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Abstract
Background  Myelodysplastic neoplasms (MDS) are myeloid neoplasms characterized by disordered differentiation of 
hematopoietic stem cells and a predisposition to acute myeloid leukemia (AML). The underline pathogenesis remains 
unclear.

Methods  In this study, the trajectory of differentiation and mechanisms of leukemic transformation were explored 
through bioinformatics analysis of single-cell RNA-Seq data from hematopoietic stem and progenitor cells (HSPCs) in 
MDS patients.

Results  Among the HSPC clusters, the proportion of common myeloid progenitor (CMP) was the main cell cluster in 
the patients with excess blasts (EB)/ secondary AML. Cell cycle analysis indicated the CMP of MDS patients were in an 
active proliferative state. The genes involved in the cell proliferation, such as MAML3 and PLCB1, were up-regulated 
in MDS CMP. Further validation analysis indicated that the expression levels of MAML3 and PLCB1 in patients with 
MDS-EB were significantly higher than those without EB. Patients with high expression of PLCB1 had a higher risk of 
transformation to AML. PLCB1 inhibitor can suppress proliferation, induce cell cycle arrest, and activate apoptosis of 
leukemic cells in vitro.

Conclusion  This study revealed the transcriptomic change of HSPCs in MDS patients along the pseudotime and 
indicated that PLCB1 plays a key role in the transformation of MDS into leukemia.

Keywords  Myelodysplastic neoplasms, Transcriptome alterations, Hematopoietic stem cells, Leukemic 
transformation
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Introduction
Myelodysplastic neoplasms (MDS) are a group of het-
erogeneous malignant hematopoietic stem cell (HSC) 
diseases which are characterized by disordered growth 
and differentiation of hematopoietic stem cells and a high 
risk of transformation to acute myeloid leukemia (AML) 
[1]. Although multiple new drugs are currently available, 
effective treatment options remain limited for MDS [2]. 
The current standard care is still hypomethylating agent 
(HMA)-based therapy. However, although HMAs have 
resulted in clinical responses in about 50% MDS patients, 
the disease eventually becomes resistant to these agents 
and progresses to secondary AML (sAML) [3, 4]. MDS is 
a disease of stem cells, and MDS stem cells are function-
ally critical for the initiation, transformation, and relapse 
of disease [5, 6]. Therefore, therapies targeting stem cells 
are promising future curative strategies in MDS.

Some studies revealed that there are quantitative and 
qualitative alterations in hematopoietic stem and pro-
genitor cells (HSPCs) from MDS patients [7–9]. Several 
cell surface markers including interleukin-1 (IL-1) recep-
tor accessory protein (IL1RAP), T-cell immunoglobulin 
mucin-3 (TIM3), CD123, CD47, CD99 and so on, have 
been identified to differentiate MDS HSPCs from healthy 
counterparts [8, 10–13]. In addition, MDS HSC are dys-
function with dysregulated gene regulation, increased 
inflammatory signaling, alterations in RNA splicing 
and ribosome assembly/translation [14]. However, even 
though there is increasing studies for the alterations 
of MDS HSC and a number of targets have been dem-
onstrated as potential therapeutic targets in MDS, the 
ideal therapies in MDS which target the malignant HSCs 
have not been found. An improved understanding of the 
molecular pathways that regulate these disease-initiating 
stem cells is still required for the development of future 
targeted therapies.

The MDS is highly heterogeneous in clinic and may be 
mild and stable for many years or may progress rapidly to 
AML [15]. The underlying pathogenesis remains unclear. 
Recently, the single-cell RNA sequencing (scRNA-seq) 
technology provides an unprecedented opportunity to 
deepened our understanding of normal hematopoiesis by 
identifying the transitional cell states between classical 
hematopoietic hierarchy stages [16, 17]. In this study, we 
revealed the overall transcriptome alterations in HSPCs 
between MDS patients and HCs along the pseudotime 
trajectory using scRNA-seq data. We found the major 
amplifying population in HSPCs in MDS with excess 
blasts (EB) (MDS-EB)/secondary AML is CMP and the 
high expression of PLCB1 might play an important role 
in the transformation of MDS into leukemia.

Results
Single-cell RNA-Seq reveals the alteration of HSPC 
populations in MDS
All the scRNA-seq datas came from public databases. 
The scRNA-seq data of lineage negative (Lin−) bone 
marrow (BM) cells from 7 patients with MDS [18] (2 of 
which has been had progressed to sAML), and 3 healthy 
donors [19] was performed uniform manifold approxi-
mation and projection (UMAP) analysis (Fig.  1A). The 
detailed UMAP of HSPCs are shown in supplemental 
Fig.  S1A-D. In order to be consistent with the descrip-
tion in the article which provides the scRNA-seq data, 
the disease classification of patients was still based on 
the 2016 revision of the World Health Organization 
classification of myeloid neoplasms [20]. These 50,348 
BM-derived cells segregated into 11 populations with 
distinct gene expression patterns (Fig. 1B-C). The expres-
sion of canonical marker genes during hematopoietic 
development are shown in supplemental Fig. S1E. These 
populations included HSC, CMP, granulocyte mono-
cyte progenitor (GMP), common lymphoid progenitors 
(CLP), megakaryocyte-erythroid progenitors (MEP), 
neutrophil progenitors (NeuP), erythroid progenitors 
(EryP), megakaryocytic progenitors (MkP), eosinophil-
basophil-mast-cell progenitors (EBMP), myelocytes, 
pre-B cell populations (pre-B) and one unknown cluster 
(could not be identified). Among the HSPC clusters, the 
major components were CMP and GMP in MDS/sAML 
and the proportion of CMP was the main cell cluster in 
the patients with excess blasts (EB)/sAML(supplemental 
Fig. S1F, Fig. 1D-E). The proportion of HSC, MEP, Eryp 
and MkP were significantly lower in MDS/sAML patients 
than in HCs (supplemental Fig.  S1F), suggesting a dif-
ferentiation block in the transition from CMP to MEP, 
which were in line with previous reports [7, 8].

