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Abstract 

Tumors are highly complex and heterogenous ecosystems where malignant cells interact with healthy cells 
and the surrounding extracellular matrix (ECM). Solid tumors contain large ECM deposits that can constitute 
up to 60% of the tumor mass. This supports the survival and growth of cancerous cells and plays a critical role 
in the response to immune therapy. There is untapped potential in targeting the ECM and cell-ECM interac-
tions to improve existing immune therapy and explore novel therapeutic strategies. The most abundant proteins 
in the ECM are the collagen family. There are 28 different collagen subtypes that can undergo several post-transla-
tional modifications (PTMs), which alter both their structure and functionality. Here, we review current knowledge 
on tumor collagen composition and the consequences of collagen PTMs affecting receptor binding, cell migration 
and tumor stiffness. Furthermore, we discuss how these alterations impact tumor immune responses and how colla-
gen could be targeted to treat cancer.

Introduction
The extracellular matrix (ECM) is a constantly evolv-
ing structure that is produced, modified, remodeled and 
maintained by the cells residing within it. The ECM is 
dynamic and responds to changes in the local and sys-
temic environment, making it a central player in tissue 
physiology and pathology such as cancer [1]. Tissues 
have unique ECM compositions tailored to their specific 
mechanical and structural demands which can be further 
modified in pathological conditions. The main compo-
nent of the ECM are collagens consisting of 28 different 
types [2]. During homeostasis, the biophysical properties 

of collagen are critical for maintaining tissue integrity. 
Collagen stiffness is influenced by the size of its fibers; 
short fibers offer a greater range of orientation possibili-
ties, enhancing tissue permeability, while long fibers align 
closely, resulting in cells organizing in the same orien-
tation within the tissue [3]. This close alignment facili-
tates the formation of collagen crosslinks contributing 
to increased ECM stiffness [4]. In the context of tissue 
repair, additional collagen crosslinks serve as a protective 
mechanism to aid wound closure.

Cancer is viewed as a form of excessive wound-healing 
as similar pathways are activated in wound healing and 
tumorigenesis [5]. For instance, dense ECM that forms 
part of the scar tissue in wound healing is similar to col-
lagen deposits known as desmoplasia in cancer, which 
correlate with poor prognosis [5, 6]. During tumor devel-
opment, desmoplasia is induced by cancer-associated 
fibroblasts (CAF), macrophages and tumor cells and the 
produced collagen is resistant to enzymatic degradation 
[7–11]. CAFs are the main players in collagen remod-
eling in cancer. These are highly activated fibroblasts and 
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which, in contrast to normal activated fibroblasts after 
tissue repair, do not undergo apoptosis or return to rest-
ing state [12]. CAFs are a heterogeneous population of 
cells implicated in different stages of tumor development, 
from primary growth to metastasis, in different tumor 
types [11, 12]. However, a number of studies propose an 
anti-tumor role for CAFs, as ablation of CAFs results in 
more aggressive phenotypes [13].

A hallmark of cancer is the epithelial-to-mesenchymal 
transition (EMT). Epithelial cells and endothelial cells 
secrete a laminin-rich ECM while mesenchymal cells 
secrete a collagen-rich ECM [14, 15]. Both EMT and 
desmoplasia enhance tumor stiffness by increasing the 
mechanical strength, density and crosslinking of collagen 
[16, 17]. Cells sense the mechanical properties of their 
surroundings and in stiffer matrices, pathways promoting 
proliferation, survival and invasiveness of tumor cells are 
triggered.

The ECM also influences the migration of immune 
cells that promote or prevent tumor growth, depend-
ing on tumor type and disease stage [7, 9, 18, 19]. T-cell 
migration is reduced in dense, stiff matrices compared to 
less dense, more flexible matrices. T cells preferentially 
migrate along long collagen fibers using integrin-inde-
pendent migration while in disorganized collagen struc-
tures they use integrin-dependent migration [20]. Solid 

tumors can be classified into inflamed “hot” tumors and 
non-inflamed “cold” (Fig.  1). Immune inflamed tumors 
have a high infiltration of cytotoxic T-cells and in general 
are responsive to immunotherapy. Non-inflamed tumors 
are characterized by an absence or low numbers of infil-
trated T-cells, increased collagen deposition and the 
presence of a stromal barrier, abnormal vasculature, lack 
of chemokines, hypoxia or activated oncogenic pathways 
[21–24]. Non-inflamed tumors have increased resistance 
to immunotherapy and a higher chance of disease recur-
rence within five years [24]. The mechanism behind the 
resistance is not fully understood but there is an increas-
ing interest in the role of the ECM in immune cell infil-
tration of tumors. For example, the ability of T-cells to 
reach the tumor core of lung and ovarian tumors is hin-
dered by the collagen alignment in the tumor periphery 
[25].

