Zhang et al. Journal of Translational Medicine 2012, 10:117
http://www.translational-medicine.com/content/10/1/117

JOURNAL OF
TRANSLATIONAL MEDICINE

RESEARCH Open Access

Preparation and characterization of silk fibroin as
a biomaterial with potential for drug delivery

Hao Zhang'", Ling-ling Li*', Fang-yin Dai®, Hao-hao Zhang', Bing Ni', Wei Zhou', Xia Yang"™ and Yu-zhang Wu'"

Abstract

fibroins and degummed silk fibroin.

than the fibroins from other treatments.

Background: Degummed silk fibroin from Bombyx mori (silkworm) has potential carrier capabilities for drug
delivery in humans; however, the processing methods have yet to be comparatively analyzed to determine the
differential effects on the silk protein properties, including crystalline structure and activity.

Methods: In this study, we treated degummed silk with four kinds of calcium-alcohol solutions, and performed
secondary structure measurements and enzyme activity test to distinguish the differences between the regenerated

Results: Gel electrophoresis analysis revealed that Ca(NOs),-methanol, Ca(NOs),-ethanol, or CaCl,-methanol
treatments produced more lower molecular weights of silk fibroin than CaCl,-ethanol. X-ray diffraction and
Fourier-transform infrared spectroscopy showed that CaCl,-ethanol produced a crystalline structure with more silk |
(a-form, type Il 3-turn), while the other treatments produced more silk Il (3-form, anti-parallel B-pleated sheet).
Solid-State "*C cross polarization and magic angle spinning-nuclear magnetic resonance measurements suggested
that regenerated fibroins from CaCl,-ethanol were nearly identical to degummed silk fibroin, while the other
treatments produced fibroins with significantly different chemical shifts. Finally, enzyme activity test indicated that
silk fibroins from CaCl,-ethanol had higher activity when linked to a known chemotherapeutic drug, L-asparaginase,

Conclusions: Collectively, these results suggest that the CaCl,-ethanol processing method produces silk fibroin
with biomaterial properties that are appropriate for drug delivery.
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Background

Silk fibers produced by silkworms are widely used in our
daily life. While they have occupied an important niche
in the textile industry for thousands of years, their po-
tential as biomaterials has been recognized and devel-
oped only over the past decade [1]. Being non-toxic,
non-immunogenic, and biocompatible with a broad
range of animal species has allowed for the adherent
properties of silk fibroin and silk-like proteins to be
exploited for biomedical purposes. To date, silk fibroins
have mainly been applied to wound healing, successfully
performing as man-made blood-vessels [2], surgical
sutures [3], and repair materials [4]. New processing

* Correspondence: oceanyangx@gmail.com; wuyuzhang20006@sohu.com
"Equal contributors

'Institute of Immunology Third Military Medical University, Chongqing
400038, Peoples Republic of China

Full list of author information is available at the end of the article

( ) BiolVled Central

strategies for silk fibers and proteins have expanded the
biomedical utility of these molecules. For example, the
gel spun silk-based matrix derived from silk fibroin was
successfully applied for bladder augmentation in a mur-
ine model [5]. More recently, scientists determined that
the cocoons from Bombyx mori harbor antioxidant and
hypolipidemic properties and that the crude silk extracts
have bioactivity against hypercholesterolemia and ath-
erosclerosis [6].

Recently, the regenerated silk fibroin has been proved
as an attractive candidate of a carrier for drug or thera-
peutic proteins delivery and is the focus of much on-
going research. Attachment of bioactive molecules or
therapeutic proteins to silk fibroin has many benefits to
enhance the properties of bioactive molecules in solu-
tion for delivery both in vitro and in vivo, including the
therapeutic efficacy in the body, thermal stability, storage
stability, and lengthens the circulatory half-life and
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decreases immunogenicity and antigenicity [3]. For in-
stance, bioconjugations of insulin, glucose oxidase, L-
asparaginase (L-ASNase), lipase and phenylalanine
ammonia-lyase with the regenerated silk fibroin greatly
improved their biological stability, reduced the immuno-
genicity and toxicity of the drug [7-11]. Moreover, The
SELP (silk-elastinlike protein polymer)-controlled gene
delivery approach could potentially improve activity of
adenoviral-mediated gene therapy of head and neck can-
cer and limit viral spread to normal organs at the same
time [12].

