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Abstract 

Background Myasthenia gravis (MG) is a chronic autoimmune disorder characterized by fluctuating muscle 
weakness. Despite the availability of established therapies, the management of MG symptoms remains suboptimal, 
partially attributed to lack of efficacy or intolerable side-effects. Therefore, new effective drugs are warranted 
for treatment of MG.

Methods By employing an analytical framework that combines Mendelian randomization (MR) and colocalization 
analysis, we estimate the causal effects of blood druggable expression quantitative trait loci (eQTLs) and protein 
quantitative trait loci (pQTLs) on the susceptibility of MG. We subsequently investigated whether potential genetic 
effects exhibit cell-type specificity by utilizing genetic colocalization analysis to assess the interplay between immune-
cell-specific eQTLs and MG risk.

Results We identified significant MR results for four genes (CDC42BPB, CD226, PRSS36, and TNFSF12) using cis-eQTL 
genetic instruments and three proteins (CTSH, PRSS8, and CPN2) using cis-pQTL genetic instruments. Six of these 
loci demonstrated evidence of colocalization with MG susceptibility (posterior probability > 0.80). We next undertook 
genetic colocalization to investigate cell-type-specific effects at these loci. Notably, we identified robust evidence 
of colocalization, with a posterior probability of 0.854, linking CTSH expression in  TH2 cells and MG risk.

Conclusions This study provides crucial insights into the genetic and molecular factors associated with MG 
susceptibility, singling out CTSH as a potential candidate for in-depth investigation and clinical consideration. It 
additionally sheds light on the immune-cell regulatory mechanisms related to the disease. However, further research 
is imperative to validate these targets and evaluate their feasibility for drug development.
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Background
Myasthenia gravis (MG) is a chronic autoimmune 
disorder of the neuromuscular junction [1]. The clinical 
hallmark of MG is muscle weakness associated with 
fatigability, which can lead to potentially life-threatening 
exacerbations, such as myasthenic crisis, which affects 
around 15% of individuals with MG, remains the leading 
cause of mortality among patients [2, 3]. MG is a rare 
disease with an annual incidence of roughly 10–29 cases 
per 1 million people and a prevalence ranging from 
100 cases to around 350 cases per 1 million people [2]. 
Unlike congenital myasthenic syndromes, characterized 
by mutations in different genes encoding molecules 
important in the neuromuscular junction cause major 
changes in function and are inherited in classic mendelian 
patterns [4], it can be broadly stated that MG is a 
complex disorder resulting from the interplay of genetic 
and environmental factors, triggering autoimmune 
responses [5]. The underlying genetic pathogenesis 
is evidenced by the high disease concordance among 
identical twins [6], and associations with genes in the 
major histocompatibility complex (MHC) locus have 
been recognized for more than 30 years [7]. Over the past 
few decades, the emergence of genome-wide association 
studies (GWAS) has identified multiple susceptibility 
variants beyond the MHC with MG risk, yielding an 
estimated heritability of 25.6% [8]. In a recent GWAS 
encompassing 1,873 MG patients and 36,370 healthy 
individuals, identified significant associations in the 
CHRNA1 and CHRNB1 genes, as well as confirmed the 
previous association signals at PTPN22, HLA-DQA1/
HLA-B and TNFRSF11A [9]. These discoveries shed light 
on the intricate genetic landscape of MG and provide 
valuable insights into its underlying mechanisms.

The goal of MG treatment is to achieve complete 
remission or minimal manifestation status with minimal 
side effects and eventually to avoid a myasthenic crisis 
[10]. Despite the availability of standard therapies, 
including acetylcholinesterase inhibitors, steroids, 
steroid-sparing immunosuppressants, and thymectomy, 
symptoms of MG are unsatisfactorily treated in up 
to half of individuals over the course of their disease 
[11]. A significant proportion of patients heavily rely 
on corticosteroid administration, which can result in 
severe side effects, including infections, osteoporosis, 
diabetes, glaucoma, and other complications [11]. 
Furthermore, some patients exhibit inadequate response 
to conventional treatment, with approximately 10–20% 
of MG patients classified as having "refractory" MG, 
emphasizing the pressing demand for innovative 
therapeutic solutions. Although there are several 
novel treatment options for MG, the therapeutic aim 
of complete remission only be achieved in a subset of 

patients [12], indicating that new safe and effective 
immunotherapies are desperately needed.