Collagen expression differs between different cancer 
types but in general tumors maintain the collagen line-
ament of the tissue of origin [26].However, collagens 
can undergo extensive post-translational modifications 
(PTM) [27], which can result in an almost infinite array 
of matrices. Manipulation of specific PTMs could pro-
vide new therapeutic possibilities to inhibit or correct 
localized pathological alterations to the ECM that occur 
in cancer or tissue fibrosis. Here, we review current 

Fig. 1 Inflamed (left) and non-inflamed tumors respond differently to immune checkpoint blockade therapy. Inflamed tumors contain more T cells, 
antigen presenting cells and inflammatory M1 macrophages compared to non-inflamed tumors. In non-inflamed tumors, T cells are mainly present 
at the tumor border and have difficulties infiltrating into the tumor. These are also characterized by more tumor-suppressing immune cells such 
as M2-macrophages and T-regulatory cells and high abundance of collagen produced by fibroblasts and cancer-associated fibroblasts
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knowledge on the impact of collagen and collagen PTMs 
on the antitumor response and their potential as thera-
peutic target.

Collagen‑receptor interactions affect tumor growth 
and anti‑tumor immune responses
Cells can interact with collagens through at least six dif-
ferent groups of receptors, namely: (1) integrins, (2) the 
Discoidin Domain Receptor family (DDR1 and DDR2), 
(3) the mannose receptor family (4) Glycoprotein VI 
(GPVI) (5) Osteoclast-associated receptor (OSCAR), (6) 
Leukocyte Associated Immunoglobulin Like Receptor 
1 (LAIR-1) [28]. The interaction of collagen with these 
receptors regulates diverse responses, encompassing cell 
adhesion, matrix metalloprotease (MMP) activity, throm-
bus formation, cell survival and proliferation, cytokine 
production, immune effector function and collagen 
remodeling. (Table 1).

Both immune and tumor cells bind to collagens via 
integrins such as α1β1, α2β1, α3β1, α4β1, α10β1, and 
α11β1 for migration [29, 35, 36]. Integrins expressed 
by tumors interact with collagen and overcomes tumor 
dormancy by increasing tumor cell motility. In con-
trast, collagen-integrin interaction on immune cells is 
anti-tumorigenic and promotes migration of T-cells and 
natural killer cells into the tumor [37]. Integrin a3 (itga3) 
mRNA expression is increased by PDAC tumor cells and 
negatively correlates with T-cell presence which is associ-
ated with poor prognosis [38].

The DDR family consists of receptor tyrosine kinases 
that bind to collagen and induce MMP secretion and 
regulate cellular functions [30]. DDR1 expression is posi-
tively correlated with tumor stage and promotes tumor 
cell proliferation, migration and invasion [39, 40]. In 
PDAC, the DDR1–NF-κB–p62–NRF2 cascade can be 
activated by cleaved collagen I which limits metabolism 
and growth of tumours [41]. In contrast, cleavage resist-
ant collagen I induces proteasomal degradation of DDR1. 
Binding of DDR1-ectodomain to collagen mechanistically 
aligns collagen fibers, independent of receptor activation 

[42]. Tight fiber alignment can prevent immune cells 
from infiltrating into the tumor in breast cancer. DDR2 
is overexpressed on CAFs and regulates force-mediated 
collagen fiber remodeling that results in a stiffer tumor 
microenvironment [43, 44].

The uPAR-associated protein (uPARAP/Endo180, 
encoded by MRC2) is an endocytic transmembrane 
receptor for collagen of the mannose receptor family 
[31]. uPARAP facilitates the degradation of collagen and 
therefore plays a crucial role in ECM homeostasis, tis-
sue remodeling, and turnover. Macrophages and fibro-
blasts remodel collagens via uPARAP by targeting them 
to lysosomal degradation. Lower expression of uPARAP/
Endo180 in metastatic melanoma and advanced urothe-
lial cancer results in increased responsiveness to immune 
checkpoint blockade therapy [45].

Both GPVI and LAIR-1 recognize Glycine-Proline-
Hydroxyproline motif repeats in collagens but have 
opposing effects on immune activation. GPVI signals 
through an immunoreceptor tyrosine-based activation 
motif (ITAM) to activate platelets resulting in throm-
bus formation [32]. Platelets can interact with tumor 
cells shielding them from shear stress in the circulation 
and preventing recognition by natural killer cells [46, 
47]. In contrast, LAIR-1 is an immune inhibitory recep-
tor that signals through an immunoreceptor tyrosine-
based inhibition motif (ITIM) and is broadly expressed 
on immune cells, including T cells [34, 48]. Collagens can 
set a threshold for immune cell activation through LAIR-
1. Collagen deposition in tumors could therefore protect 
tumor cells from the immune system through LAIR-1 
[49].

Changes in collagen composition during tumor 
progression
Collagens form a diverse family of proteins with multi-
ple subtypes, each of which has its specific structural and 
functional characteristics (Table 2). The general structure 
of collagens consists of three polypeptide α-chains that 
fold into a triple helix, improving the thermal stability of 

Table 1 Groups of collagen receptors

Receptors Expression Function upon binding collagen

Integrins All cells Regulation of cell adhesion [29]

Discoidin domain Receptor family Epithelial cells and mesenchymal cells Regulation of cell migration, differentiation, prolif-
eration, survival, ECM remodeling [30]

Mannose receptor family Macrophages and fibroblasts Endocytosis of collagen for lysomal degradation [31]

Glycoprotein VI Platelets Platelet activation [32]

Osteoclast-associated receptor Osteoclasts, myeloid cells Osteoclast differentiation, Monocyte survival [33]

Leukocyte Associated Immunoglobulin Like 
Receptor 1

Immune cells Inhibition of immune cell activity [34]
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the collagen. The human genome encodes for 44 different 
forms of α-chains to produce a total of 28 types of col-
lagens [50]. Depending on the collagen type, this triple-
helix is a homotrimer or mixture of two or three different 
α-chains [51]. The most common motif within α-chains 
is a (Gly-X-Y)n-repeat in which every third amino acid is 
a glycine followed by two non-glycines. The small size of 
glycine is crucial for the folding of the triple helix. While 
X–Y can be all amino acids, they most commonly are 
proline and hydroxyproline, respectively.