It has been known that the properties of silk-matrix
are controlled by a combination of the chemistry and
the spinning process, which directly affect the activity
and stability of the enzymes attached. Spinning condi-
tions, such as temperature, drawing rate, time, and spe-
cific type of silkworm, can modulate biomaterial
features. In addition, chemistry, such as ion concentra-
tion, type of ion, and solution pH, can also affect the
mechanical properties of silk fibroins [1]. In previous
studies, degummed fibroin has generally been treated
with aqueous solutions of hexafluoro-isopropanol (HFIP)
[13], methanol [8], CaCl,-ethanol [7,9], or Ca(NOs;),-
methanol [14]. Lu et al. has reported glucose oxidase
attached to the regenerated silk fibroin film without
treated with methanol remain more activity but lower
stability than that treated with methanol [8]. After cross-
linking L-ASNase with regenerated silk fibroin prepared
with concentrated CaCl, mixture solution with ethanol
and water (1:2:8, mol), the immunogenicity and toxicity
of the drug significantly reduced, and its circulatory
half-life lengthened in vitro [9].

However, these studies have used only one treatment
per experiment and, up to now, the systematic compara-
tive analysis to distinguish the difference of those treat-
ments has not yet been reported, thus we do not know
which one is the best choice for future potential applica-
tion. Here, we describe our systematic comparative ana-
lysis of silk fibroins prepared with four of the commonly
used preparative solutions, Ca(NOj3),-methanol, Ca(NOj),-
ethanol, CaCl,-methanol, and CaCl,-ethanol. The results
could help to reveal the mechanisms of properties of silk-
derived matrix under different treating conditions and pro-
vide evidence to choose right solution to prepare silk fibroins
for potential drug delivery applications.

Materials and methods

Materials

L-asparaginase (L-ASNase) from E. coli (10,000 IU) was
purchased from Changzhou Qianhong Bio-Pherma Co.,
Ltd. (Jiangsu Province, China). L-asparagines’ (anhyd-
rous) was purchased from Sangon Biotech (Shanghai)
Co., Ltd. (Shanghai, China). Trichloroactic acid (TCA)
was purchased from Sinopharm Chemical Reagent Co.,

Page 2 of 9

Ltd. (Beijing, China). Methanol, ethanol, calcium nitrate
tetrahydrate (Ca(NOj3),-4H,0), calcium chloride (CaCl,),
and Hgl,, all analytical reagent grade, were purchased
from Chengdu Kelong Chemical Reagent Factory
(Sichuan Province, China).

Preparation of degummed silk fibroin

Cocoons from B. mori were degummed by incubating in
a mixture of sodium dodecyl sulfate (SDS; 0.25%,w/v)
and sodium carbonate (0.25%,w/v) at 98°C for 30 min.
The samples were then cooled to room temperature,
rinsed three times with deionized water, and dried at
65°C overnight. The ratio of cocoons and solution was
1:100 (w/v). The degummed silk fibroins were isolated,
along with another silk protein, sericin.

Calcium-alcohol solvents treatment of silk fibers

The isolated fibroin fibers were separately dissolved in
concentrated CaCl, solution mixed with ethanol or
methanol and water (1:2:8 mol), and separately dissolved
in concentrated Ca(NOs),-4H,O solution mixed with
ethanol or methanol (1:2 mol) at 65°C in a water bath
for 1 h. The ratio of the silk fibers and solution was 1:20
(m/v). The aqueous solution of silk fibroin was obtained
by dialyzing against flowing water. After that, the result-
ing dialyzed solutions were lyophilized. The dry silk
powder (fibroins treated with CaCl,-ethanol solution) or
pieces (from the other three solutions) were stored at
4°C until use.

SEM

The silk fibroins were vacuum-coated with a 20 nm layer
of gold. The surface morphology of each silk fibroin was
observed with a scanning electron microscope (S-3400N
SEM; Hitachi, Japan) and photographed at a voltage of
15 kV and room temperature.