The conventional process of drug discovery and 
development is a time-consuming and costly endeavor. 
The integration of genomics into the drug discovery 
process has become indispensable, providing a vital 
avenue for expediting the development of novel 
therapeutic targets [13]. The combination of molecular 
quantitative trait locus (molQTL) studies, such as gene 
expression or protein quantitative trait loci (eQTLs 
or pQTLs), with genome-wide association (GWAS) 
data allows for the identification of target genes 
associated with risk variants through causal inference 
[14]. One approach is through drug target Mendelian 
randomization (MR), a statistical genetic methodology 
that leverages genetic variants as instrumental variables 
to assess the causal relationship between an exposure 
(like genetically predicted druggable gene expression 
or protein levels) and a specific outcome (such as MG 
risk). This approach employs genetic data to simulate 
the design of a randomized controlled trial (RCT) 
without requiring a drug intervention (Additional file 1: 
Figure S1) [15]. By synergistically amalgamating diverse 
data sources [16–22] (Additional file  2: Table  S1) and 
employing rigorous MR and colocalization analyses, this 
study endeavor strives to identify potential repurposing 
opportunities for MG, delving into their potential 
implications in MG susceptibility. Subsequently, further 
investigation was conducted on the MR associations that 
exhibited statistical significance and provided evidence 
for colocalization, aiming to identify immune-cell-
specific effects.

Methods
Identification of actionable druggable genes
The druggable genome was defined as described in Finan 
et  al. as a selection of genes [23], which included 4479 
genes and divided into 3 Tiers based on druggability 
levels: Tier 1 contains genes encoding targets of approved 
or clinical trial drugs, Tier 2 genes encoding targets with 
high sequence similarity to Tier 1 proteins or targeted 
by small drug-like molecules, and Tier 3 contains genes 
encoding secreted and extracellular proteins, genes 
belonging to the main druggable gene families, and genes 
encoding proteins with more restricted similarity to Tier 
1 targets. After removing duplicate and non-autosomal 
genes, 4300 of 4479 druggable genes were retained in the 
subsequent analysis (Additional file 2: Table S2).

Selection of eQTL genetic instruments for drug target gene 
expression
To simulate exposure to the corresponding drugs, we 
sought publicly accessible eQTL data for gene expression 
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that encode these druggable proteins. Publicly available 
data from the eQTLGen consortium (https:// eqtlg en. 
org/, n = 31,684) was utilized to identify common (minor 
allele frequency > 1%) single-nucleotide variants (SNVs) 
associated with the expression of drug target genes in 
blood [16]. We retrieved the complete cis-eQTL results 
(distance between SNV and gene is < 1 Mb, FDR < 0.05) 
and allele frequency data from the consortium. The 
SNPs that were associated with gene expression (cis-
eQTL P < 5 ×  10–8) were selected as genetic instrumental 
variables (IVs). To obtain independent IVs, we conducted 
LD clumping using the TwoSampleMR R package with 
genotype data of Europeans from the 1000 Genomes 
were used as a reference panel. In a 10 Mb window, if LD 
values  (r2) of two or more SNPs were smaller than 0.01, 
these SNPs were considered independent IVs.

Deriving pQTL genetic determinants of circulating protein 
levels
We obtained pQTL data from six large-scale genome-
wide proteomic GWAS studies, namely the ARIC study 
[17], the INTEVAL study [18], the KORA F4 study [19], 
the IMPROVE study [20], the AGES-Reykjavik study [21], 
and the Framingham Heart study (FHS) [22]. Each of 
these studies undertook proteomic profiling using either 
SomaLogic SomaScans or O-link proximal extension 
assays. We restricted proposed instrumental variants 
to cis-pQTLs for druggable proteins, used a P value 
threshold of 5 ×  10–8. For proteins derived from the ARIC 
study [17], we utilized the sentinel cis-pQTL specific to 
each protein as it was available. Regarding proteins from 
the other five studies [18–22], we employed lead variants 
categorized as tier 1 instrumental variants according to 
Zheng et al [24], which were associated with fewer than 
five proteins and exhibited no heterogeneity across the 
studies.

Immune‑cell‑type‑specific eQTL data
The immune-cell-specific RNA expression and eQTL 
data were acquired from the Database of Immune Cell 
Expression (DICE, https:// dice- datab ase. org/) [25], 
which included eQTLs from 15 different immune cell 
types from 91 healthy subjects. The presented cell types 
account for over 60% of all circulating mononuclear 
cells, consisting of three innate immune cell types 
(Classical monocytes, Non-classical monocytes, NK 
cells), four adaptive immune cell types that have 
not encountered cognate antigen in the periphery 
(Naive B cells, Naive  CD4+ T cells, Naive  CD8+ T 
cells, and Naive  TREG T cells), six  CD4+ memory 
or more differentiated T cell subsets  (TH1,  TH1/17, 
 TH17,  TH2, follicular  TFH, and Memory  TREG cells), 
and two activated cell types (Activated Naive  CD4+ 

cells and Activated Naive  CD8+ T cells) [25]. We used 
these datasets specifically for follow-up analyses of 
genetically predicted effects identified to evaluate cell-
type specificity.

