
Ali et al. Journal of Translational Medicine 2012, 10:75
http://www.translational-medicine.com/content/10/1/75
RESEARCH Open Access
Nitric oxide augments mesenchymal stem cell
ability to repair liver fibrosis
Gibran Ali†, Sadia Mohsin†, Mohsin Khan, Ghazanfar Ali Nasir, Sulaiman Shams, Shaheen N Khan and
Sheikh Riazuddin*
Abstract

Background: Liver fibrosis is a major health problem worldwide and poses a serious obstacle for cell based
therapies. Mesenchymal stem cells (MSCs) are multipotent and important candidate cells for future clinical
applications however success of MSC therapy depends upon their homing and survival in recipient organs. This
study was designed to improve the repair potential of MSCs by transplanting them in sodium nitroprusside (SNP)
pretreated mice with CCl4 induced liver fibrosis.

Methods: SNP 100 mM, a nitric oxide (NO) donor, was administered twice a week for 4 weeks to CCl4-injured mice.
MSCs were isolated from C57BL/6 wild type mice and transplanted in the left lateral lobe of the liver in
experimental animals. After 4 weeks, animals were sacrificed and liver improvement was analyzed. Analysis of
fibrosis by qRT-PCR and sirius red staining, homing, bilirubin and alkaline phosphatase (ALP) serum levels between
different treatment groups were compared to control.

Results: Liver histology demonstrated enhanced MSCs homing in SNP-MSCs group compared to MSCs group. The
gene expression of fibrotic markers; αSMA, collagen 1α1, TIMP, NFκB and iNOS was down regulated while
cytokeratin 18, albumin and eNOS was up-regulated in SNP-MSCs group. Combine treatment sequentially reduced
fibrosis in SNP-MSCs treated liver compared to the other treatment groups. These results were also comparable
with reduced serum levels of bilirubin and ALP observed in SNP-MSCs treated group.

Conclusion: This study demonstrated that NO effectively augments MSC ability to repair liver fibrosis induced by
CCl4 in mice and therefore is a better treatment regimen to reduce liver fibrosis.
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Background
Liver fibrosis is most often characterized by accumula-
tion of wound healing myofibroblasts that replace nor-
mal hepatic tissue with scar at the site of injury [1,2].
Activated hepatic stellate cells (HSCs) produce high
levels of extracellular matrix (ECM) proteins further
contributing to scar development [3]. Liver transplant-
ation is a suitable treatment modality, however, lack of
available donors, immune rejection and overall cost of
the procedure warrants new therapies for liver fibrosis
[4]. There has been a great interest in therapeutic appli-
cations of bone marrow derived MSCs that have the
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reproduction in any medium, provided the or
potential to differentiate into hepatic lineages both
in vitro and in vivo and can improve liver function [5-8].
Although recognized as a viable therapeutic option,
MSC therapy has been surrounded by issues of poor cell
viability and survival post transplantation [9] thereby
supporting development of alternate treatment
regimens.
One of the hallmarks of liver injury is the development

of scar tissue as a consequence of HSC activation. HSCs
are located within the space of Disse in liver sinusoids
and comprise about 15% of total cell number in the liver
[10]. In response to liver injury, HSCs switch from qui-
escent vitamin A storing cells to proliferative, α smooth
muscle actin expressing cells, up regulating synthesis of
ECM proteins [11]. There is 50–70 fold increase in the
expression of type I collagen which is initiated and
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Table 1 Primer sequences

Primers Forward reverse

αSMA CTGACAGAGGCACCACTGAA AGAGGCATAGAGGGACAGCA

Collagen1α1GCCAAGAAGACATCCCTGAA GGCAGAAAGCACAGCACTC

TIMP CATCTGGCATCCTCTTGTTG CTCGTTGATTTCTGGGGAAC

NFкB GCACCTGTTCCAAAGAGCAC GTGGAGTGAGACATGGACACAC

Albumin CGACTATCTCCAGCAAACTG GTCTCAGCAACAGGGATACA

β-Actin ACTGCTCTGGCTCCTAGCAC ACATCTGCTGGAAGGTGGAC
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maintained by profibrotic cytokines like TGFβ family
members and connective tissue growth factor (CTGF)
[12,13]. Prolonged injury results in failure to respond to
negative feedback regulation of collagen synthesis and
deposition of cross-linked type I collagen fibrils, which
are resistant to proteolytic degradation leading to alter-
ation of the normal liver ECM and change in organ
architecture [14].
Fibrogenic transformation of HSCs in response to liver