SDS-polyacrylamide gel electrophoresis (PAGE)

The silk fibroins separately treated with Ca(NOs3),-
methanol, Ca(NOs),-ethanol, CaCl,-methanol, and
CaCl,-ethanol solution were analyzed by SDS-PAGE to
determine the corresponding molecular weights of the
protein. Samples were resolved on 12% acrylamide gel
and 4% condensing gel, and protein bands were visua-
lized by staining with 0.25% Coomassie Brilliant Blue
R-250 (Sigma-Aldrich, St. Louis, MO, USA).

FTIR spectroscopy

The infrared spectra of each fibroin produced with Ca
(NO3)y-methanol, Ca(NOs3),-ethanol, CaCl,-methanol,
and CaCl,y-ethanol solution, and degummed fibroins
(as control), were measured on a FTIR spectrometer
using KBr pellets (Tensor 27 FTIR; Bruker, Ettlingen,
Germany). Spectra, with a resolution of 4 cm™, were
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recorded and subtracted from the sample readings. All
samples were measured in reflection mode; for this,
the silk fibroin powder treated with CaCl,-ethanol so-
lution had been transformed into tablet form. The
results are presented as the average of 64 repeated
4000 ~ 400 cm™ scans.
WAXD

The crystalline structure of the silk fibroins produced
with Ca(NOs),-methanol, Ca(NOs;),-ethanol, CaCl,-
methanol, and CaCl,-ethanol solution, and of
degummed fibroins, were determined by WAXD using a
Siemens type F X-ray diffractometer (Siemens, Munich,
Germany) with Ni-filtered Cu Ka radiation. The voltage
and current of the X-ray source were 30KV and 20 mA,
respectively. The wavelength, A, was 0.15406 nm. The
samples were mounted on aluminum frames and
scanned from 5° to 40° (28) at a speed of 2°/min. The D-
spacing was calculated by the following equation: D =\/
(2 x sin(0)), i.e. D =0.0752/(sin 6) nm. For example, if the
scanning angel was 20=20°, then D=0.0752/(sin 10°)
nm, and the D-space was 0.43 nm.

Solid-state '>C CP/MAS-NMR spectra measurement

Solid state '*C CP/MAS-NMR has been successfully
used to analyze the secondary structure of proteins [15],
and was similarly applied in our study. The *C CP/
MAS-NMR spectra were recorded on a Bruker AVANCE
I1I 400 WB spectrometer equipped with a 4 mm standard
bore CP/MAS probe head, whose X channel was tuned
to 100.62 MHz for *C and the other channel was tuned
to 400.18 MHz for broad band 1H decoupling. A mag-
netic field of 9.39T at 297 K was used. The dried and
finely powdered samples were packed in a ZrO, rotor
that was sealed with an Kel-F cap and spun at 12 kHz
rate. The experiments were conducted at a contact time
of 2 ms. A total of 3000 scans were recorded with 6 s re-
cycle delay for each sample. All **C CP/MAS chemical
shifts were referenced to the resonances of the adaman-
tane (C10H16) standard (8CH2 = 38.5).

Enzyme cross-linking and activity test

L-ASNase immobilization was performed according to
the method previously described by Zhang et al. [16]
with minor modifications. An aliquot (50 mg) of each fi-
broin produced with Ca(NOj3),-methanol, Ca(NO3),-
ethanol, CaCl,-methanol, and CaCl,-ethanol solution,
and degummed fibroins (as control), were placed into
plastic centrifuge tubes and mixed with 2mL L-ASNase
in phosphate buffered saline (PBS) solution (2 mg/mL)
and 1 mL L-asparagine PBS solution (5 mg/L). The L-
asparagine acted as the enzyme activity center protector.
After gentle shaking, glutaraldehyde (0.05%) and PBS
(pH 7.4) were added to bring the final volume to 5 mL,