GWAS summary statistics of MG
For the primary analysis, the largest MG GWAS 
reported by Chia et  al. was used in this study. Briefly, 
Chia et  al. performed a large-scale GWAS analysis on 
MG, which included 1,873 patients and 36,370 controls 
[9] (https:// www. ebi. ac. uk/ gwas/, GWAS Catalog ID: 
GCST90093061). In this study, the diagnosis of MG relied 
on standard clinical criteria, including characteristic 
fatigable weakness, supported by electrophysiological 
and/or pharmacological abnormalities. Notably, the 
study is limited to anti-acetylcholine receptor antibodies 
(anti-AChR) positive cases, and individuals testing 
positive for antibodies to muscle-specific kinase (anti-
MuSK) were excluded. We summarized the genome-
wide significant loci identified in the MG GWAS 
conducted by Chia et  al. in Additional file  2: Table  S3. 
To explore age-dependent genetic heterogeneity in 
MG, we utilized summary statistics from early-onset 
MG (GWAS Catalog ID: GCST90093465; 595 cases vs. 
2,718 controls, aged 40 years or younger) and late-onset 
MG (GWAS Catalog ID: GCST90093466; 1,278 cases 
vs. 33,652 controls) separately. For external validation, 
summary statistics were obtained from the UK Biobank 
(http:// www. neale lab. is/ uk- bioba nk) (224 MG cases vs. 
417,332 controls) and FinnGen Biobank (https:// r10. 
finng en. fi/ pheno/ G6_ MYAST HENIA) (461 MG cases 
vs. 408,430 controls). The MG phenotype was identified 
through questionnaires completed by the participants, 
and data on MG subtypes were not applicable. Detailed 
information on various GWAS datasets is provided in 
Table  1. To ensure data integrity, we removed SNPs 
with duplicate or missing identification (rsID) from the 
dataset for subsequent analysis.

SNP‑based heritability calculation
We used Linkage Disequilibrium Score (LDSC) 
Regression (https:// github. com/ bulik/ ldsc) to estimate 
the SNP-based heritability  (h2) of each of the trait, 
representing the proportion of phenotypic variance that 
is explained by all common genetic variants included in 
the analysis. Also, we used single-trait LDSC to estimate 
genomic inflation factors λGC, used to evaluate the 
polygenicity and confounding because of population 
stratification or cryptic relatedness. To minimize bias 
caused by low interpolation quality, we restricted this 
analysis to haplotype map 3 SNPs.

https://eqtlgen.org/
https://eqtlgen.org/
https://dice-database.org/)
https://www.ebi.ac.uk/gwas/
http://www.nealelab.is/uk-biobank
https://r10.finngen.fi/pheno/G6_MYASTHENIA
https://r10.finngen.fi/pheno/G6_MYASTHENIA
https://github.com/bulik/ldsc
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Mendelian randomization analysis
The two-sample MR approach was based on the 
following assumptions: (i) the genetic variants used as an 
instrumental variable are associated with target exposure, 
i.e. gene expression levels and protein levels; (ii) there are 
no unmeasured confounders of the associations between 
genetic variants and outcome; (iii) the genetic variants 
are associated with the outcome only through changes 
in the exposure, i.e. no pleiotropy. We therefore used a 
curated genotype–phenotype database (PhenoScanner) 
[26] to search for associations between variants used to 
instrument each drug target and other traits that may 
represent pleiotropic pathways. We used fixed-effects, 
inverse-variance-weighted MR for proposed instruments 
that contain more than one variant, and Wald ratio for 
proposed instruments with one variant. Steiger filtering 
was applied to exclude variants that were potentially 
influenced by reverse causation [27]. For proposed 
instruments with multiple variants, we assessed the 
heterogeneity across variant-level MR estimates using 
the Cochrane Q method (mr_heterogeneity option in 
TwoSampleMR package). Benjamini–Hochberg false 
discovery rate (FDR) of 0.05 was applied to select best 
MR estimates with robust signals. The findings of our 
MR studies are presented as MR estimates (β) or odds 
ratio (OR) and 95% confidence interval (CI) for the risk 
of MG per genetically predicted 1-standard deviation 
(SD) increase in blood gene expression or circulating 
protein level. We conducted MR analyses using the 
TwoSampleMR (https:// mrcieu. github. io/ TwoSa 
mpleMR/) package.