Fibrillar collagens
The classical fibrillar or fibril-forming collagens include 
collagen I, II, III, V, and XI, with collagen I as the most 
abundant collagen throughout the body. They form long 
and highly organized fibrils and are the dominant com-
ponent of the ECM and important contributors to cancer 
progression if mutated or exceedingly present [10, 53]. 
Long aligned fibrils provide an easy route for tumor cells 
to migrate out of the tumor nest while excluding immune 
cells [42, 54]. Pancreatic tumor cells produce unique col-
lagen I homotrimers (a1/a1/a1) instead of the normal 
collagen I heterotrimers (a1/a2/a1), enhancing resist-
ance to MMP degradation and tumor progression [38]. 
Homotrimeric collagen I increases proliferation of tumor 
cells through DDR1 and signaling through ITGA3 com-
pared to heterotrimeric collagen I [38]. In mice models, 

deletion of homotrimeric collagen I or suppression of 
ITGA3 in tumor cells improved overall survival and 
tumor T-cell infiltration.

While collagen XI is a minor collagen and preferen-
tially expressed in cartilage in homeostasis, several stud-
ies report it to be present in tumors and propose to use 
it as cancer-biomarker [55]. In ovarian cancer, increased 
expression of collagen I and XI is associated with dis-
ease progression. In non-small lung cancer, collagen XI 
expression in the tumor induces a negative feedback loop 
reducing CAF-mediated collagen remodeling and CAF 
migration as collagen XI sterically interferes with colla-
gen I- integrin-binding [55].

In several cancer types, collagen V is over-expressed in 
non-inflamed tumors compared to inflamed tumors, in 
metastatic tumors compared to primary tumors and in 
patients resistant to cytotoxic drugs [56–60]. In contrast 
to most fibrillar collagens, collagen III plays a role in sup-
pressing rather than promoting the metastatic processes 
such as adhesion, migration and invasion of tumor cells 
in a murine breast cancer model [61]. In human head and 
neck squamous cell carcinomas, collagen III is the most 
abundant collagen type in patients with dormant tumors 
compared to tumors from patients with additional lymph 
node metastases [62]. The collagen architecture of dor-
mant tumors is characterized by wavy collagen fibers and 
low degree of linear organization compared to prolifera-
tive tumors [62].

Basement membrane collagens
Network-forming collagens such as collagen IV, -VIII and 
-X form open network structures instead of fibers. Col-
lagen IV is an essential part of the basement membrane 
and upregulated in several types of cancer promoting cell 
proliferation, migration, and invasion [63]. Network-col-
lagens also play an important role in mediating platelet 
interaction with tumor cells and thereby enhance metas-
tasis [47]. Collagen VIII is normally expressed in vascu-
lar smooth muscle cells (SMC) and plays an important 
role in vascular remodeling. High expression of collagen 
VIII in tumors is associated with poor prognosis, likely 
through SMC survival and migration, enhancing angio-
genesis [64]. Lastly, expression of collagen X is high in 
immune-excluded triple-negative breast cancers that are 
resistant to anti- programmed cell death-1 (PD-1) ICB 
therapy [60].

Minor collagens
Although minor collagens are less abundant in human 
body, they do play a crucial role in collagen struc-
tures. Beaded-filament-forming collagens such as col-
lagen VI are closely related to basement membrane 
collagens. Breast cancer adipocytes upregulate collagen 

Table 2 Collagens organized by their subtype and tissue of 
origin [52]

Subtype Collagen Tissue of origin

Fibril-forming I
II
III
V
XI
XXIV
XXVII

Bone, cartilage, skin, tendon
Cartilage, vitreous body
Blood vessels, bone, skin
Blood vessels, bone, cornea, pla-
centa, skin, tendon
Cartilage, placenta, tendon
Bone, cornea
Cartilage

Network-forming IV
VIII
X

Basement membrane,
blood vessels, connective tissue
Calcifying cartilage

Beaded-filament VI
XXVI
XXVIII

Bone, cartilage, cornea, skin,
Ovary, testis
Basement membrane

Anchoring VII Basement membrane

Transmembrane XIII
XVII

Cell junctions
Hemidesmosomes

FACITs IX
XII
XIV
XVI
XIX
XX
XXI
XXII

Cartilage, vitreous body
Connective tissue
Connective tissue
Cartilage, papillary dermis, placenta
Basement membrane,
Widespread
Widespread
Tissue junctions
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VI expression during tumorigenesis [65, 66]. Collagen VI 
is also found near vascular structures and increased in 
colorectal cancer [67].

