56)
10b 0.95 1.93 3.65E-03 (2.44)
29c 1.02 2.03 445E-03 (2.35) Melanoma [36] DNMT3A/B?
Hepatocellular cancer [37] BCL2, MCL1™?
Cervical cancer (Hela) [38] PI3K'?
Cervical cancer (Hela) [39] MYBL2'3
Human solid tumors [40]
100 1.04 206 5.05E-03 (2.30) Human CMV [26] mTOR™
Clear cell ovarian cancer [41] mTOR>?
Prostate [42] mTOR'?
SMARCAS5'?
SMARCD1'
145 057 148 6.61E-03 (2.18) NSCLC [17] C-MYC'?
Colon, breast cancer [43,44]
140-3p 0.71 1.64 7.28E-03 (2.14)
99a 0.79 173 7.59E-03 (2.12) Prostate [42] mTOR '
SMARCAS '
SMARCD1'?
4328 0.55 146 9.80E-03 (2.01)

miRNAs in bold are putative tumor suppressors; citations pertain to both the disease and associated target. *Methods used for target validation are noted with
superscript as follows: 1, 3'UTR luciferase reporter assay; 2, inverse correlation of miRNA and target protein levels; 3, inverse correlation of miRNA and target mRNA levels.

Pilot exploration of selected miRNA-target interactions

To conduct a preliminary analysis of relationships between
the 12 tumor suppressor miRNAs and their selected tar-
gets with establish roles as oncogenes in melanoma sam-
ples, we measured messenger RNA by qRT-PCR for the 15
target genes in pre- and post-combination treatment sam-
ples. To assess associations between changes in miRNA
and mRNA in each patient, we plotted the miRNA fold-
induction with combination treatment against the corre-
sponding log;, (fold change in target gene expression level)
for each patient, for all 25 miRNA-oncogene pairings.
There were inverse correlations for 15 of the 25 pairings
(see Additional file 5: Table S2), inverse relationships are
expected if these miRNA inhibit their proposed targets in

melanoma. Of these 15 inverse correlations, 2 had a signifi-
cant p-value: miR-let-7b and LIN28B (p = 0.0008, Figure 3)
and miR-let-7c and LIN28B (p = 0.0012). For the remaining
miRNA-target comparisons, it is yet to be determined
whether the lack of significant inverse correlations implies
that these genes are not targeted by the proposed miRNAs
in melanoma cells or whether they are regulated by other
post-transcriptional processes that complicate the expected
inverse relationship.

Association between miRNA expression profiles and
clinical response

We conducted a preliminary investigation to explore
whether miRNA expression profiles pre- or post- treatment
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LIN28B mRNA
log 10 (post-tx / pre-tx)

let-7b (fold change)

Figure 3 Inverse correlation between changes in miR-let-7b
and proposed target LIN28B mRNA. miR-let-7b fold change
(2AdLMR) with combination treatment is plotted against log; of the
percent change in LIN28B mRNA with combination treatment
(post-treatment expression/pre-treatment expression) for each patient
for whom both pre-treatment and post-combination treatment
samples were available. The slope and intercept of the linear trendline
were —1.75 and 3.7, respectively.

may be associated with clinical outcome. Using both un-
supervised and supervised clustering analyses, we evaluated
whether those with treatment failure (PD, progressive
disease) might be distinguished from those with stable
disease (SD) or partial responses (PR) (see Additional file 1:
Table S1 for clinical outcome for each patient, manuscript
submitted). Clustering analyses were performed using ex-
pression values of miRNAs selected for consistent and sig-
nificant alterations in patients with SD or PR, compared to
those with PD. We also performed clustering analyses
comparing pre- and post-treatment miRNA expression
(based on LMR values). A total of 30 clustering analyses
were performed, four of which resulted in clustering of pa-
tients with PD (#5, 7, and 8) separately from those with SD
or PR: one based on pre-treatment LMRs (Figure 4A), one
on post-combination treatment LMRs (not shown), one
on post-combination treatment dLMR values (Figure 4B)
and one on post-Temsirolimus dLMR values (not shown).
miR-193a-3p and -199a-5p are included in the post-
combination treatment dLMR signature (Figure 4B) and
are upregulated to a greater degree in responders com-
pared to non-responders.