Page 3 of 9

and the solutions were incubated at 4°C overnight to fa-
cilitate the cross-linking reaction. The next day, the re-
action was stopped by adding 100 mg glycine to each
tube. The fibroin and L-ASNase bioconjugates were then
washed with Tris—HCl buffer (pH 8.6) and purified by
centrifugation in a J2-MI refrigerated centrifuge (Beck-
man-Coulter, Brea, CA, USA) at 10000 rpm for 10 min
at 4°C; this purification process was repeated three times
with intervening Tris—HCI washes. After the final spin,
the pellets were each resuspended in 1 mL Tris—HCI
and incubated in a water bath at 37°C for 10 min. Two
milliliters of 5 mg/mL L-asparagine in Tris—HCI was
added to each tube, and incubation continued at 37°C
for another 10 min. The enzymatic reaction was termi-
nated by adding 100 mg TCA to each reaction. The
tubes were centrifuged at 3000 rpm for 5 min, and 0.5
mL of the supernatant from each was transferred to
fresh centrifuge tubes containing 1 mL Nessler’s reagent.
After the reaction processed at room temperature for a
given time, 50 puL of each mixture and 150 pL of Tris—
HCI buffer were transferred in triplicate to 96 well
microplates. The same experiment was repeated three
times. The activities of the enzymes attached to the
fibroins were calculated by determining the change in
optical density at 450 nm as measured on a microplate
reader (Paradigm; Beckman-Coulter). Data are presented
as mean = SD and evaluated using the Student’s t-test
(SPSS 13.0, SPSS Inc.). P<0.05 was considered to be
statistically significant. The mobilization and activity de-
tection of glucose oxidase were performed by referring
to the published literature [8].

Results and discussion

Morphology of silk fibroins

The silk fibroins treated with Ca(NOs),-4H,O-methanol,
Ca(NOs3),-4H,0O-ethanol, CaCl,-methanol-H,O, and CaCl,-
ethanol solution were separately dissolved. After lyophi-
lized, the surface morphology of degummed silk
fibroins and regenerated silk fibroins was observed with
SEM (Figure 1). The size and shape of the degummed
silk fibroins were normal, with diameters of 6-8 pm
(Figure 1A). In contrast, the regenerated silk fibroins
were spherical or irregular shapes. This shape may have
resulted from the merger of smaller micelles that occurred
in the aqueous solutions of Ca(NOj),-4H,O-methanol
(Figure 1B), Ca(NOs),-4H,0O-ethanol (Figure 1C), and
CaCl,-methanol-H,O (Figure 1D), and CaCl,-ethanol
(Figure 1E).

Molecular weight ranges of silk fibroins

The silkworm’s cocoon is composed of two kinds of silk
protein, the silk sericin, which makes up the membrane,
and the silk fibroin, which makes up the inner portion.
The silk sericin is a glue-like mixture of glycoproteins
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H-,O solution. (E) Silk fibroin prepared from CaCl,-ethanol-H,O solution.

.

Figure 1 SEM photographs of B. mori silk fibroin prepared with various solutions. (A) Degummed silk fibroin. (B) Silk fibroin prepared from
Ca(NOs),-4H,0-methanol solution. (C) Silk fibroin prepared from Ca(NOs),-4H,0-ethanol solution. (D) Silk fibroin prepared from CaCl,-methanol-

with varying molecular mass, and is removed by the
degumming and rinsing steps. The silk fibroin protein of
B. mori is rich in alanine, glycine and serine residues
[17], and is ~400 kDa, with 300 kDa making up a heavy
chain (H-chain), 26 kDa making up a light chain (L-
chain), L-chain and H-chain linked by disulfide bond(s)
and about 30 kDa making up a P25 glycoprotein that
associates with the H-L complex primarily by hydropho-
bic interactions [18].

The silk fibroins produced with Ca(NOjz),-methanol,
Ca(NOs3),-ethanol, CaCl,-methanol, and CaCl,-ethanol
solutions were dissolved, and the molecular weights
were measured by SDS-PAGE. As shown in Figure 2, the
regenerated silk fibroins treated with Ca(NOj3),-metha-
nol had a molecular weight from about 95 KDa to over
170 kDa, but Ca(NOs),-ethanol from about 100 KDa to
over 170 kDa. The CaCl,-methanol solution fibroins
ranged from about 140 to over 170 kDa, while the
CaCl,-ethanol fibroins ranged from about 100 to nearly
300 kDa. Two low molecular weight bands, ~17 and ~26
kDa, were obviously present in these regenerated silk
fibroins, but the silk fibroins produced with CaCl,-etha-
nol showed relatively faint low molecular weight bands
at these positions. In addition, the degummed silk
fibroins are poorly soluble, except in the chemistry solu-
tion and organic solvents, we could not observe obvious
bands in the gel.