Anchoring such as collagen VII and Transmembrane 
collagens such as XIII and XVII have a role in spatial 
compartmentalization and enhancing cell–cell and cell–
matrix interaction, respectively [2, 68–70]. In breast can-
cer, collagen XIII activates the Tumor Growth Factor-β 
(TGF-β) pathway through B1 integrin, promoting cancer 
progression and metastasis [71]. In epithelial cancers, 
overexpression and increased ectodomain shedding of 
the transmembrane collagen XVII leads to tumorigenesis 
and is associated with poor prognosis [72]. Fibril-associ-
ated Collagens with Interrupted Triple Helices (FACIT) 
are important mediators in the organization of the col-
lagen fibrils and the density of the ECM. In breast can-
cer FACIT collagens are highly present and inhibit fibril 
fusion [73, 74].

Collagen post‑translational modifications and their 
impact on the anti‑tumor immune response
During collagen biosynthesis, the collagen structure 
undergoes several PTMs. PTMs can modify protein 
function by altering protein structure, protein–protein 
interactions, and degradation. PTMs take place intra- 
and extracellularly and once collagen is in its triple helical 
form, further PTMs such as hydroxylation and glycosyla-
tion will not occur [75, 76] (Fig. 2).

Proline hydroxylation
The synthesis of fibrillar collagen begins with the for-
mation of procollagen in the endoplasmic reticulum 
followed by proline and lysine hydroxylation and glyco-
sylation [77]. Proline hydroxylation on fibrillar collagen 
by prolyl-4-hydroxylases (P4HA1, P4HA2 and P4HB) 
is the most frequent PTM and improves stability of the 
collagen triple helix by forming strong electronegative 
bonds. Despite the commonality of proline hydroxyla-
tion, each collagen helix exhibits a distinctive hydroxy-
lation pattern [78]. This variability in hydroxyproline 
localization within the collagen structure impacts protein 
folding and triple helical configuration and affects pro-
tease access to the collagen structure [79–81]. Hydroxy-
lated proline sites are important for cells to bind and 
interact with collagen via integrins and DDR receptors. 
Hence, changes in hydroxylated proline sites impact 
adhesion, proliferation, and cell migration [82]. Hydroxy-
proline and P4HA1 stabilize Hypoxia-inducible factor 
1-alpha (HIF-α) enhancing the hypoxia cycle, proline 
synthesis and collagen deposition [83, 84]  (Table  3). In 
The Cancer Genome Atlas (TCGA) database, high fre-
quency of mutations in P4HA1 are associated with lower 
progression free survival [85]. P4HB is overexpressed in 

bladder and colon cancer, increasing cell proliferation, 
migration and reducing apoptosis and in hepatocellular 
carcinoma inducing EMT [86]. For healthy collagen IV it 
is important to undergo PTMs such as 3-proline hydrox-
ylation as the absence of this modification leads to plate-
let aggregation, which supports tumors [63].

Loss of P3H2 expression is found in breast cancer 
and enhances cell proliferation and is therefore pro-
tumorigenic [87]. Taken together, a pattern of increased 
hydroxylation by prolyl-4-hydroxylases but decreased 
hydroxylation of 3-proline enhances tumorigenesis. This 
suggests that specific prolines within the collagen struc-
ture may be more susceptible to hydroxylation under 
pathological conditions, supporting that post-transla-
tional changes to collagen structure by specific enzymes 
could be used as biomarkers [82].

Lysine hydroxylation
Besides proline, lysine also undergoes hydroxylation 
which stabilizes collagen triple helixes, increases the stiff-
ness and reduces the sensitivity of collagen to proteases 
[88, 89]. Hydroxylation of lysine is catalyzed by lysyl 
hydroxylase (LH) and most commonly occurs at lysine 
residues in the Y-position of the Gly-X-Y sequence repeat. 
The α2-chains have a higher content of this repeat com-
pared to the α1-chains resulting in more hydroxylated 
lysine in heterotrimeric collagens compared to homotri-
meric collagens [76, 90]. Whether a lysine is hydroxylated 
in collagen depends on the specific amino acid sequence, 
activity of the hydroxylation enzyme in the collagen-pro-
ducing cells and/or the collagen conformation during its 
exposure to the enzyme. For example, hydroxylation by 
LH3 is especially important in collagen IV as LH3 defi-
cient cell lines accumulate intracellular collagen IV, have 
reduced secretion and form instable triple helices [91]. 
Increased hydroxylation of lysine residues within telo-
peptides by LH2 is associated with fibrotic conditions by 
increasing collagen crosslinking and stiffness, protect-
ing the collagen from degradation [89]  (Table  3). This 
supports tumor cells by serving as a physical barrier for 
therapeutics and promoting metastasis [88, 89, 92]. In 
contrast, hypoxia decreases hydroxylation of lysine resi-
dues [78, 93]. In some tumors, mutations in human LH2 
(D689A) lead to loss of LH activity reduction of tumor 
cell migration [94, 95].