We also assessed whether a miRNA signature might dis-
tinguish patients based on BRAF mutation status. Pre-
treatment miRNA expression (LMR) differed for BRAF"*
and BRAFY®"%, with 16 miRNAs in that preliminary sig-
nature (Figure 4C). Five of them are in the let-7 family, all
upregulated in BRAFY' melanomas. An additional ana-
lysis based on post-combination treatment dLMRs also
resulted in clustering of patients according to BRAF
tumor status (not shown).
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Discussion

In this preliminary investigation of miRNA expression in
human melanoma tissue treated with targeted therapies,
we report significant upregulation of 15 miRNAs in me-
tastases following combination targeted therapy with the
mTOR inhibitor Temsirolimus and the anti-VEGF anti-
body Bevacizumab for advanced melanoma. Remarkably,
the observed change was upregulation with treatment,
for all 15. Twelve of the 15 have tumor suppressor activ-
ities in melanoma or other cancers (Table 1). Because
this regimen has clinical activity, it is possible that these
altered miRNAs may have a role in that activity.

It is also interesting that no miRNAs were significantly
altered 24 hours after treatment with Temsirolimus
alone, despite the critical nature of the signaling pathway
targeted by Temsirolimus. Rapamycin has been shown
to modulate miR-1 expression; however, this relationship
was identified in differentiating myoblasts and in mouse
regenerating skeletal muscle, not in human melanoma
cells. More importantly, mTOR’s influence over miR-1
expression was mediated through MyoD, a transcription
factor specific for skeletal myogenesis [45]. Since miRNA
expression depends on intrinsic cellular factors, this rela-
tionship is unlikely to be found in human melanoma cells.
Importantly, the lack of change observed with mTOR in-
hibition alone is consistent with the lack of clinical activity
seen with Temsirolimus alone in metastatic melanoma [7]
and may provide some insight into the lack of clinical im-
pact with this agent alone. It is possible that treatment
with Temsirolimus alone for greater than 24 hours would
alter miRNA expression profiles more significantly. How-
ever, we would expect some changes within 24 hours,
especially since we have observed consistent decreases
in phospho-S6Kinase in these metastases 24 h after
Temsirolimus therapy [12].

We did not test the effects of Bevacizumab alone in
the trial; so, it is possible that the significant alteration
of miRNA levels seen with combination treatment is
due to Bevacizumab alone rather than the combination.
However, the in vitro analysis revealed minimal effect of
Bevacizumab alone on miRNA expression in most of the
4 tested melanoma cell lines. In addition, single agent
therapy with Bevacizumab has had variable results in
melanoma patients, with response rates of 0% (0/16) and
17% (6/35) in two studies [10,11]. mTOR is important in
cell survival during stress, and VEGF blockade can in-
duce hypoxic stress. Thus, there is rationale for the com-
bination effect to exceed the effect of either agent alone,
and this is consistent with the synergistic anti-tumor ac-
tivity we have observed in vitro [6]. Future studies may
clarify the mechanism of synergy of this combination
therapy.

To obtain preliminary data on whether miRNA changes
observed in the tumors may be explained by direct effects
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Figure 4 Clustering analysis of miRNA expression according to clinical outcome and BRAF tumor status. The heat map illustrates the
result of the two-way hierarchical clustering of pre-selected miRNAs and samples. The color scale illustrates the relative expression level or
changes in expression level across all samples: red color represents an expression level above the mean and blue color represents expression
lower than the mean. Patients #5, 7, and 8 had progressive disease (PD), patient #6 and 9 had partial responses (PR), and the remaining patients
had stable disease (SD). (A) Clustering was performed with pre-treatment expression values (LMRs) for miRNAs with t-test p-value <0.01 and
effect size > 0.5. (B) Clustering was performed with changes in miRNA expression (dLMRs) with combination treatment for miRNAs whose t-test
p-value < 0.04 and effect size > 0.5. (C) Clustering was performed with pre-treatment expression values (LMRs) for miRNAs whose t-test p-value