Pseudotime analysis reveals the abnormal trajectories of 
HSPCs differentiation in MDS
To identify the dynamic gene expressions along differ-
entiation trajectories, trajectory analysis was performed 
using Monocle 2 [21]. There were three main directions 
of differentiation that resemble the main hematopoietic 
lineages: the myeloid, megakaryocytic/erythroid, and 
lymphoid lineage, inferred from analysis of typical marker 
genes (CEBPD, GATA1 and EBF1) [22–24](Fig. 2A). Dis-
tinct differentiation trajectories were observed during 
hematopoiesis between MDS patients and HCs (Fig. 2B-
C). The distribution of HSPC types along the pseudo-
time are shown in supplemental Fig. S2A. According to 
the transcriptional changes associated with transitional 
states, we identified three different gene expression 
modules (modules 1–3) (Fig.  2D-E). Analysis of Gene 
Ontology (GO) showed that genes of module 1 were 
enriched in these biological process (BP) terms: defense 



Page 3 of 15Zeng et al. Journal of Translational Medicine          (2024) 22:359 

Fig. 1  Identifying HSPC populations in BM. (A) UMAP of human BM cells from 7 MDS/sAML patients and 3 healthy controls. RS-MLD, ring sideroblasts-
multilineage dysplasia; EB-2, excess blasts-2; 5q-, del(5q); EB-1, excess blasts-1; sAML, secondary acute myeloid leukemia; HC, healthy control. Cells are 
color-coded according to samples. (B) UMAP of HSPC subclusters. Cells are color-coded according to the defined subset. (C) Heatmap displaying scaled 
expression of canonical cell type-associated genes for clusters. (D) Stacked bar plots show the percentage of sample contributions per annotated cell 
type (left) and the percentage of annotated cell type contributions per sample (right). (E) Boxplot showing the fraction of CMP and EBMP cluster in HCs 
(red) and MDS-EB/sAML patients (blue) samples. The p values were calculated using two-tailed Student’s t test; *p < 0.05
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Fig. 2 (See legend on next page.)
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response to bacterium, antimicrobial humoral response, 
cell activation involved in immune response, leukocyte 
activation involved in immune response and immune 
response-regulating cell surface receptor signaling path-
way. Genes of module 2 were enriched in cytoplasmic 
translation, positive regulation of protein localization, 
ribosome biogenesis, intrinsic apoptotic signaling path-
way and lymphocyte differentiation. Genes of module 3 
were enriched in myeloid cell differentiation, megakaryo-
cyte differentiation, positive regulation of cell adhesion, 
small GTPase mediated signal transduction and eryth-
rocyte differentiation. The dynamic expression of scores 
for representative pathway in module 1–3 are shown in 
supplemental Fig.  S2B-D. The direction of pseudotime 
and DEGs of different branches (different cell fates in 
branch 2) were shown in supplemental Fig.  S3A-B. The 
top GO BP pathways of different clusters were listed in 
supplemental Fig. S3C.

Next, the enhanced genes along the pseudotime were 
compared between MDS patients and HCs. In module 
1, DEFA3, S100A8 and S100A9, which involved in mul-
tiple inflammatory pathways were the top 3 up-regulated 
DEGs along the pseudotime. The dynamic expression of 
representative immune-related genes are shown in sup-
plemental Fig. S2E. In module 2, the expressions of genes 
involved in ribosome biogenesis (such as RPL5, RPL14, 
RPL21, RPL10 and NPM1, etc.) were lower in MDS/
sAML (supplemental Fig. S2F). In module 3, the results 
indicated that RUNX1 [25, 26], ZBTB16 [27], GATA2 [28, 
29] and MEIS1 [30] which involved in the myeloid cell 
differentiation and the pathogenesis of acute leukemia 
showed higher levels of expression in cells from the MDS 
across differentiation (Fig. 2F). Moreover, the expression 
of genes involved in macrophage and granulocyte differ-
entiation (PRKX [31], RELB [32] and CSF3R [33]), cell 
proliferation (PIP4K2A [34]) and anti-apoptotic regulator 
B cell lymphoma 2 (BCL2 [35]) were also higher in MDS/
sAML (Fig. 2F). However, genes involved in erythrocyte 
differentiation (GATA1 [36] and KLF1 [37]) and hemo-
globin assembly and stability (AHSP [38]) showed lower 
levels of expression in MDS/sAML patients compared to 
HCs (Fig. 2F).