damage has been proposed as a critical mechanism for
liver failure. Removal of activated HSCs through apop-
tosis or programmed cell death can induce spontaneous
liver recovery [15-17]. NO has been recently investigated
as apoptotic inducer of activated HSCs but whether NO
donors can be used in combination with MSC trans-
plantation remains unknown [18-20]. In the present
study, we demonstrate augmented MSC ability to repair
fibrotic liver as a consequence of NO induced HSC
apoptosis. Improvements mediated by this synergistic
treatment of fibrotic liver with MSC and NO donor are
evident structurally and functionally with enhanced
homing of transplanted cells and significant reduction in
fibrosis. These results validate the utility of NO induced
HSC apoptosis as an effective way to enhance MSC po-
tential for treatment of liver fibrosis.

Materials and methods
Animals
The investigation conforms to the Guide for the Care
and Use of Laboratory Animals published by the US Na-
tional Institutes of Health (NIH Publication No. 85–23,
revised 1985). All animals were treated according to pro-
cedures approved by the Institutional Review Board
(IRB) at the National Center of Excellence in Molecular
Biology, Lahore, Pakistan.

Cell isolation and culture
Bone marrow derived MSCs were isolated according to
the procedure described previously [21]. MSCs were
grown and sub-cultured till second passage and double
labeled with PKH26 (Sigma Aldrich, USA) for the cell
membrane and 4-6-diamidino-2- phenylindole (DAPI)
for the nuclei (Sigma Aldrich, USA) according to the
manufacturer’s instructions.

Liver fibrosis model and sodium nitroprusside treatment
Female C57BL/6 mice aged 6–8 weeks and weighing
20–25 g were used in experiments. All animals were
housed in conventional cages under controlled condi-
tions of temperature (23 ± 3 Co) and relative humidity
(50%± 20%), with light illumination for 12 h/day. The
animals were allowed access to food and water ad libi-
tum throughout the experimental periods. To induce
hepatic fibrosis, CCl4 (1 μl/g) was administered twice a
week to animals as described previously [22]. After
4 weeks of CCl4 treatment, 100 mM SNP was dissolved
in saline water (200 μl) and injected intraperitoneally to
SNP and SNP-MSCs groups twice a week for 4 weeks.
Griess reagent was prepared according to manufacturer’s
instruction (Oxford biomedical research Inc, USA), was
added to the serum samples and OD was measured at
540 nm with an ELISA plate reader. Serum concentra-
tion of total nitrite was measured 4 h after last SNP
treatment. Mice were randomly divided (n = 11) into ve-
hicle, CCl4, MSCs, SNP and SNP-MSCs groups. During
drug administration period CCl4 injections were contin-
ued to all animals except to vehicle group.

Cell transplantation
MSCs labeled with PKH26 were transplanted in MSCs
and SNP-MSCs (n = 11) groups in concentration of
1 × 106 cells/100 μl/animal at 2–3 different points dir-
ectly in the left lateral lobe of the liver. Mice from SNP
group were sham operated and received only PBS. All
animals were kept under intensive care after operation.
Animals received CCl4 injections once a week during
post transplantation period until sacrificed after 4 weeks.

Blood biochemistry
Blood samples were taken from all experimental groups
(n = 11) at 4 weeks after cell transplantation. Serum was
isolated and the amount of bilirubin (Diazyme Europe,
Gmbh) and alkaline phosphatase (ALP) (Bioassay Sys-
tem, USA) was estimated using commercial kits accord-
ing to the manufacturer’s protocol.