This phenomenon suggested that some of the disulfide
linkages and hydrophobic bonds, between silk fibroin
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Figure 2 SDS-PAGE analysis of B. mori silk fibroins prepared
with various solutions. Silk fibroins were prepared from four
different calcium-alcohol solutions (as described below) then
dissolved in hot water. The range of molecular weight of the
proteins produced by each solution was determined by SDS-PAGE
with 12% acrylamide gel and 4% condensing gel, which was stained
with 0.25% Coomassie Brilliant Blue R-250. Lanes: M, marker. (A) silk
fibroin prepared from Ca(NOs),-4H,0-methanol solution. (B) silk
fibroin prepared from Ca(NOs),-4H,0-ethanol solution. (C) silk fibroin
prepared from CaCl,-methanol-H,0O solution. (D) silk fibroin prepared
from CaCl,-ethanol-H,O solution. (E) Degummed silk fibroin.




Zhang et al. Journal of Translational Medicine 2012, 10:117
http://www.translational-medicine.com/content/10/1/117

molecules may have been destroyed by Ca(NOs),-
methanol, Ca(NOs3),-ethanol, or CaCl,-methanol treat-
ments. The solvent of CaCl,-ethanol appeared to be suf-
ficiently gentle to produce silk fibroins with less obvious
damage to the secondary bonds. Thus, the CaCl,-etha-
nol solution may be superior to the other solutions in its
ability to protect the integrity of the fibroin secondary
structure. The regenerated silk protein treated with these
calcium-alcohol solvents were water-soluble, this results
consistent with published reports that the silk proteins
prepared from Ca(NOs3),-methanol were water-soluble,
indicating that the regenerating coagulants affected the
crystallinity and conformation of the fibroin [14].

Fourier-transform infrared spectroscopic analysis of the
silk fibroins’ crystalline structure

Due to the presence of amide groups in silk protein,
the characteristic vibration bands around 1620 cm™
were assigned to the absorption peak of the peptide
backbone of amide I (C=0O stretching), bands around
1513 cm’ to amide II (N-H bending), the bands
around 1230 and 1444 cm’ to amide III (C-N
stretching) [15], and 694 cmt to amide IV [19,20].
All these characteristic absorbance peaks indicate the
existence of a hydrogen-bonded NH group [21]. The
molecular conformation of B. mori silk fibroin is char-
acterized by [-sheet absorption peaks around 1630,
1530 and 1240 cm™', random coil conformation ab-
sorption peaks at 1650 or 1645, 1550 and 1230 cm ™%,
and an a-helix absorption peak around 1655 cm™
[15,22]. Tang and colleagues had previously reported
that the intensity of peaks around 3300 cm™ (data
not shown here) fluctuate in response to hydrogen
bonds [23].

In Figure 3, the B-sheet conformation was indicated by
shifts of absorption peaks as follows: 1625-1630 cm™*
(amide 1), 1520-1530 cm™" (amide II), and 1265-1270

! (amide III). FTIR spectra of the regenerated silk
fibroins showed intense absorption peaks around 1620
em™, 1514 cm™, and 1230 cm™, which are the charac-
teristic absorption peaks of B-sheet. The detected crys-
talline structure of CaCl,-ethanol silk fibroin showed
more silk I (a-form, type II B-turn), while that of the
other three fibroins showed more silk II (B-form, anti-
parallel B-pleated sheet).