Transcriptional changes of HSPCs in MDS
We assessed transcriptome alterations in MDS/sAML 
HSPCs patients compared with HCs, yielding a total of 

940 differentially expressed genes (DEGs), with 765 up-
regulated genes and 175 down-regulated genes (|Log fold 
change (LogFC)|≥1, adjusted p value < 0.05). The top 200 
differentially expressed genes were shown in heatmap 
(supplemental Fig. S4A). Through functional enrichment 
analysis, including GO and KEGG pathway analysis, we 
found these DEGs were mainly involved in ribosome 
biogenesis, RNA metabolism, regulation of apoptotic 
signaling pathway, leukocyte proliferation and immune 
dysfunction (Fig.  3A-B). The transcriptional changes in 
total HSPCs of 5 MDS patients compared with 2 sAML 
patients were shown in supplemental Fig.  S4B-D. The 
functional enrichment analysis showed DEGs were 
mainly involved in immune dysfunction (such as anti-
gen receptor − mediated signaling pathway, immune 
response − regulating cell surface receptor signaling path-
way, antigen processing and presentation of exogenous 
peptide antigen via MHC class II, T cell differentiation, 
etc.) and signal transduction pathways (such as Phospho-
lipase D signaling pathway, Sphingolipid signaling path-
way, cGMP − PKG signaling pathway, etc.) (supplemental 
Fig. S4C).

Next, transcriptome alterations were assessed in each 
HSPC subset of MDS (Fig. 3C), and the gene set enrich-
ment analysis (GSEA) was performed for each identified 
cluster (Fig.  3D). The results indicated that most HSPC 
subsets of MDS patients exhibited a generalized enrich-
ment of inflammation, signal transduction, or hypoxia 
pathways, while ribosome, antigen processing and pre-
sentation and spliceosome pathway were enriched in 
HCs (Fig. 3D).

As mentioned above, CMP was the main cell cluster in 
the patients with MDS-EB/sAML. We next delineated 
the transcriptional changes of CMP in MDS (Fig. 3E). In 
particular, genes associated with hematopoiesis (RUNX1, 
ETV6), cell proliferation (RNF220, PLCB1 and MAML3) 
or DNA damage response (SSBP2) were upregulated in 
MDS. On the contrast, genes associated with ribosome 
biogenesis (RPS26, RPL31, RPL7, etc.), major histocom-
patibility complex (HLA.C, HLA.B, HLA.DRA, etc.) 
or apoptosis (SLC25A6) were downregulated in MDS. 
KEGG enrichment analysis showed that up-regulated 
DEGs in CMP of MDS patients enriched in cell growth, 
development, differentiation and inflammation pathways, 
such as MAPK signaling pathway, PI3K-Akt signaling 
pathway, mTOR signaling pathway and so on (Fig.  3F). 

(See figure on previous page.)
Fig. 2  Trajectory inference of the hematopoietic lineages and dynamic gene expression patterns of HSPCs. (A) UMAP of human BM cells. Arrows indicate 
main directions of differentiation, inferred from analysis of typical marker genes. (B) Reconstructed principal component graph of cell differentiation tra-
jectory of HSPCs, colored by subpopulation identities. The upper-right trajectory plot in the square indicates the direction of pseudotime. (C) Pseudotime-
ordered analysis of HSPCs from the MDS/sAML and HC samples. (D) Heatmap of gene expression dynamic trends for genes along the pseudotime in 
MDS/sAML patients and HCs (cataloged hierarchically into three gene modules). P value < 0.05 was considered statistically significant for Gene Ontology 
(GO) enrichment analysis. (E) Loess-smoothed curves fitted to the z scored averaged expression of genes in modules 1–3 along the pseudotime trajec-
tory. (F) Two-dimensional plots showing the dynamic expression of significantly enhanced genes in MDS/sAML patients compared with HCs along the 
pseudotime in module 3.|LogFC|≥1 and p value < 0.05 were used to define differentially expressed genes (DEGs)
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Fig. 3 (See legend on next page.)
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On the other hand, down-regulated DEGs enriched in 
ribosome, pathogenic Escherichia cell infection, apopto-
sis, etc. (Fig. 3F)

MAML3 and PLCB1 were upregulated in patients with 
MDS-EB
Based on the proportion of HSPC subsets, cell trajecto-
ries, differential genes and functional enrichment, we 
hypothesized that the proliferation of CMP may be an 
important event in leukemic transformation. Therefore, 
we focused on the up-regulated DEGs in CMP which 
involved in the cell proliferation. MAML3 is a transcrip-
tional co-activator of Notch signaling pathway, contrib-
uting to cancer cells proliferation in acute lymphoblastic 
leukemia [39] and some solid tumors [40, 41]. PLCB1, is a 
kind of phospholipase C, involving in the phosphoinosit-
ide-dependent signal transduction pathway and Wnt sig-
naling pathway. It has been implicated in cell growth and 
proliferation, cell cycle regulation and cellular differen-
tiation [42]. Thus, MAML3 and PLCB1 were selected for 
further verification. The expression of these two genes in 
HSPC subsets are shown in Fig. 4A and E.