Glycosylation and glycation
Glycosylation and glycation are enzymatic and non-
enzymatic reactions, respectively, of glucose, glucose 
metabolites and other reducing sugars with different sub-
strates, such as proteins, lipids, and nucleic acids. Similar 
to other modifications, there is high variability in glyco-
sylation patterns between different types of collagen [90]. 
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Fig. 2 Schematic overview of collagen post-translational modifications. Hydroxylation of proline and lysine takes place in the endoplasmic 
reticulum while N-linked glycosylation and O-linked glycosylation of hydroxylysine take place in the endoplasmic Reticulum and golgi apparatus, 
respectively. The collagen triple helix is formed intracellularly and in most subtypes of collagen N- and C-propeptides are cleaved off after secretion 
before the collagen can be crosslinked to form collagen fibers. Collagen can also be modified by citrullination or phosphorylation. During collagen 
remodeling, collagen is normally degraded while in cancer also fragmentation can take place leaving collagen fragments in the circulation [2]
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Glycosylation is most common in less organized col-
lagens such as collagen IV. N-linked glycosylation takes 
place in the endoplasmic reticulum by Collagen Beta(1-
O)Galactosyltransferases. For O-glycosylation of col-
lagens there are two glycosyltransferases that catalyze 
this process: hydroxylysyl galactosyltransferase (GT) and 
galactosylhydroxylysyl glucosyltransferase (GGT) [75]. 
These enzymes add glucose and galactose to the -OH 
group of hydroxylysine in the Golgi apparatus. The gly-
cosylation of hydroxylysine is crucial in collagen IV and 
VI to assemble basement membrane. Defects in LH3 
prevents intracellular tetramerization of collagen VI 
and its secretion [90]. Non-enzymatic glycation can also 
occur on fibrillar collagens, resulting in a lower number 
of crosslinks and reduced collagen stiffness [35]. Add-
ing sugar molecules to collagen fibrils also impacts theirs 
functionality as it prohibits cell adhesion by blocking 
integrin-binding places on the structure [35]. Although 
tumor cells carry many mutations, documented muta-
tions of genes encoding glycosyltransferases are relatively 
rare in tumor cells highlighting their importance for col-
lagen stability. Overall, further mechanistic investigation 
is required to understand the role of collagen glycosyla-
tion in cancer and assess its potential as a novel thera-
peutic target.

Propeptide cleavage
After the procollagen is released to the extracellular 
space, the N- and C-propeptides of fibrillar collagens are 
cleaved off. Cleaving of the C-propeptides of collagen I by 
bone morphogenetic protein 1 (BMP1) impacts the fibril 
formation and thus the orientation of the collagen struc-
tures. Mutations in BMP1 are documented in individu-
als with gastroschisis and osteogenesis imperfecta and 
might potentially function as a therapeutic biomarker 
for individuals with cancer [96–99]. However, in case of 
collagen IV only the N-propeptides are cleaved off. The 
C-propeptides in the molecules bind head-to-head to 
form a network, with covalent intra- and intermolecular 

cross-linking into the subtype structure [77, 100]. The 
cleaved off N-propeptide is a non-collagenous fragment 
that is also known as arresten which acts as angiogene-
sis inhibitor [101, 102]. Arresten inhibits endothelial cell 
proliferation, migration and tube formation and reduces 
subcutaneous tumor growth in mice and suppresses 
squamous cell carcinoma invasion [101–103].

Crosslinking affects matrix stiffness
Important enzymes in the regulation of fibril collagen 
are lysyl oxidase (LOXs) and lysyl oxidase-like (LOXL) 
that catalyze oxidation of lysine and hydroxylysine in 
a copper-dependent way [100, 104, 105]. LOX can only 
catalyze lysine after removal of the C-propeptides which 
prevents collagen from becoming anionic. High concen-
trations of copper ions in tumors promote LOX secretion 
[104]. The hypoxic TME increases tumor cell expression 
of LOX and promotes collagen covalent crosslinking, 
which increases matrix stiffness [20, 106–109] (Table 3). 
LOXL2 suppression in lung tumors mice, increases cyto-
toxic T-cell infiltration and decreases cytotoxic T-cell 
exhaustion [22].

Mutations in LOX are associated with colon tumor 
pathogenesis [110]. Despite the wealth of information 
available on the overexpression of LOXL2 in tumors, 
there are scarce data regarding the presence of genetic 
mutations in LOXL2. Mutations in LOXL2 are identified 
in skin cutaneous melanoma and uterine corpus endo-
metrial carcinoma. However, LOXL2 mutational burden 
does not impact the fitness of human tumors, although it 
is possible that specific mutations could be important in 
specific types of tumors [111].