Wide-angle X-ray diffraction analysis of the silk fibroins’
crystalline structure

The toughness of silk fibers is dependent on their -sheet
composition. In spider and cocoon silk, the 3-sheet con-
sists of a poly-alanine or a GAGAGAGAAS sequence,
arranged in an anti-parallel or parallel conformation. A
previous study by Lu et al. demonstrated that the corre-
sponding D-spacings of silk I (a-form, type II B-turn)
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Figure 3 FTIR transmittance spectra of B. mori silk fibroins
prepared with various solutions. (A) Degummed silk fibroin. (B)
Silk fibroin prepared from Ca(NOs),-4H,0-methanol solution. (C) Silk
fibroin prepared from Ca(NOs),-4H,0-ethanol solution. (D) Silk
fibroin prepared from CaCl,-methanol-H-O solution. (E) Silk fibroin
prepared from CaCl,-ethanol-H,O solution.

were 0.74 nm, 0.56 nm, 0.44 nm, 0.41 nm, 0.36 nm, 0.32
nm, and 0.28 nm, and of silk II (B-form, anti parallel p-
pleated sheet) were 0.98 nm, 0.48 nm, and 0.43 nm [24].
Figure 4 shows the WAXD data of the regenerated silk
fibroins produced in our study with Ca(NO3),-methanol,
Ca(NOs),-ethanol, CaCl,-methanol, and CaCl,-ethanol
solutions. The degummed fibroin and fibroins produced
with Ca(NOs),-methanol, Ca(NOs3),-ethanol, and CaCl,-
methanol showed similar 20 diffraction peaks, which
corresponded to silk II crystalline spacing of 0.47 nm
(260 =18.4°), and silk I crystalline spacing of 0.39 nm
(20 =22.4°). In contrast, fibroin treated with CaCl,-
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Figure 4 Wide-angle X-ray diffraction patterns of B. mori silk
fibroins prepared with various solutions. (A) Degummed silk
fibroin. (B) Silk fibroin prepared from Ca(NOs),-4H,O-methanol
solution. (C) Silk fibroin prepared from Ca(NOs),-4H,O-ethanol
solution. (D) Silk fibroin prepared from CaCl,-methanol-H,O solution.
(E) Silk fibroin prepared from CaCl,-ethanol-H,O solution.
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ethanol showed four obvious diffraction peaks at 26,
namely 19.4°, 20.3°, 24.6°, and 29.3°, which corresponded
to silk I crystalline spacing of 0.44 nm, 0.41 nm, 0.35
nm, and 0.30 nm, respectively. No typical diffraction
peaks of silk II were found for this regenerated silk fi-
broin. The mean peak at 20 =18.4° for fibroins treated
with Ca(NO;),-methanol, Ca(NOs),-ethanol, or CaCl,-
methanol was not as sharp as that for degummed fi-
broin. This finding indicated that these solutions
decreased the crystallization ability of fibroin, and the
sharp peak observed at 20=20.3° of CaCl,-ethanol
fibroins indicated an increased crystallization ability of
fibroin.

Furthermore, the fibroins produced with CaCl,-ethanol
were composed of more silk I (a-form, type II B-turn)
than the other three regenerated fibroins and the
degummed fibroin, which had more silk II (p-form, anti-
parallel B-pleated sheet). As reported previously, the
standard orientation methods, such as rolling and draw-
ing, are able to transform the metastable silk I into silk II
[25]. Therefore, it is possible that the CaCl,-ethanol solu-
tion is superior to the other solutions in its ability to pro-
tect the integrity of the fibroin, maintaining more silk I.

Solid-state '>C CP/MAS-NMR analysis of the
conformational and inter-molecular arragement of silk
fibroins

As shown in Figure 5, the peaks on the dotted line
marked Ala Cg II (16.8 ppm) correspond to the represen-
tative peaks of random coil or distorted B-turn, where
the torsion angles of a backbone chain are distributed
largely around the averaged angles of silk II structure
[26]. The other two peaks that were observed, at 20.2
and 22.6 ppm, correspond to anti-parallel B-sheets [27].
However, the presence of peaks of Ala Cg at 15.2 ppm
and Ala C, at 524 ppm suggested that the residues
strongly favor an ordered structure, most likely a helical
structure [28]. According to previous studies, the silk
protein consists of many repeated motif sequences, such
as AGSGAG [29], AGYGAG, AGVGYGAG and GAAS
[30]; since glycine and alanine can readily form peptide
bonds, this is a likely event in the regenerated silk
fibroins.