Firstly, we analyzed the transcriptome sequencing data 
of HSPCs (CD34+) from GSE114922 and GSE111085 
datasets. The results of GSE114922 indicated that the 
expression levels of MAML3 and PLCB1 in patients with 
MDS-EB were significantly higher than those without 
EB (p < 0.001, p = 0.021, respectively) (Fig. 4B and F). The 
other dataset GSE111085 revealed that patients whose ill-
ness transformed to AML within 12 months (sAML) had 
higher expression levels of PLCB1 than those whose dis-
ease remained stable MDS (p = 0.006) (Fig. 4G). In addi-
tion, an increasing trend towards the expression levels 
of MAML3 was observed in sAML (p = 0.056) (Fig. 4C). 
There was no significant difference in the expression of 
MAML3 and PLCB1 between MDS patients and HCs 
(both p > 0.05) (Fig.  4C and G). Secondly, we collected 
BM samples from 65 MDS patients. Reverse Transcrip-
tion-Quantitative Polymerase Chain Reaction (RT-qPCR) 
was used to detect the expression of MAML3 and PLCB1 
in BM CD34 + cells. The results also showed that the 
expression levels of MAML3 and PLCB1 in patients with 
MDS-EB were significantly higher than those without EB 
(p = 0.039, p = 0.002, respectively) (Fig. 4D and H). Based 
on the median mRNA expression of PLCB1, we divided 

the patients into 2 groups: PLCB1-Low and PLCB1-
High groups. The numbers of white blood cell count 
and neutrophils at diagnosis were lower and the propor-
tion of patients with “very-high” risk was higher in the 
PLCB1-High group compared to the PLCB1-Low group 
(p = 0.042, p = 0.025, p = 0.007, respectively) (supplemen-
tal Table S1). Moreover, the proportion of patients who 
transformed into AML was also higher in the PLCB1-
High group (p = 0.019) (supplemental Table S1). In terms 
of protein expression, the expression of PLCB1 in bone 
marrow biopsy specimens of MDS patients was detected 
by immunohistochemical method, and it was found that 
the expression of PLCB1 in patients with MDS-EB was 
significantly higher than that in HCs and those without 
EB (p = 0.003, p = 0.001, respectively) (Fig. 4I).

Finally, the patients were divided into high and low 
expression groups according to the best cut-off value of 
mRNA expression from GSE114922 dataset. Survival 
analysis of this dataset indicated MDS patients with 
high expression of MAML3 had shorter overall survival 
(OS) (p = 0.025) (Fig. 4J). A downward trend for OS was 
also observed in patients with high expression of PLCB1 
(p = 0.109) (Fig. 4J). Moreover, we found that OS was sig-
nificantly lower among AML patients with high expres-
sion of MAML3 or PLCB1, calculated by the online 
survival analysis tool “Kaplan-Meier Plotter” (KM plot-
ter) database, including GSE1159, GSE12417, GSE37642, 
GSE6891 and GSE8970 datasets (Fig. 4K).

PLCB1 inhibitor U73122 suppress proliferation, induce cell 
cycle arrest, and activate apoptosis of leukemic cells in 
vitro
PLCB1 is implicated in cell proliferation and differen-
tiation, and it plays an important role in cell cycle, espe-
cially G1/S transition [43]. Thus, we used cyclone tool 
of R package scran [44] to calculate the cell cycle scores 
of HSPCs. The results indicated that the proportion of 
total HSPCs in G1 phase of MDS patients was signifi-
cantly lower, while the proportion of cells in S and G2/M 
phase were higher when compared to those of HCs 
(Fig.  5A). Similar results were observed in CMP subset 
(Fig. 5B). GSEA functional enrichment showed cell cycle 
G1/S phase transition pathway was enriched in CMP of 
MDS patients compared to HCs (Fig. 5C). These results 

(See figure on previous page.)
Fig. 3  Transcriptional changes of HSPCs in MDS. (A) Functional enrichment bar chart (GO terms) of DEGs in total HSPCs of MDS/sAML patients compared 
with HCs.|LogFC|≥1, adjusted p value < 0.05 were used to define DEGs. Adjusted p value < 0.05 was considered statistically significant for GO enrichment 
analysis. (B) Functional enrichment bar chart (KEGG terms) of DEGs in total HSPCs of MDS/sAML patients compared with HCs. Adjusted p value < 0.05 
was considered statistically significant for KEGG enrichment analysis. (C) DEGs analysis showing up-(red) and down-(blue) regulated genes in MDS/sAML 
across the 11 HSPC clusters. Adjusted p value < 0.05 were used to define DEGs. (D) Dot plot of enriched terms after performing gene set enrichment 
analysis (GSEA) for each identified cluster. Dot color represents the enriched group, size indicates the NES absolute value, and transparency indicates the 
p-value. (E) Heatmap of top 60 differentially expressed genes in CMP of MDS/sAML patients compared with HCs.|LogFC|≥1 and adjusted p value < 0.05 
were used to define DEGs. (F) Dot plot of enriched upregulated and downregulated KEGG terms in CMP of MDS/sAML patients. Adjusted p value < 0.05 
was considered statistically significant for KEGG enrichment analysis
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Fig. 4  Further investigation of MAML3 and PLCB1 in MDS. (A) Violin plots showing the expression of MAML3 in each cell cluster. (B, C) Identification of 
MAML3 as an upregulated gene in CD34 + HSPCs by integrating multiple Gene Expression Omnibus (GEO) datasets (GSE114922, and GSE111085). (D) RT-
qPCR analyses of MAML3 mRNA in CD34 + HSPCs of MDS patients. (E) Violin plots showing the expression of PLCB1 in each cell cluster. (F, G) Identification 
of PLCB1 as an upregulated gene in CD34 + HSPCs by integrating GEO datasets (GSE114922 and GSE111085). (H) RT-qPCR analyses of PLCB1 mRNA in 
CD34 + HSPCs of MDS patients. (I) Left, representative images of immunohistochemical (IHC) staining of PLCB1 in BM biopsy specimens. Scale bar, 20 μm; 
Right, statistical analysis of PLCB1 immunohistochemistry score. (J) Kaplan–Meier survival analysis of overall survival (OS) in MDS patients. (K) OS of AML 
patients calculated by the online survival analysis tool “Kaplan-Meier Plotter” (KM plotter) database, including GSE1159, GSE12417, GSE37642, GSE6891 
and GSE 8970 datasets
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indicated CMP of MDS patients were in an active prolif-
erative state.