Citrullination and receptor binding
Citrullination changes an arginine residue into a citrul-
line residue, which is a none-standard amino acid [112]. 
Intracellular protein arginine deiminases (PADs) catalyse 
this process and typically become active when calcium 
levels exceed the normal physiological concentration, for 

Table 3 Amino acids in collagen with their corresponding post-translation modification, added group and enzyme involved. The 
outcome of overexpression of each modification is described in the last column

Amino acids PTM Group Enzymes Outcome if increased

Proline Hydroxylation (ER) –OH P4Hs, P3Hs Hypoxia

Lysine Hydroxylation (ER) –OH LH1, LH2, LH3 Increased glycosylation, crosslinking 
and fibrosis

Hydroxylysine N-Linked (ER)
O-linked (GA) Glycosylation

Glucose or galactose COLGALT1, COLGALT2,
GT, GGT 

Increased crosslinking, matrix stiffness

Lysine/Hydroxylysine Oxidation (ES) –O LOX, LOXL1, LOXL2, LOXL3, LOXL4 Fibrosis, matrix stiffness

Arginine Citrullination (ES) Citrulline
H2O to NH4 + 

PAD4 Role in protein folding, apoptosis, TGF-β
Pathway, receptor binding
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instance during apoptosis [112]. Transitioning arginines 
to citrullines, the reduces the positive charge of the col-
lagen molecule, increasing hydrophobicity. PAD4 citrul-
linates collagen and is increasingly expressed in several 
types of cancer, particularly in metastases [112, 113]. 
PAD4 is mainly produced by neutrophils and deletion 
of this enzyme in mouse tumor models, results in lower 
neutrophil infiltration in tumors and reduced tumor 
progression [114]. In Rheumatoid arthritis citrullinated 
collagen can bind LAIR-1 as decoy ligand impairing the 
immunosuppressive function of LAIR-1 on T cells [115]. 
In cancer, impaired LAIR-1 mediated inhibition could 
lead to inflammation in inappropriate sites, depending 
on the citrullinated collagen location within the tumor. 
Additionally, citrullinated collagen decreases integrin-
mediated cell adhesion, potentially reducing the capacity 
of immune cells to migrate into the tumor [116] (Table 3). 
A genome-wide SNP study showed a significant correla-
tion between cutaneous-basal cell carcinoma risk and 
mutations in the PAD4/PAD6 locus at 1p36 [117].

Phosphorylation
Network-forming collagens, short-chains collagens and 
FACIT collagens such as collagen III, IV, V, VI, XVII 
XXVII can be phosphorylated [118]. Phosphorylation 
of collagen XVII by ecto-CK2 blocks its ectodomain 
shedding by Tumor necrosis factor alpha (TNF alpha)-
converting enzyme (TACE), affecting the adhesion and 
motility of epithelial cells [119]. In squamous cell carci-
noma, shed collagen XVII is suggested to promote tumor 
progression and invasion [72]. Therefore, it is tempting to 
speculate that collagen phosphorylation has a protective 
role in epithelial cancers but further research has to be 
conducted to elucidate this.

MMP degradation and collagen fragments
The ECM undergoes constant remodeling involving col-
lagen cleavage by proteases such as matrix metallopro-
teases (MMPs), a disintegrin and metalloproteinases 
(ADAMs) and ADAM with thrombospondin motifs 
(ADAMTs) [120, 121]. These enzymes directly influence 
the biological characteristics and functions of collagen 
by uncovering cryptic sites, releasing collagen-bound 
growth factors and degrading collagen [122]. Compared 
to intact collagen fragmented collagens are unstable and 
therefore more prone to degradation. However, collagen 
fragments still have a bioactive role by binding to cell sur-
face receptors regulating numerous biological processes 
in physiological and pathological situations [123, 124]. 
MMP-1, 8 and 13 also known as collagenase 1, 2 and 3 
have a pro-tumorigenic role by cleaving fibrillar collagens 
and enhancing tumor cell motility. MMP-2 and MMP-9 
cleavage activates latent TGF- β and produces collagen 

fragments which in turn induces TGF-β secretion. TGF-β 
has an inhibitory effect on cell proliferation in early 
stages of cancer and is also a key factor in fibrosis [125, 
126]. Collagen I fragments cleaved by MMP1, 2, and 14 
activate the DDR-1 receptor enhancing tumor growth in 
pancreatic cancer, thereby reducing patient survival [41]. 
Collagen I fragments cleaved by MMP-1 and MMP-9 
have an inhibitory effect on T-cell receptor activation and 
IFN-y secretion through LAIR-1 signaling [127].

Large-scale genomic studies have delved into the 
potential genetic alterations of MMPs across a spec-
trum of human malignant tumors from diverse origins. 
These studies have specifically revealed MMP8 as a fre-
quently mutated gene in human melanoma [128]. Func-
tional analysis of the identified mutations verified that 
all mutations result in loss-of-function of MMP8, con-
tributing to melanoma progression. These findings con-
clusively establish MMP8 as a tumor-suppressor gene. 
Additionally, parallel studies have expanded these obser-
vations to other MMP-related metalloproteinases, such 
as ADAMTS15 that is genetically inactivated in human 
colorectal cancer [129].

Collagen post‑translational modifications 
as potential novel therapeutical targets in cancer
Numerous potential treatments, including antibodies and 
small molecule inhibitors, are currently studied for their 
ability to target enzymes and PTMs involved in ECM 
remodeling in tumors  (Table  4). Targeting intracellular 
PTMs could inhibit collagen secretion and deposition, 
reduce stiffness and change the collagen architecture, 
thereby improving immune cell migration and penetra-
tion into the tumor mass. Various rate-limiting steps in 
collagen deposition were explored, including the target-
ing of proline hydroxylases. Knocking down P4HA1, 
P4HA2, and HIF-α reduces collagen deposition in pri-
mary breast cancer tumors, consequently preventing 
metastases [130]. Additionally, small molecules targeting 
P4HA1 reduce tumor growth in colorectal cancer models 
possibly through inhibition of MMP1 [131]. Aspirin tar-
gets P4HA2 by decreasing its gene transcription which 
results in reduced collagen deposition and tumor growth 
in hepatocellular carcinoma [132].