Colocalization analysis
While MR largely mitigates bias from confounding, 
linkage disequilibrium (LD) between SNPs might be 
an important source of noncausal associations. For 
statistically significant MR results, coloc (https:// github. 
com/ cran/ coloc) was used to evaluate the probability 
of QTL and MG loci sharing a single causal variant 

[28], which assess potential confounding by LD. To 
determine the posterior probability of each genomic 
locus containing a single variant affecting both the 
gene/protein and the MG risk, we analyzed all SNPs 
within 1 Mb of the cis-eQTL/cis-pQTL. Moreover, 
we evaluated whether each genomic locus harbored 
a causal variant that influenced both disease risk and 
the variability in gene expression across the 15 cell-
type-specific datasets individually. Assuming a solitary 
causal variant, four hypotheses can be outlined: H0, 
proposing the lack of causal variants for both traits; H1, 
positing the existence of a causal variant for trait 1; H2, 
suggesting a causal variant for trait 2; H3, postulating 
two distinct causal variants for traits 1 and 2; and H4, 
proposing a shared causal variant between the two traits. 
Statistically significant MR hits with posterior probability 
for hypothesis 4 (PPH4) > 0.8 (the probability of a 
shared causal variant) were investigated. Visualization 
of colocalization results was performed using the 
LocusCompareR R package [29].

Results
Overall analysis plan
The study design is illustrated in Fig.  1. Initially, we 
identified druggable proteins as described in Finan 
et  al. [23]. These proteins include targets of approved 
and clinical-phase drugs, proteins resembling approved 
drug targets and proteins accessible to monoclonal 
antibodies or drug-like small molecules in  vivo. 
Next, we selected independent genetic variants 
that act locally on gene expression from eQTLGen 
Consortium or specifically influence plasma levels 
of the proteins from six large proteomic GWASs of 
individuals of European ancestry. The primary analysis 
involved retrieving summary statistics from the 
largest MG GWAS dataset of European ancestry [9]. 
In addition, we conducted a subgroup analysis using 
GWAS summaries for early-onset MG and late-onset 

Table 1 Details of GWAS summary data and LDSC of single-trait heritability

LDSC Linkage disequilibrium score regression, ID GWAS Catalog/UK Biobank/FinnGen ID, Global h2 the estimated SNP-heritability, SE standard error, λGC genomic 
inflation factor lambda

Traits Original study 
(year)

ID Sample size Number of cases Number 
of 
controls

Ethnicity Global  h2 (SE) λGC

MG Ruth Chia et al. 
(2022)

GCST90093061 38,243 1,873 36,370 European (U.S., Italy) 0.076 (0.015) 1.059

Early-onset MG GCST90093465 3,313 595 2,718 European (U.S., Italy) 0.365 (0.135) 1.002

Late-onset
LOMG

GCST90093466 34,930 1,278 33,652 European (U.S., Italy) 0.078 (0.015) 1.044

MG – phecode-358.1 324,308 224 324,074 European (U.K.) 0.002 (0.001) 1.011

MG – finngen_R10_G6 408,891 461 408,430 European (Finnish) 0.001 (0.001) 1.013

https://mrcieu.github.io/TwoSampleMR/
https://mrcieu.github.io/TwoSampleMR/
https://github.com/cran/coloc
https://github.com/cran/coloc
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MG separately. Employing the single-trait LDSC 
method, the SNP heritability for MG was estimated 
at 0.075 (SE = 0.015), while early-onset MG showed a 
heritability of 0.3649 (SE = 0.135), and late-onset MG 
exhibited a heritability of 0.078 (SE = 0.015) (Table  1). 
Then, genetic colocalization was conducted on MR 
results that surpassed our significance threshold after 
accounting for multiple testing, to mitigate potential 
confounding by LD. Afterward, we performed external 
replication using MG GWAS summary statistics 
from the FinnGen Consortium and UK Biobank. 
Subsequently, we explored whether putative genetic 
effects may be cell type specific by employing genetic 

colocalization to assess the interplay between immune-
cell-specific eQTLs and MG risk.