< 0.02 and effect size > 0.5, using p-values obtained from two-tailed t-tests comparing the average expression level for patients with BRAF mutant

on melanoma cells themselves, we analyzed the effect of
either one or both agents on miRNA expression in human
melanoma cell lines. These data reveal the heterogeneity
of individual melanomas. However, striking and global
increases in almost all 15 miRNAs are induced by com-
bination treatment in the VEGFR2* melanoma VMM18,
where VEGF can have a direct effect on the melanoma
cells themselves [6], with more transient effects for DM13
(also VEGFR2"). In the VEGFR2"® lines, VMM39 and
DM122, upregulation of miRNAs with combination treat-
ment may be explained by blockade of direct effects of
VEGF on VEGER3, which is widely expressed on human
melanomas and is phosphorylated in both of these cell
lines [8]. Thus, by combined effect of mTOR inhibition
and VEGF blockade on VEGFR2 and VEGERS3 signaling,
the effect of this combination therapy may be explained in
part by direct effects of both agents on melanoma cells.
However, some observed changes in miRNA expression in
biopsies are likely due to other cells in the tumor micro-
environment as well.

miRNA expression is mediated through strict regula-
tion of both transcription and post-transcriptional mat-
uration [46]. The targeted therapies used in this study
may target those processes directly or indirectly. Numer-
ous drugs alter miRNA expression in cancer, including
cisplatin and 5-fluorouracil in esophageal cancer [47]
and 1a,25 dihydroxyvitamin D3 and testosterone in pros-
tate cancer [48]. MiR-320a and miR-29a/b were upreg-
ulated with treatment in those studies, respectively, which
was also observed in the present study. It is possible that
combination Temsirolimus and Bevacizumab similarly
directly induces miRNA expression. Alternatively, upreg-
ulation may represent a broad molecular response to
treatment, downstream of the anti-tumor activity of the
drugs. Other potential regulators of miRNA expression in-
clude the miRNA targets themselves. For example, both
MYC and LIN28B negatively regulate let-7 expression at
the level of transcription and processing, respectively
[49,50]. Such auto-regulatory loops likely account for the
lack of precise linear inverse correlations observed with
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analysis of miRNA and target mRNA expression (see
Additional file 5: Table S2).

A potential mechanism by which upregulation of these
miRNAs may exert an anti-tumor effect involves the in-
fluence of miR-125b and miR-100 over the Akt/mTOR
pathway. miR-125b was the miRNA most upregulated
with combination treatment in this study (Table 1). It is a
putative tumor suppressor in melanoma [27,29], and its
expression is lower in metastasizing vs. non-metastasizing
melanoma [27]. Overexpression of miR-125b can produce
senescence in melanoma cells [28]. A potential target of
miR-125b is Akt3, which is overactive in melanoma and
whose expression increases during melanoma progression
[51]. Downregulation of miR-125b may contribute to pro-
gression of melanoma via Akt3 upregulation [28]. Thus,
upregulation of miR-125b may contribute to melanoma re-
gression. miR-100 was also upregulated with combination
treatment. It targets mTOR and the mTOR-associated
protein raptor [26,42]. Overexpression of miR-100 en-
hances in vitro sensitivity to rapamycin in ovarian cancer
cell lines [41]. The observed upregulation of miR-125b and
miR-100 with combination treatment may reflect additive
or synergistic inhibition of the Akt3/mTOR pathway with
combination treatment, mediated by three mechanisms:
direct inhibition of mTOR by Temsirolimus, translational
inhibition of mTOR by upregulation of miR-100, and in-
hibition of the Akt3 pathway by upregulation of miR-125b.

Another putative tumor suppressor among the 15
miRNAs is the let-7 family. Let-7b is significantly down-
regulated in primary melanomas compared to benign nevi,
inhibits cyclin D1 in melanoma cells, and inhibits cell cycle
progression and anchorage-independent growth when over-
expressed in melanoma cells [35]. Furthermore, the let-7
family (all with a similar sequence necessary for target rec-
ognition) suppresses the oncogene HMGA2 [33]. The ef-
fects we observed in melanoma cells are most striking for
let 7b, and its strong inverse correlation with LIN28B
expression supports further investigation of this miRNA-
mRNA pair as a possible mediator of therapeutic effects
of this combination therapy. Definitive association of
let7b and LIN28B require luciferase reporter assays;
such studies have performed for human hepatocellular
cancer and confirm the role of let7b as a negative regu-
lator of LIN28B [34].