To determine whether PLCB1 inhibitor suppress the 
proliferation of leukemic cells, two cell lines (THP-1 and 
Molm-13) were treated with different concentrations of 
U73122 for 24 h and 48 h respectively. CCK-8 was used to 
detect cell proliferation. The results showed that U73122 
inhibited cell proliferation in a dose-dependent manner 
(Fig.  5D; supplemental Fig.  S5A). Furthermore, U73122 
induced cell apoptosis (Fig.  5E; supplemental Fig.  S5B). 

To explore the potential mechanism behind the induc-
tion of cell apoptosis following PLCB1 inhibition, tran-
scriptome sequencing was performed on THP-1 cell line 
with and without U73122 treatment. The results showed 
that there were 674 up-regulated genes and 972 down-
regulated genes (|LogFC|≥1, p value < 0.05) (Fig.  6A). 
Functional enrichment analysis of GO, KEGG and GSEA 
all showed that DEGs enriched in cell cycle-related sig-
naling pathways (Fig.  6B-D). Next, we found the treat-
ment of U73122 in THP-1 and Molm-13 cells resulted in 

Fig. 5  PLCB1 inhibitor U73122 suppress proliferation, induce cell cycle arrest, and activate apoptosis of leukemic cells in vitro. (A) Sample-wise proportion 
of cells in G1, S and G2M phase in total HSPCs. (B) Sample-wise proportion of cells in G1, S and G2M phase in CMP. (C) GSEA plots showing pathways of 
cell cycle G1/S phase transition enriched in CMP of MDS patients. (D) CCK-8 assay of cell viability in THP-1 cell line with different concentrations of U73122 
for 24 and 48 h respectively. (E) Cell apoptosis analysis of THP-1 cells treated with 0µM, 5µM or 10µM U73122 for 24 h. (F) Cell cycle analysis of THP-1 cells 
treated with 0µM, 5µM or 10µM U73122 for 24 h. (G) CDK6 and cyclin D3 expression stained unchanged while CDK2, CDK4 and cyclin E1 expression were 
down-regulated in THP-1 cells after U73122 treatment
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Fig. 6  PLCB1 inhibitor U73122 affects cell cycle-related signaling pathways. (A) Volcano plots showing 1646 genes with the most statistically significant 
differences between U73122 (5µM) treated and untreated THP-1 cells.|LogFC|≥1 and p value < 0.05 were used to define DEGs. (B) Functional enrichment 
bar chart (KEGG terms) of DEGs in U73122 (5µM) treated THP-1 cells compared to untreated cells. P value < 0.05 was considered statistically significant 
for KEGG enrichment analysis. (C) Functional enrichment bar chart (GO terms) of DEGs in U73122 (5µM) treated THP-1 cell compared to untreated cells. 
P value < 0.05 was considered statistically significant for GO enrichment analysis. (D) GSEA revealing significantly enriched cell cycle-related signaling 
pathways (NES > 1, adjusted p value < 0.05). (E) Heatmap showing the expression of representative cyclins
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an increase in the percentage of cells in the G1 phase and 
a decrease in S phase, indicating cell cycle G1/S arrest 
(Fig. 5F; supplemental Fig. S5C). Corresponding to that, 
western blotting analysis confirmed that the treatment 
of U73122 reduced the expression of CDK2 and cyclin E 
which play a key role in promoting G1/S transition [45] 
(Fig. 5G and Supplementary Fig. S5D). Additionally, tran-
scriptome sequencing showed U73122 also reduced the 
other cyclins involved in G2/M phase transition such as 
CDK1 and cyclin B (Fig. 6E), which indicated the effect of 
U73122 on the cell cycle may be multifaceted and is not 
limited to G1/S phase transition.

Discussion
MDSs are a group of clonal hematopoietic disorders and 
one of the typical presentations is myeloid cell dysplasia 
[46]. The underlying pathogenesis remains unclear. In 
this study, we sought to dissect the biological mecha-
nisms that drive the occurrence and progression of MDS 
at the stem-cell level. We explored the developmental 
trajectories of HSPCs in MDS by pseudotime trajectory 
analysis using sc-RNA sequencing datasets. Obvious 
activation of immunity was observed in the early devel-
opment stage of HSPCs in MDS patients when compared 
to HCs, especially the immune response against patho-
genic microorganisms. Barreyro et al. [47] reported that 
chronic inflammatory diseases associated with activated 
innate immune signaling pathways often precede MDS, 
which was in line with our results. DEFA3, S100A8 and 
S100A9 were the top 3 up-regulated DEGs in module 1. 
Defensin alpha 3 (DEFA3) is a member of family of anti-
microbial and cytotoxic peptides thought to be involved 
in host defense. The role of DEFA3 in the pathogenesis 
of MDS has not yet been reported. However, high lev-
els of S100A8/A9 have all been implicated in pathogen-
esis of MDS/AML [48]. Schneider et al. [49] found the 
frequency of S100A8-expressing nucleated cells was 
substantially increased in bone marrow biopsies from 
subjects with del(5q) MDS as compared to those from 
normal individuals by immunofluorescence technol-
ogy. Moreover, the frequency of S100A8 + cells in del(5q) 
MDS human bone marrow positively correlates with 
disease severity since it is functionally involved in the 
erythroid differentiation defect [49]. Additionally, the 
S100A8/A9 heterodimer, an endogenous TLR4 ligand, 
acts upstream of TNF-α and promotes the activation of 
the transcription factor NF-κB and the secretion of pro-
inflammatory cytokines [50]. The increased signaling of 
S100A8/A9 mediated inflammasome formation leading 
to cell death, which may explain the apoptosis and cyto-
penia in early-stage MDS [48].