Gene expression profiling
RNA from liver tissue of experimental groups was
extracted using TRIZOL reagent (Invitrogen, Inc. USA).
cDNA was synthesized using 1 μg of total RNA by
cDNA synthesis kit (Fermentas). Gene Specific primers
(Table 1) were designed using online software Primer3
(http://frodo.wi.mit.edu/primer3/). Analysis of real time
RT-PCR gene expression (αSMA, collagen1α1, TIMP,
NF-кB and albumin) in experimental groups (n = 3) was
carried out using SYBR Green PCR Super Mix (BioRad
Lab, CA, USA). The relative gene expression was then
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analyzed using SDS software (ABI). β-actin was used as
an internal control.
Histological analysis
Livers were isolated and fixed in 4% paraformaldehyde
and paraffin embedded. Sections 5 μm thick were
mounted on glass slides and 3 sections per animal and 3
animals per group were labeled with α-smooth muscle
actin (α-SMA) (1:400; Sigma), Albumin (1:50; Abcam),
cytokeratin-18 (1:50; Santa Cruz), eNOS (1:50; Santa
Cruz) and iNOS (1:50; Santa Cruz) as primary antibodies
while anti-mouse FITC, TRITC and peroxidase conju-
gated were used as secondary antibodies. MSCs were
localized by tracking PKH26 labeled MSCs in CCl4
injured fibrotic liver tissue. Fluorescence images were
taken by an Olympus BX-61 microscope loaded with DP
70 camera.
Measurement of liver fibrosis
Fixed livers were embedded in paraffin and sections were
cut from different lobes of the liver and Sirius red staining
was done [22]. Images of the fibrotic area from 3 sections
per animal and 3 animals per group were taken by an
Olympus BX-61 microscope equipped with Digital Cam-
era DP-70 (Olympus, Japan). Fibrosis and total area of
each image was measured and the percentage of fibrotic
area was calculated using Image J software.
TUNEL
Apoptosis was measured using TUNEL assay in all ex-
perimental groups to analyze HSC death in response to
SNP treatment as previously described [21].
Figure 1 Gene expression profiling after dose standardization of SNP
*P< 0.05 for SNP 100 mM vs. control; #P< 0.05 for SNP 100 mM vs. SNP 50
significantly reduced expression of α-SMA, collagen1α1, TIMP1 and NF-кB c
expression showed significant improvement after SNP-MSCs treatment. P-v
CCl4;

#P< 0.05 for SNP-MSCs vs. MSCs; φP< 0.05 for SNP-MSCs vs. SNP. C) E
apoptosis after SNP administration. ***P< 0.001 for SNP vs. CCl4;