Results of the clustering analyses (Figure 4) suggest other
miRNAs, such as miR-193a-3p and -199a-5p (Figure 4B)
that may also be worth investigating as possible molecular
markers of treatment response. miR-193a was found to
function as a tumor suppressor in several cancer types [52]
and is under expressed in melanomas containing a BRAF
mutation [53]. miR-199a-5p and -199a-3p are both pro-
cessed from pre-miR-199a, whose promoter region is im-
portant for expression of both miRNAs [54]. miR-199a-3p
targets mTOR and c-Met in its role as a tumor suppressor
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in hepatocellular carcinoma and enhances susceptibility to
hypoxia when its levels are restored [55]. Thus, it is inter-
esting that miR-199a is upregulated in responders com-
pared to non-responders, with a combination therapy that
is presumed to act in part through hypoxia-induced cell
death (Bevacizumab). A larger clinical study is needed to
validate whether miRNAs within these signatures may pre-
dict treatment response; however, we provide a foundation
for future development of a prognostic model.

A limitation of this study is the modest number of pa-
tients enrolled and studied, which was constrained by the
sample size of the phase II clinical trial [12]. The accrual
goal was 20; the actual accrual was slightly lower, at 17.
Three of 17 were taken off study drugs before day 23.
Overall 8 patients had biopsies at all three time point
(days 1, 2, 23) — this is a small number, limited by realities
of the accessibility of tumor for biopsy and the require-
ments to manage patient safety in accord with the proto-
col. However, there is substantial statistical power in the
analysis because these were sequential biopsies from the
same patient in each of those cases. Studies with similar
and smaller sample size have also been informative for
miRNA studies of human tissues [56,57]; however, it will
be valuable to test these findings in a larger dataset when
available. Nonetheless, the study represents, to our know-
ledge, the first study of miRNA expression in melanoma
metastases before and after combination targeted therapy,
and one of few that evaluates tumor on repeat biopsies.

Another limitation of this study is the fact that we did
not analyze the expression of all potential targets of the
12 tumor suppressor miRNAs in the treatment samples.
This was beyond the scope of the present study, and in-
stead we focused on targets likely to have a functional
effect relevant to melanoma and/or the treatments used
in this study. Future studies expanding on these findings
may reveal other targets with functional significance with
regards to upregulation of these 15 miRNAs. Furthermore,
the RNA extracts used in the target analysis were prepared
using two different methods. Thus, the preliminary target
validations are acknowledged to be just a pilot data set. Fi-
nally, we collected both frozen tissue and FFPE tissue
from these patients, but we intentionally did the work on
FFPE samples because they will have broad relevance for
studies involving archival specimens, and because of pub-
lished work that validates the accuracy of miRNA expres-
sion in FFPE samples [58-60].

We report preliminary results that establish the basis
for further expansion. In the future, an independent and
larger set of samples should be used to validate these
preliminary results. After validation of these findings,
further functional studies are needed to determine the
mechanism of induction of these miRNAs and their role
in the mechanism of action of combination Temsirolimus
and Bevacizumab.
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Conclusions

In summary, we report significant changes in miRNA
expression in a cohort of patients after treatment with a
novel combination regimen in metastatic melanoma that
has had encouraging clinical activity. Treatment with
Temsirolimus alone failed to elicit any significant changes
in miRNA expression, whereas combination treatment
with Temsirolimus and Bevacizumab results in distinctly
different miRNA expression profiles, emphasizing the
enhanced efficacy of combination therapy compared to
single-agent treatment. Twelve of the fifteen miRNAs sig-
nificantly upregulated with combination treatment possess
tumor suppressor properties, and thus, this study suggests
miRNAs for further functional study that may be involved
in the mechanism of action and clinical activity of com-
bined mTOR and VEGF inhibition. Overall, this study ad-
dresses the need for further in vivo studies of miRNA
expression in melanoma and takes preliminary steps to-
ward incorporating miRNA expression profiling into mel-
anoma therapeutics by illuminating how targeted therapies
impact miRNA expression in melanoma. Thus, this study
provides further support for the potential of miRNAs to in-
form clinical decisions by sub-classifying patients suscep-
tible to novel targeted therapies [20].
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