In the module 2 and module3, there are abnormalities 
in protein translation, protein localization and ribosome 
biogenesis, accompanied by the activation of a variety of 

inflammatory pathways, hematopoietic differentiation 
and apoptosis pathways. Aberrant cell growth and prolif-
eration depend on increased protein synthesis and over-
active translation which may induce abnormal ribosome 
biogenesis. Emerging evidence suggests that there is a 
close link between dysregulated ribosome biogenesis and 
tumorigenesis [51]. For example, heterozygous deletion 
of RPS14 has been linked to impaired erythropoiesis in 
the del(5q) MDS [49]. Liu et al. [18] found the expression 
of RPL31 and RPL21 mRNA in CD34 + cells of patients 
with low-risk -MDS, high-risk -MDS and sAML were 
significantly lower than those of healthy controls and 
positively correlated with the levels of hemoglobin and 
platelet. Although the mechanism of abnormal ribosome 
in the pathogenesis of MDS is still unclear and additional 
investigations are necessary to mechanistically under-
stand the significance of ribosome biogenesis in MDS, 
these results indicate that ribosome-targeted therapy 
may be a promising approach for treating patients with 
MDS.

Another important feature of MDS is that it has an 
increased risk of evolution into AML. Here, we found 
that the proportion of CMP was the main cell cluster 
in the patients with EB. The results of cell cycle analysis 
indicated the CMP of MDS patients were in an active 
proliferative state. Thus, the proliferation of CMP may be 
an important event in the leukemic transformation. The 
cause of CMP amplification is not clear. Ganan-Gomez 
I et al. [52] reported that there were two MDS differen-
tiation patterns, called CMP-pattern MDS and GMP-
pattern MDS respectively. During blast progression, 
long-term (LT)-HSCs isolated from CMP-pattern MDS 
patients had significantly upregulated genes involved in 
promoting cell proliferation and survival (such as BCL2), 
while tumor necrosis factor (TNF)-induced nuclear 
factor-kappa B (NF-κB) signaling pathway were signifi-
cantly upregulated in the lymphoid-primed multipotent 
progenitors (LMPPs) from GMP-pattern MDS patients. 
In our study, we also found the high expression of BCL2 
along the pseudotime in MDS. Meanwhile, we observed 
MAML3 and PLCB1 that were associated with cell pro-
liferation showed a more pronounced upward trend 
along the pseudotime. Moreover, these two genes were 
also in the top 20 up-regulated DEGs in the CMP subset 
compared to HCs. Through further validation, MALM3 
and PLCB1 were found to be associated with EB, and 
the high expression of PLCB1 may be involved in rapid 
leukemic transformation. It is reported that PLCB1 can 
promote the proliferation of malignant cells by promot-
ing G1/S phase transition [53]. Our results showed that 
PLCB1 inhibitor can suppress proliferation, induce cell 
cycle arrest, and activate apoptosis of leukemic cells in 
vitro. These results indicated that the high expression of 
PLCB1 might be one of the important factors for CMP 



Page 12 of 15Zeng et al. Journal of Translational Medicine          (2024) 22:359 

proliferation in MDS, and thus plays an important role in 
the transformation of MDS into leukemia.

Some studies demonstrated that the mono-allelic dele-
tion and promoter hypermethylation of PLCB1 are asso-
ciated with the progression of high-risk MDS into AML 
[54, 55]. However, the relationship between the expres-
sion level of PLCB1 and leukemic transformation is con-
troversial. Follo MY et al. [56]reported that a reduced 
expression of PLCB1 mRNA was observed in patients 
with high-risk MDS compared to healthy controls. 
But our data and public datasets both showed that the 
increased expression of PLCB1 were associated with EB 
and rapid leukemic transformation. The reason for this 
discrepancy may be that the samples they used are bone 
marrow and peripheral blood mononuclear cells while 
hematopoietic progenitor cells (CD34 + cells) were used 
in our study. In addition, the sample size may be another 
reason for the discrepancy since only a small sample was 
used in Follo MY’s study. Some studies revealed that 
PLCB1 is a positive regulator of myeloid differentia-
tion and a negative regulator of erythroid differentiation 
and PLCB1 expression in MDS cells is usually increased 
during myeloid differentiation and is reduced during 
erythropoiesis [57–59]. On the other hand, PLCB1 can 
promote cell survival through inducing cell cycle pro-
gression in Friend erythroleukemia cells and pro-B-lym-
phoblastic cells [42, 53]. Therefore, we speculated that 
the abnormal high expression of PLCB1 may affect nor-
mal myeloid and erythroid hematopoiesis, and promote 
the proliferation of blast cells by regulating the cell cycle, 
thereby promoting the transformation of MDS to AML.