###P< 0.00
Statistical analysis
Quantitative data of 3 sections per animal and 3 animals
per experimental group was obtained for sirius red stain-
ing and were expressed as ± SEM. Analysis for percent-
age of fibrosis area, bilirubin and ALP between different
treatment groups vs control was performed by one-way
ANOVA with bonferroni post-hoc test. P-value of less
than 0.05 was considered statistically significant.
Results
Gene expression profiling
Dose optimization of SNP was determined prior to
initiating experiments. Nitrite concentration in serum was
significantly higher in mice treated with 100 mM as com-
pared to 50 mM SNP and non treated group (Figure 1A).
Interestingly, Increasing SNP concentration to 150 mM did
not have a significant effect on the nitrite concentration.
Therefore, 100 mM SNP was selected for further experi-
ments. Gene expression profiling was conducted in experi-
mental groups receiving SNP and MSCs in combination or
alone. HSCs are believed to be the main ECM-producing
cells in the liver [10] and express α-SMA. We observed a
3.0 fold increase in mRNA levels of α-SMA after treatment
with CCl4 compared to 2.9 and 1.9 fold increase observed
in MSCs and SNP treated groups. However, SNP-MSCs
treatment resulted in only 1.6 fold increase in α-SMA
which is significantly lower than other groups (Figure 1B).
A similar pattern was observed in mRNA levels of collagen,
TIMP and NF-кB, which are critical factors of liver fibrosis
and were higher in the CCl4 group, decreased after MSCs
or SNP treatment but SNP-MSC treatment further signifi-
cantly reduced the expression of these markers. Conversely,
Albumin level showed 1.2 fold increase in SNP-MSCs
. A) Serum Nitrite concentration (μM). Values are mean± SEM; n = 6.
mM. B) mRNA expression after 4 weeks of treatment showed
ompared to CCl4 group. On the other hand, Albumin mRNA
alue< 0.05 was considered significant n = 3.*P< 0.05 for SNP-MSCs vs.
xpression (%) of SMA+/TUNEL + cells in all groups indicating HSC
1 for SNP-MSCs vs. CCl4.
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treatment compared to 0.9, 0.6 and 0.4 fold in SNP, MSCs
and CCl4 groups respectively (Figure 1B). In addition, ex-
pression analysis of SMA, a marker for activated HSCs and
TUNEL showed 28.8% SMA+/TUNEL+cells in SNP and
21.8% in SNP-MSCs groups (Figure 1C). Animals with
CCl4 or MSCs treatment alone resulted in 4.3% and 6.5%
SMA+/TUNEL+cells respectively.
SNP-MSCs improve hepatic microenvironment
SNP-MSCs treatment resulted in reduced expression of
αSMA and Collagen 1 (5.1%, 26.6%) compared to CCl4
injured liver (24.1%, 79.1%), MSCs (15.9%, 60.8%) and SNP
(8.4%, 44.3%) groups (Figure 2 A, D & G) conferring to our
real time PCR results (Figure 1B). Similarly expression of
hepatic markers, cytokeratin-18 and albumin was increased
significantly in SNP-MSCs group (69.3%, 77.1%) compared
to CCl4 group (19.9%, 18.7%) and SNP alone (32.2%, 48.3%)
or MSCs alone (38.9%, 55.4%) groups (Figure 2 B, C & G).
Figure 2 Augmentation of hepatic microenvironment. (A) SNP-MSCs re
Collagen1 (D) and iNOS (F) and increased expression of hepatic markers cy
3 =MSCs, 4 = SNP, 5 = SNP-MSCs). G) Quantification of α-SMA, Collagen1, cy
values are expressed as mean± SEM. P-value< 0.05 was considered signific
φP< 0.05 for SNP-MSCs vs. SNP.
Acute liver injury is accompanied by inflammation and
expression of NOS proteins. Among the two constitutive
isoforms of NOS, eNOS expression (27.7%) was decreased
in CCl4 injured liver, while the expression of inducible
form iNOS (72.4%) was increased in the CCl4 injury
(Figure 2 E-G). Increased iNOS or reduced eNOS have
been shown to induce development of fibrosis in CCl4 liver
injury [23] is in accordance with our results. SNP-MSCs
treatment significantly increased the expression of eNOS
(80.8%) while iNOS (25.9%) was significantly reduced
compared to other treatment groups (Figure 2 E-G).
SNP-MSCs reduce liver fibrosis
SNP-MSCs treatment (Figure 3 E) resulted in significant re-
duction of liver fibrosis as measured by picrosirius proced-
ure compared to MSCs alone, SNP alone, CCl4 groups and
vehicle (Figure 3 A-D). Quantification of collagen fibers
was done by image J software and showed marked increase
sulted in the decreased expression of fibrotic marker (α-SMA),
tokeratin-18 (B), albumin (C) and eNOS (E) in 1 = Vehicle, 2 = CCl4,
tokeratin18, albumin, eNOS and iNOS in all treatment groups. All
ant. *P< 0.05 for SNP-MSCs vs. CCl4;

#P< 0.05 for SNP-MSCs vs. MSCs;



Figure 3 Representative micrograph of hepatic tissue stained with Sirius red showing collagen deposition in various treatment groups.
(A= Vehicle, B= CCl4, C=MSCs, D = SNP, E= SNP-MSCs). F) Quantitative analysis of fibrosis in different experimental groups. One way ANOVA
was applied to check the significance of the data. All values are expressed as mean ± SEM. P-value< 0.05 was considered significant. *P< 0.05
for SNP-MSCs vs. CCl4;

#P< 0.05 for SNP-MSCs vs. MSCs; φP< 0.05 for SNP-MSCs vs. SNP.
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in percentage of fibrotic area after CCl4 administration that
was reduced significantly after SNP-MSCs treatment com-
pared to other groups (Figure 3 F). Fibrotic area (%) was
reduced significantly (0.4± 0.3) in SNP-MSCs group as
compared to other treatment groups (CCl4 group=4.4±
2.4, MSCs group=1.9±1.5 and SNP group=1.3± 0.4).
SNP-MSCs enhance homing and commitment
Enhanced homing and localization of PKH-26/DAPI la-
beled MSCs was observed in CCl4 injured liver with
engrafted cells observed in all lobes of the liver, indicating
cell migration from left lateral lobe to other injury sites
(Figure 4 A-B). However SNP-MSCs treated animals
showed better homing ability than non SNP treated MSCs
group with significant increase in the number of cells
observed (Figure 4 C).
When co-expression was monitored, there is increased