The peaks of alanine and serine carbons that were
observed in our study samples suggest that all of them
contain random coils or distorted B-turns (16.8 ppm
peak). An increased amount of these peaks was found in
the fibroins produced with Ca(NO3),-methanol, Ca
(NO3),-ethanol, and CaCl,-methanol, as compared with
degummed silk fibroins and silk fibroins treated with
CaCl,-ethanol (Figure 5).

The peak position of the C, and Cp carbons from ala-
nine and serine residues indicate clearly that these sam-
ples had a B-sheet structure. The silk fibroins produced
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Figure 5 Solid-state '3C CP/MAS-NMR spectra of B. mori silk
fibroins prepared with various solutions. (A) Degummed silk
fibroin. (B) Silk fibroin prepared from Ca(NOs),-4H,O-methanol
solution. (C) Silk fibroin prepared from Ca(NOs),-4H,O-ethanol
solution. (D) Silk fibroin prepared from CaCl,-methanol-H,O solution.

(E) Silk fibroin prepared from CaCl,-ethanol-H,O solution.
S J

with Ca(NOs),-methanol, Ca(NOs3),-ethanol, and CaCl,-
methanol solutions showed increased peaks for alanine
Cp and decreased peaks for glycine with C=0 (169.1
ppm peak) interactions between them. Furthermore, the
peaks of silk fibroin produced with CaCl,-ethanol were
nearly identical to those for the degummed silk fibroin
sample. This finding may be related to the different
levels of chemical shift that were produced by the Ca
(NO3)y-methanol, Ca(NOs;),-ethanol, and CaCl,-metha-
nol solutions. Regardless, the regenerated fibroin pro-
duced with CaCl,-ethanol solution appeared to be the
best method to protect the conformational and inter-
molecular arrangement of the silk fibroin chains of
degummed fibroin.

Enzymatic activity of L-ASNase when conjugated with silk
fibroins

L-asparaginase is a well-established chemotherapeutic
agent in routine use to treat acute lymphoblastic
leukemia. However, treatment withdrawal due to side
effects, some life-threatening and immunological reac-
tions is not uncommon [31]. In addition, circulation
half-life is short, necessitating longer and larger doses of
the drug.

In this study, we tested whether any of the four silk
fibroins produced by the different solutions had more
beneficial effects on a bioconjugated enzyme that is rele-
vant for human therapy. The L-ASNase enzyme was
chosen for these in vitro experiments, along with its sub-
strate L-asparagine. Since L-ASNase hydrolysis of L-
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asparagine produces NHjz, Nessler’s reagent, which turns
yellow in the presence of NHj;, was chosen to measure
L-ASNase activity. According to the results, the activity
of L-ASNase attached to the regenerated fibroins pro-
duced with CaCl,-ethanol solution was higher than the
other fibroins (Figure 6A). The highest activity of glu-
cose oxidase-linked to the four silk fibroins was
observed in CaCl,-ethanol group too, very similar to that
observed for L-ASNase (Figure 6B). Therefore, the
CaCl,-ethanol solution appear to be the most appropri-
ate methods by which to prepare regenerated silk
fibroins for use as drug delivery carriers, at least for
these two particular enzymes. However, the immunogen-
icity and biocompatibility properties of these regenerated
silk fibroins produced with CaCl,-ethanol have yet to be
determined and require further investigation in an ani-
mal model before clinical application.