Notably, our study has certain limitations. Firstly, the 
single-cell transcriptomes of MDS patients and HCs 
come from two datasets which may cause data bias due 
to the batch effect. Secondly, some of these results are 
suggestive rather than conclusive since they are based on 
bioinformatic analysis of single-cell transcriptome and 
bulk transcriptome. Additionally, there is a lack of animal 
experiments to verify the role of PLCB1 in the transfor-
mation of MDS to AML.

In summary, we revealed the transcriptomic change 
of HSPCs in MDS patients along the pseudotime using 
trajectory analysis. In addition, we found PLCB1 plays an 
important role in the transformation of MDS into leuke-
mia. For patients with high PLCB1 expression, pharma-
cologically targeting PLCB1 may be a potential treatment 
for halting MDS progression.

Methods
Patient samples
Bone marrow samples were obtained from 65 newly 
diagnosed patients with MDS. Of which, 40 cases were 
from Qingyuan People’s Hospital and 25 cases were from 
Nanfang Hospital. No treatment other than supportive 

care was given prior to sample collection. All biological 
samples were collected with informed consent according 
to procedures and conducted in accordance with the Hel-
sinki Declaration, approved by the Ethics Committee of 
Qingyuan People’s Hospital (IRB-2023-104) and the Eth-
ics Committee of Nanfang Hospital (Ethical approval No. 
NFEC-2020-304).

Immunohistochemical analysis
The sections were incubated with anti-PLCB1 (#R30178, 
Zen-Bioscience, Chengdu, China; 1:200) at 4  °C over-
night. After being washed with PBS, secondary antibody 
was added and was incubated for 1  h. Then the tissue 
was stained using DAB chromogenic solution. The label-
ing score of intensity was estimated as negative (0), weak 
(1), moderate (2) and strong (3). The extent of staining, 
defined as the percentage of positive stained cells, was 
scored as 0 (0%), 1 (≤ 10%), 2 (11–50%), 3 (51–80%) and 
4 (> 80%). The total immunohistochemistry (IHC) score 
was obtained by multiplying the score of intensity and 
that of extent, ranking from 0 to 12.

RT-qPCR
Bone marrow mononuclear cells (BMMNCs) from each 
sample were isolated by density gradient centrifuga-
tion using Ficoll gradients (Ficoll-Paque, TBD Science, 
Tianjin, China). After that, CD34 + hematopoietic stem 
and progenitor cells were sorted out from BMMNCs by 
immunomagnetic beads (Miltenyi Biotec, Bergisch Glad-
bach, Germany), Total RNA was extracted by TRIzol 
(Thermo Fisher Scientific, Waltham, MA, USA) and 
reverse transcribed to cDNA. Finally, qPCR was done. 
The qPCR amplification conditions: 40 cycles of 95 ℃ for 
30 s, 95 ℃ for 5 s and 60 ℃ for 30 s, followed by a melt-
ing curve program, 65℃ for 60 s. The genes in our study 
have the same amplification conditions.

Cell lines and cell culture
AML cell lines THP-1 and Molm-13 were obtained from 
the cell bank of Chinese Academy of Sciences (Shanghai, 
China), and were cultured in RPMI 1640 medium con-
taining 10% or 20% FBS and 1% penicillin/streptomycin 
at 37 °C and 5% CO2.

Cell viability assay
CCK-8 assay was used to detect cell viability. THP-1 cells 
or Molm-13 cells were seeded into 96-well plates at a 
density of 1 × 105 cells/well with different concentrations 
of phospholipase C inhibitor (U73122) and cultured for 
24–48 h. One hours before ending the incubation, 20 µl 
of CCK-8 was added to each well and incubated for 1 h. 
The total volume in each well was 200  µl. The absor-
bance was measured at 450 nm using a microplate reader 
(TECAN UK Ltd, UK).
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Cell-cycle analysis and cell apoptosis assay
THP-1 cells or Molm-13 cells in their logarithmic growth 
phases were added to a 6-well plate with 2 × 106/well and 
incubated with different concentrations of U73122 for 
24 h before cells were collected.

(1) The cells were fixed using 70% pre-cold ethanol 
overnight and then stained with 400  µl PI (50  µg/ml) 
and 100  µl RNase A (100  µg/ml) at room temperature 
for 15 min in the dark. Flow cytometry analysis was per-
formed using Flow Cytometer (BD Biosciences) to deter-
mine the percentage of cells at every phase of the cell 
cycle.

(2) The cells were collected, washed twice using the 
binding buffer, and incubated with PE-labeled Annexin-V 
and 7-AAD (BD Biosciences) at room temperature in the 
dark for 25 min. Cell apoptosis was determined by flow 
cytometry.