expression of albumin with higher number of PKH26 posi-
tive cells (16 cells/field) in SNP-MSCs group as compared
to MSCs group (10 cells/field) (Figure 4 D-G).
Functional recovery after SNP-MSCs
To further evaluate the role of SNP-MSCs in prevent-
ing hepto-cellular injury, we measured the serum
concentrations of bilirubin and ALP from different
treatment groups. At week 4, the serum bilirubin level
in the SNP-MSCs group was 0.2 mg/dl, which were sig-
nificantly lower than those in CCl4 (1.3 mg/dl), SNP
(0.5 mg/dl) and MSCs alone (0.9 mg/dl) groups (Fig-
ure 5 A). Similarly, the serum ALP levels in the SNP-
MSCs group were (220 units/L), which were signifi-
cantly lower than those in CCl4 (810 units/L), SNP (420
units/L) and MSCs alone (550 units/L) groups (Figure 5
B). Collectively, these results indicate a superior ability
of SNP-MSCs to augment hepatic function compared
to either of the treatments alone or the CCl4 treatment
group.
Discussion
Hepatic injury is most often characterized by widespread
hepatocyte damage leading to fibrosis and scar develop-
ment. Injured hepatocytes and their metabolites activate
kupffer cells [24,25] releasing cytokines such as trans-
forming growth factor-α (TGF-α), platelet-derived
growth factor (PDGF) and tumor necrosis factor-α
(TNF-α) [3]. These factors activate HSCs which upon
stimulation lose retinoid storing ability and transform
into myofibroblasts [26,27]. Transformation of HSCs



Figure 4 MSCs homing and commitment. Homing of transplanted cells in MSCs (A) and SNP-MSCs (B) groups. DAPI was used to identify
nuclei. (Magnification = 200X). C) Quantification of engrafted cells in MSCs and SNP-MSCs groups. *p< 0.05 was considered to be significant.
F) Significantly higher numbers of MSCs (white arrows) expressing albumin were present SNP-MSCs group as compared to other treatment
groups. PKH26 (Red), Albumin (Green) and nuclei were counter stained with DAPI (blue). G) Quantification of engrafted cells in MSCs, SNP and
SNP-MSCs groups. P-value< 0.05 was considered significant. *P< 0.05 for SNP-MSCs vs. MSCs; #P< 0.05 for SNP-MSCs vs. SNP.

Figure 5 Functional analysis after SNP-MSCs treatment: (A) Bilirubin (B) Alkaline phosphatase (ALP) levels in different experimental groups.
One way ANOVA was used to test the significance of the data among groups (n = 11). P-value< 0.05 was considered significant. *P< 0.05 for
SNP-MSCs vs. CCl4;

#P< 0.05 for SNP-MSCs vs. MSCs; φP< 0.05 for SNP-MSCs vs. SNP.
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from their quiescent state to a fibrotic cell critically
affects hepatic repair and may also impact the outcome
of cell based therapeutic options. Bone marrow derived
MSCs have the ability to repair damaged liver [28,29]
however, extensive fibrosis, scar development and lack of
survival may influence regeneration ability. Strategies
targeting removal of activated HSCs have shown to re-
duce fibrosis and augment liver function [30,31]. A com-
bined approach aimed at specific removal of activated
HSCs would improve hepatic milieu allowing MSCs to
survive, engraft and differentiate into hepatocytes.
Therefore, in the present study we employed NO for in-
duction of HSC apoptosis in combination with MSC
transplantation in mouse model for liver fibrosis. Our
intended hypothesis was to probe the combined effect of
NO and MSCs as each treatment alone has been shown
to be protective against hepatic injury [18,19,32,33].
Follistatin and Gliotoxin like compounds have been