Collagen fibers in tumors are characterized as linear 
and compact due to the high level of deposition and post-
translational crosslinking. This physical restructuring of 
collagen progressively stiffens the ECM leading to exten-
sive biochemical and biomechanical changes, affecting 
cell signaling and tumor tissue three-dimensional archi-
tecture [133]. Therefore, targeting collagen crosslink-
ing might be a good anticancer therapeutic strategy. In 
mice, anti-BMP1.3 treatment reduces expression of col-
lagen I, LOX and TGF-β leading to a reduced overall scar 
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size and improved cardiac function in a model of cardiac 
fibrosis [134]. This therapy shows significant potential in 
preventing fibrosis with minimal adverse effects. Investi-
gating its potential effects on already established fibrotic 
tumors or in preventing metastases would be of interest. 
LOX/LOXL inhibitors, specifically LOXL2 inhibitors, are 
used in cancer and fibrosis to prevent collagen crosslink-
ing [135]. In mice and clinical studies, LOXL targeting 
results in low toxicity and adverse effects, but yielded 
limited clinical benefits [135]. In preclinical cancer 
models, inhibiting LOXL2 does result in a reduction in 
metastasis but not in reduced primary tumor size [136]. 
In the clinic, LOXL2 inhibitors are used before surgical 
intervention to reduce metastasis [137]. Given that only 
the crystal structure of LOXL2 is solved, the potential of 
inhibitors targeting other LOXL enzymes has yet to be 
explored. Inhibitors of LOX enzymatic activity such as 
beta-aminopropionitrile (BAPN) were tested in combi-
nation with PD-1 treatment in mouse models leading to 
tumor reduction and increased T-cell infiltration [138], 
however the clinical use of BAPN is impeded by concerns 
regarding toxicities [139]. Another approach to reduce 
LOX/LOXL activity is to target copper which is an 

important cofactor for LOXL functionality [140]. Inhibit-
ing copper results in anti-angiogenic, anti-fibrotic activi-
ties, however, the mechanism of LOXL-regulation by 
copper is poorly understood [141]. In preclinical mouse 
models, treatment with a copper chelator reduces the 
levels of myeloid-derived suppressor cells and increases 
CD4 + T-cell infiltration in tumors [140].

Extensive experimental and clinical data associ-
ate MMPs with tumor invasion, neo angiogenesis, and 
metastasis, positioning MMPs as promising pharmaco-
logic targets for cancer therapy [122]. Numerous MMP 
inhibitors demonstrated promise as anti-cancer treat-
ments in pre-clinical studies [142]. Unfortunately, none 
of them progressed significantly in clinical trials due to 
severe adverse effects, including musculoskeletal pain 
and inflammation [143]. MMP inhibitors that lacked 
specificity did not succeed in clinical trials, but current 
efforts are focused on developing more specific antibod-
ies and inhibitors [144].

Of note, most inhibitors are still clinically tested in 
metastatic cancer while it is hypothesized that MMP 
inhibition would be more effective in early stages of 
tumor progression [144]. Since then, the understanding 

Table 4 inhibitors and drugs targeting collagen modifications

Therapy target Name drug Drug format Disease Research stage

P4HA1 Diethyl-pythiDC Small molecule inhibitor Colorectal cancer Preclinical [131]

P4HA2 Aspirin Small molecule inhibitor Hepatocellular carcinoma Preclinical [132]

P4H EDHB Small molecule inhibitor Breast cancer Preclinical [160]

BMP1.3 Anti-BMP1.3 mAb Myocardial infarction Preclinical [134]

LOX BAPN (β-aminopropionitrile)
PXS-5505

Irreversible inhibitor
Small molecule inhibitor

Cancer
Pancreatic cancer

Preclinical [139]
Preclinical [161]

LOXL2 Simtuzumab
GS341

mAb
pAb

Fibrosis, Cancer Phase II [162]
Preclinical [135, 163]

LOXL2 PXS-S1A
PXS-S2A
PAT-1251
PXS-5382A
Epigallocatechin gallate (EGCG)

Small molecule inhibitors Fibrosis, heart failure, glaucoma, 
oncological and angiogenic 
diseases

Phase II [135]
Phase II [135]
Phase I [164, 165]
Phase I [135]
Phase I [166]

Copper tetrathiomolybdate (TM)I
d-penicillamine (D-pen)

Copper chelators Cancer
Breast cancer

Phase I/II [140, 141, 167]
Phase II [136, 168]

Dual LOX/LOXL PXS-5153A
CCT365623

Inhibitor Fibrosis
Cancer

Preclinical [169]
Preclinical [170, 171]

MMP9
MMP9
MMP14
MMP1,
MMP2,
MMP3

Andecaliximab (GS-5745)
AB0041, AB0046,
DX-2400
Single Chain Fragment Variables

mAb
mAb
mAb
mAb

Cancer,
Colorectal cancer
Breast, melanoma, sarcoma
Breast cancer

Phase III [172, 173]
Preclinical [144, 174]
Preclinical [175]
Preclinical [176]