Western blotting
The following primary antibodies were used: anti-
GAPDH (#2118, Cell Signaling Technology (CST), 
America; 1:1000), anti-cyclin D3 (#2936, CST; 1:1000), 
anti-CDK2 (#2546, CST; 1:1000), anti-CDK4 (#12,790, 
CST; 1:1000), anti-CDK6 (#13,331, CST; 1:1000), anti-
cyclin E1 (#R24028, Zen-Bioscience, Chengdu, China; 
1:1000) and anti-alpha tubulin (#11224-1-AP, Protein-
tech, Hubei, China; 1:10000). RIPA buffer contain-
ing protease and phosphatase inhibitors cocktail (New 
Cell&Molecular Biotech Co., Ltd, Suzhou, China) was 
used to extract cellular proteins. Used a BCA Protein 
Assay Kit (#PC0020, Solarbio, Beijing, China) measure 
protein concentrations. Equal amounts of protein were 
subjected to 10% SDS-PAGE before transferred to poly-
vinylidene fluoride (PVDF) membrane (Millipore, Biller-
ica, USA). The specialized primary antibodies were used 
to incubate overnight under 4  °C conditions. The mem-
branes were visualized with SuperECL Chemilumines-
cence detection reagents (Applygen Technologies Inc., 
Beijing, China).

Single-cell RNA sequencing data processing
Raw files were processed with Cell Ranger 7.0.0 pipe-
line (10XGenomics, Pleasanton, CA, USA) using default 
mapping arguments. Reads were mapped to the human 
genome (GRCh38). Seurat R package (version 4.3) was 
used to analyze scRNA-seq data. We used the Merge-
Seurat function to merge datasets. The NormalizeData 
function was used to normalize the raw counts, and 
the FindVariableFeatures function was used to identify 
highly variable genes. Afterward, Harmony R package 
(version 0.1.1) was used to avoid the batch effect affect-
ing downstream analysis [60]. The parameters of Har-
mony were used as followed: sigma = 0.1, tau = 0, block.
size = 0.05, max.iter.harmony = 10, max.iter.cluster = 20, 

epsilon.cluster = 1e-05, epsilon.harmony = 1e-04. Cells 
with greater than 50% mitochondrial expression were 
removed from further analysis. PCA and UMAP were 
used to reduce the dimensions of the data, and the first 
two dimensions were used in the plots. Cell types were 
annotated based on the marker genes and their match 
to canonical markers (Cell cluster annotation was based 
on HSPC subsets specific marker genes reported previ-
ously). The R package SingleR (version 2.2.0), a novel 
computational method for unbiased cell type recogni-
tion of scRNA-seq, with reference transcriptomic dataset 
“HumanPrimaryCellAtlasData”, was utilized to infer the 
cell origin of each single cells independently and to iden-
tify cell types.

DEG analysis was performed using the function “Find-
Markers”. We used Monocle 2(version 2.28.0) to con-
struct the trajectory tree of all groups of cells, which 
indicated the distinct lineage differentiation potential for 
each group of cells. For identification of major patterns 
along the pseudotime, the top 1500 pseudotime-depen-
dent genes were selected by the differentialGeneTest 
function with setting the parameters “fullModelFormu-
laStr” as “∼ sm.ns(Pseudotime)” and were clustered into 
three distinct patterns by k-means clustering [61]. 
BEAM analysis was used to get the expression patterns 
in branches during development [62]. GO, KEGG and 
GSEA analysis were preformed using the clusterProfiler 
R package (version 4.8.1). The terms with p values of less 
than 0.05 were considered as significant enrichments. We 
assigned a cell cycle phase (G1, S or G2/M) to each single 
cell using the ‘cyclone’ function in the Scran R package 
(version 1.28.1).

Total RNA sequencing data processing
Total RNA of THP-1 cells which were treated by U73122 
(5µM) or DMSO (0.1%) for 24  h (n = 3 each group) was 
extracted using TRIzol reagent (Thermo Fisher Scien-
tific, Waltham, MA, USA). RNA sequencing was con-
ducted on the Illumina HiSeq platform. The HISAT2 
algorithm was used to map the sequenced reads to the 
human genome GRCh38 reference genome. DEG analy-
sis (|LogFC|≥1, p value < 0.05) was performed using the 
limma R package (version 3.56.1). GO, KEGG and GSEA 
analysis were preformed using the clusterProfiler R pack-
age (version 4.8.1).

Statistical analysis
Categorical variables were compared between the two 
groups using the chi-squared test, and continuous vari-
ables were compared using the Mann-Whitney U test. 
OS was calculated using the Kaplan–Meier method and 
compared by log-rank test. Statistical analyses were per-
formed using R (version 4.3.0).
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Data availability
scRNA-seq data from 7 patients with MDS/sAML at 
diagnosis were obtained from Liu, Yumei et al. [18], 
which are deposited in the NCBI Sequence Read Archive 
under bioproject No. PRJNA 720,840. Another scRNA-
seq data from 3 healthy controls came from Iskander, 
Deena et al. [19] (GSE156441). The mRNA expression 
profiles and relevant clinical information were down-
loaded from GSE114922 and GSE111085 datasets from 
the GEO database. The raw sequence data performed in 
this paper have been deposited in the Genome Sequence 
Archive (Genomics, Proteomics & Bioinformatics 2021) 
in National Genomics Data Center (Nucleic Acids Res 
2022), China National Center for Bioinformation / Bei-
jing Institute of Genomics, Chinese Academy of Sciences 
(GSA-Human: HRA009399) that are publicly acces-
sible at https://ngdc.cncb.ac.cn/gsa-human. Other data 
generated or analyzed during this study are included in 
this manuscript. The code generated during this study is 
available from the corresponding author by reasonable 
request.
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