Silk is a unique protein biopolymer, with a block co-
polymer structure dominated by large hydrophobic
domains and small hydrophilic spacers. This primary
structure, upon folding into assembled silk structures,
leads to organized crystalline domains (f-sheets) and less
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Figure 6 Enzyme activity tests for silk fibroins prepared with
various solutions. L-ASNase (A) and glucose oxidase (B) were
separately immobilized to degummed silk fibroin or regenerated
fibroins prepared from four different calcium-alcohol solutions. The
activities of these enzymes attached to the fibroins were calculated
as a change in optical density at 450 or 460 nm measured on a
microplate reader, accordingly. Results are presented as mean + SD
(n=3 assays of triplicate samples). P < 0.05 was considered to be
statistically significant.
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organized more flexible domains (more hydrated). This
assembly leads to localized nanoscale pockets where
other proteins may be entrapped with limited but suffi-
cient hydration [8]. The silk biomaterial offers some im-
portant features that suggest utility as a stabilization
matrix. In addition, methanol and ethanol treatment of
silk fibroin resulted in a gradual transition from silk I to
silk II [32,33]. The analyses also indicated that formation
of aggregated strands among extended sericin chains
induced by ethanol treatment is the key to generating
molecular orientation [34]. Other research showed that
the chimeric protein which formed by a clone encoding
consensus repeats from the major protein in the spider
dragline silk of Nephila clavipes fused to the carboxyl ter-
minal domain of dentin matrix protein 1 (CDMP1) was
incubated with CaCl,, the secondary structure shifted
from random coil to a-helix and p-sheet, due to the
interactions between the CDMP1 domain and Ca** [35].
The results confirmed that concentrated neutral salts
such as Ca®*, or organic solvents including methanol and
ethanol can affected the crystallinity and conformation of
the fibroin. However, the molecular mechanisms for
these effects have to be clarified in the future.

The degradation rate of a matrix is an important par-
ameter for a biomaterial designed to be used for tissue
engineering applications. The properties of silk-matrix
also directly affect the enzymatic degradation of the
enzymes attached. Random coil and a-helical structures
formed of the biospun fibroin accelerate the process of
degradation in both PBS and enzyme solutions in com-
parison with p-sheets [36]. Zhang et al. reported that
cross-linking L-ASNase with regenerated silk fibroin
treated with CaCl,-ethanol solution significantly
increased heat and storage stability and resistance to
trypsin digestion, and its longer half-life (63 h) than
that of control L-ASNase (33 h) [9]. These observations
also suggested that the silk-based matrix prepared with
CaCl,-ethanol ~ solution formed more crystalline
domains (B-sheets) potentially help to decrease the deg-
radation rate.

It’s concluded that regenerated silk fibroin can be used
as an immobilization matrix for enzymes or therapeutic
proteins. The properties of the regenerated silk-matrix
directly effect the activity and stability of the enzymes
attached. In the present research, Fourier-transform in-
frared spectroscopy and X-ray diffraction showed that
the regenerated silk-matrix treated with CaCl,-ethanol
has a crystalline structure with more silk I (a-form, type
II B-turn), while the silk-matrixes treated with other
solutions have more silk II (B-form, anti-parallel B-
pleated sheet). Solid-State *C CP/MAS-NMR analysis
also suggested that the silk-matrix regenerated from
CaCl,-ethanol were nearly identical to degummed silk fi-
broin, while the others show significantly different
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chemical shifts. These results suggested that the silk-
based matrix prepared with CaCl,-ethanol solution
formed more crystalline domains (B-sheets) than others,
which potentially helps to enhance the stability and im-
prove activity of drug or therapeutic proteins. Further-
more, the properties of the regenerated silk-matrix can
satisfy the needs of modern carrier materials, ruling out
the use of most synthetic polymer materials, thus the
carrier materials of silk fibroin treated with CaCl,-etha-
nol could be widely applicable.

In addition, a range of medical needs such as silk
sutures, drug delivery systems, and fiber-based tissue
products that exploit the mechanical properties of silks
can be envisioned for ligament, bone, and other tissue
repairs may become more and more popular in the next
few years [1]. These materials based on silk fiber can
lead to multifunctional material platforms that integrate
with living systems for medical materials, industrial ma-
terial and a host of other applications.

Conclusions

Preparation of B. mori degummed silk fibroin by CaCl,-
ethanol preserved the best original protein structure and
produced a better affinity to the enzyme drug L-ASNase
than the Ca(NOs),-methanol, Ca(NOs;),-ethanol and
CaCl,-methanol treatments. The CaCl,-ethanol solution
may represent the most appropriate method by which to
prepare silk fibroins for use as biomaterials, especially as
carriers for drug delivery.
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