PAD4
PAD4
PAD4
PAD4

TDFA
TDCA
Cl-amidine
F-amidine
GSK199,
GSK484
JBI-589

Selective
Irreversible small molecule inhibi-
tors
Reversible inhibitors
Small molecule

Inflammatory disorders and
Cancer
Cancer

Preclinical [177]
Preclinical [178, 179]
Preclinical [177]
Preclinical [114]
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regarding the diversity of MMPs, the intricacy of their 
mechanisms, and the cross-reactivity of certain inhibitors 
with the ADAM and ADAMTS families has increased. 
Endogenous MMP inhibitors such as Thrombospondin-1 
(TSP-1) regulate MMP-2 and MMP-9 activity reducing 
tumor growth in pre-clinical tumor models [145]. How-
ever, the function of TSP-1 in angiogenesis and tumor 
progression remains disputable in certain cancers and 
may be organ specific [146]. While TSP-1 is identified as 
an inhibitor of both processes, while in others, it is char-
acterized as a stimulator [145, 147–151]. Additionally, 
MMPs can modulate the immune system by regulating 
chemokines and altering their activity [152]. MMP9 plays 
a pivotal role in promoting tumorigenesis across various 
cancer types. Inhibiting MMP9 leads to enhanced chem-
otaxis through elevated expression of CXCL10, coupled 
with increased T-cell activation triggered by higher lev-
els of IL12p70 and IL-18 expression [153]. In preclini-
cal models, the combined administration of anti-MMP9 
and anti-PDL1 results in increased intra-tumoral T-cell 
diversity characterized by larger CD4/CD8 memory and 
effector cell populations, along with an enhanced Th1 
responses [153].

The increasing body of evidence for PADs in can-
cer progression [154] has resulted in a growing interest 
towards targeting PADs and citrullination as potential 
therapeutic targets. Tumor cells can produce PAD4 and 
high PAD4 expression is found in patients’ blood and 
malignant tumor tissue [155]. In mice, PAD4 deletion 
in combination with ICB therapy results in increased 
presence and activation of  CD8+ T cells, reduced tumor 
growth and lung metastasis compared to ICB treatment 
only [114]. Whether this effect is due to PAD4-mediated 
collagen citrullination has not yet been investigated in 
tumors.

Another approach to improve cancer treatments based 
on tumoral ECM characteristics, is using fusion proteins 
with a collagen binding domain (CBD) carrying bioactive-
inhibiting cues, immune chemoattracts or radioactive 
substances. For example, recombinant protein contain-
ing the EGFR binding fragment of cetuximab improved 
by a CBD resulted in specific targeting to and penetration 
into squamous carcinoma A431 cell xenografts [156]. A 
similar approach was used with CBDs fused to immune 
checkpoint inhibitor antibodies and to IL-2 [157]. Both 
CBD-fused IL2 and CBD-conjugated checkpoint inhibi-
tors showed enhanced antitumor efficacy and reduced 
associated toxicity compared with their unmodified 
counterparts in several tumor models. In addition, CBD 
fusion to IL-12 is described as result in systemic toxicity 
reduction and synergy with immune checkpoint inhibi-
tor therapy [158]. This targeting strategy could also lev-
erage collagen PTMs making this approach more tumor 

specific. Specific ECM components and PTMs are highly 
expressed in areas of active tumor invasion and thus 
could be used as targets. This strategy has the potential to 
augment the efficacy of radiation, chemotherapy, or tar-
geted therapy by concentrating drugs, or antitumor bio-
logics specifically at active tumor sites, thereby reducing 
their dispersion in healthy tissues [159].

Conclusion and future perspectives
Immune therapy revolutionized cancer treatment 
options. However, not every tumor responds well to this 
treatment, especially tumors with high desmoplasia and 
low immune cell infiltration are resistant to therapy. Col-
lagen deposition in tumors acts as a physical barrier to 
therapeutic treatment. This barrier is not only passive, 
keeping immune cells out, but can also actively pro-
tect the tumor cells specially when altered by certain 
PTMs. To enhance cancer treatment for non-responders, 
immune therapy could be combined with therapies tar-
geting the ECM of tumors.

To implement ECM targets in future treatment of 
cancer patients, more studies should focus on when the 
ECM changes from being tumor suppressive to tumor 
promoting and which PTMs play an important role in 
this process. Promoting increased immune cell infiltra-
tion through the breakdown of the ECM may also create 
an opportunity for tumor cells to disseminate throughout 
the body. Hence, the course of treatment and the tumor 
stage should be meticulously assessed and determined. 
Characterizing different types of collagens, PTMs and 
the abundance of PTM associated enzymes could aid in 
stratifying patients who may benefit from ICB alone or 
in combination with ECM targeted therapies. Targeting 
collagens and collagen-modifying enzymes for oncologi-
cal purposes is intricate, given the widespread presence 
of collagen throughout the body. However, understand-
ing the spatial heterogeneity and temporal dynamics of 
collagen PTMs in different types of solid tumors has the 
potential to refine the selective targeting of tumor stroma 
and bolster anti-tumor immune responses.
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