tested for their utility to induce apoptosis of HSCs but
in an unspecific manner [16,34]. Many studies have
reported that high levels of NO induce apoptosis in
many cell types primarily by the effect of peroxynitrite
that increases mitochondrial permeability [35,36]. NO
donors can exert an antifibrogenic action as NO has
negative regulatory properties specifically on activated
HSCs migration, contraction and proliferation in fibrotic
liver [19,37,38]. Therefore, we expected that the effect of
NO administration exogenously would be beneficial in
reducing liver fibrosis. Several studies have shown thera-
peutic effects of MSCs in liver disease [39-41] but, con-
troversial observations still exist [42,43]. Studies have
shown that bone marrow derived stem cells can be a
source of collagen and contribute to liver damage
[27,42]. Therefore, improvement in liver environment is
essential for the successful outcome of MSC therapy.
Apoptosis of activated HSCs combined with transplant-
ation of MSCs would be able to recover hepatic micro-
environment yielding better results. A previous study
reported improvement in liver fibrosis with combined
treatment of FGF2 and MSCs by regulating the expres-
sion of metalloproteinases (MMPs) and ultimately re-
duction in matrix proteins [44].
Activated HSCs express α-SMA in the periportal and

perisinusoidal areas [45] and that can be indicative of
prevalent liver fibrosis [46-49]. Our results showed
increased levels of α-SMA in CCl4 injured liver indicating
possible HSC activation while combined treatment with
SNP-MSCs resulted in significant reduction in α-SMA
mRNA level (Figure 1). In addition, a significant reduc-
tion in other indicators of liver fibrosis such as collagen
1α1, TIMP and NF-κB showed decrease in mRNA level
after SNP-MSCs administration compared to CCl4 trea-
ted group or single treatment of SNP or MSCs (Figure 1).
Treatment with SNP-MSCs resulted in significant
increase in albumin, a hepatocyte marker compared to
CCl4 group.
Immunohistochemical analysis further corroborated

the real time PCR results indicating significant reduction
in levels of α-SMA and iNOS concurrent with increased
cytokeratin-18, albumin and eNOS after treatment with
SNP-MSCs at 4 weeks compared to CCl4 group and
both single treatment groups (Figure 2). Similarly, Sirius
red staining demonstrated significant decline in fibrotic
area after treatment with SNP-MSCs after 4 weeks
compared to CCl4 group providing evidence of consider-
able augmentation of hepatic microenvironment and
reduction in fibrosis (Figure 3).
Improved hepatic microenvironment as evidenced by

attenuated fibrosis resulted in significant increase in the
number of transplanted cells in damaged liver of SNP-
MSCs group compared to MSCs only group (Figure 4)
coinciding with previous findings demonstrating direct
homing of MSCs to injured liver [22]. In addition,
increased MSCs differentiation was observed in SNP-
MSCs group compared to MSCs only group as evi-
denced by levels of albumin (Figure 4). Significant reduc-
tion in the bilirubin and ALP serum levels was observed
in experimental animals transplanted with MSCs and
pretreated with SNP compared to CCl4 group and SNP
or MSCs alone treatment groups (Figure 5). Bilirubin
and ALP serum levels have been used previously in vari-
ous studies [14,22,50] as indicators of improved liver
function, thereby meriting use of both these parameters.
Autologous stem cell therapy represents an attractive

treatment modality for liver fibrosis however; extensive
fibrosis and scar formation can limit efficacy of the ther-
apy. Activated HSCs play a critical role in mediating
liver fibrosis significantly contributing towards the prog-
nosis of the disease. Transplantation of MSCs together
with NO pretreatment of the injured liver tissue repre-
sents a novel and promising strategy to augment the re-
pair ability of stem cells in hepatic fibrosis. Furthermore,
MSCs transplantation in NO pretreated injured liver tis-
sue demonstrates better survival, differentiation and
functional abilities. These findings establish an efficient
way to enhance MSC ability to repair liver fibrosis by
targeting HSC apoptosis through administration of NO.

Conclusion
We have demonstrated that nitric oxide treatment can
significantly improve the ability of MSCs to repair liver
fibrosis. Nitric oxide induces apoptosis of activated
HSCs which are considered to be one of the critical
mediators of liver fibrosis. Activation of HSCs in the fi-
brotic liver transforms these vitamin A storing cells into
fibroblasts. We have used nitric oxide treatment of the
fibrotic liver to induce HSC apoptosis thereby improving
liver microenvironment. MSCs transplantation in
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fibrotic livers treated with nitric oxide results in reduc-
tion of fibrosis, augmentation of liver function and
improved MSCs survival compared to livers only receiv-
ing MSCs. Therefore, we report here a clinically viable
treatment modality combining nitric oxide treatment
with MSC transplantation for the treatment of liver
fibrosis.
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