MR analysis with blood gene expression and MG outcome
We used two-sample MR to systematically evaluate 
the evidence for the causal effects of druggable gene 
expression on MG outcome. Using cis-eQTLs as 
proposed instruments available from the eQTLGen 
Consortium, four genes (CDC42BPB, TNFSF12, 
CD226 and PRSS36) showed significant MR results 
(Table 2, Fig. 2). Specifically, we found that a 1 standard 
deviation (SD) increased blood expression of CDC42BPB 
(OR = 1.694; 95% CI 1.361–2.108; P = 2.347 ×  10–6), 
TNFSF12 (OR = 1.433; 95% CI 1.214–1.691; 

Fig. 1 Flow diagram of study design. Using a variety of data sources, this study examined the instruments proposed for actionable druggable 
proteins, specifically cis-pQTL and cis-eQTL, against MG GWAS summary statistics. Subsequently, further investigation was conducted on the MR 
associations that exhibited statistical significance and provided evidence for colocalization, aiming to identify immune-cell-specific effects
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P = 2.119 ×  10–5), and PRSS36 (OR = 3.186; 95% CI 1.805–
5.624; P = 6.401 ×  10–5) were significantly associated with 
increased MG susceptibility, whereas increased CD226 
gene expression (OR = 0.652; 95% CI  0.528–0.804; 
P = 6.205 ×  10–5) in blood were associated with decreased 
MG risk (cis-eQTL instruments in Additional file  2: 
Table  S4, full MR results in Additional file  2: Table  S5, 
MR scatter plot shown in Additional file  1: Figure S2). 
We employed Cochran’s Q test to assess potential 
heterogeneity in the IVW results, estimating MR effects 
across each eQTL and none of the MR signals exhibited 
evidence of significant heterogeneity. In the replication 
phase, our study employed GWAS summary data 
from the UK and FinnGen Biobank datasets. Although 
MR analysis did not identify any genetically predicted 
gene expression causally linked to MG risk after FDR 
correction (full MR results in Additional file 2: Table S5), 
we observed similar pattern for CD226 expression with 
MG susceptibility (OR = 0.595; 95% CI 0.403–0.877; 
P = 8.754 ×  10–03) (Additional file 1: Figure S3).

In the subgroup analysis discerning early-onset and 
late-onset MG, coherent patterns emerged (Fig.  3), 
For instance, a 1 SD increase in genetically predicted 
CDC42BPB expression levels was associated with 

elevated risk for both early-onset MG (OR = 2.065; 
95% CI 1.322–3.225; P = 1.433 ×  10–3) and late-onset 
MG (OR = 1.578; 95% CI 1.191–2.092; P = 1.506 ×  10–3) 
risk. Furthermore, pertaining to CD226 and TNFSF12, 
subgroup MR findings revealed a relationship between 
CD226 levels and late-onset MG (OR = 0.621; 95% 
CI 0.451–0.854; P = 3.412 ×  10–3), as well as an 
association between TNFSF12 levels and late-onset 
MG (OR = 1.533; 95% CI 1.243–1.891; P = 6.570 ×  10–5), 
while no statistically significant MR estimates were 
observed in the context of early-onset MG.

We then performed genetic colocalization analyses 
to evaluate the probability of shared single causal 
variants between MG loci and eQTLs. Three loci 
(CDC42BPB, CD226, and PRSS36) exhibited profiles 
suggesting causal relationships, except for TNFSF12 
(Fig.  4, Additional file  2: Table  S6). Furthermore, we 
investigated the associations between index cis-eQTLs 
(specifically, rs1790974 for CD226 levels, rs10143668 
for CDC42BPB levels, and rs78924645 for PRSS36 
levels) and more than 5,000 other diseases, traits or 
proteins levels as documented in PhenoScanner [26] 
(Additional file  1: Figure S4), which suggest potential 
horizontal pleiotropic effects in our MR analysis.

Table 2 MR-identified genes/proteins with MG risk

The outcome is MG GWAS from Chia et al. (1,873 patients and 36,370 controls); IVW inverse-variance weighted, SE standard error, FDR FDR corrected P value, P het refers 
to the heterogeneity calculated using the Cochrane Q method; Colocalization indicates PPH4 between eQTLs/pQTLs and MG GWAS

Study/Dataset Genes/Proteins Method SNP Beta SE P value FDR OR (95%CI) P het Colocalization

eQTLGen CDC42BPB IVW rs10143668
rs11627044
rs12435483
rs192018318
rs2403110
rs75817380
rs77630549
rs8015723

0.527 0.112 2.35 ×  10–6 0.006 1.694 (1.361–2.108) 0.648 0.926

eQTLGen TNFSF12 IVW rs10468481
rs11078677
rs12449427
rs1641548
rs2292067
rs60370790
rs62059711
rs72842805
rs78378222

0.36 0.085 2.12 ×  10–5 0.026 1.433 (1.214–1.691) 0.468 0.305

eQTLGen CD226 IVW rs17082031
rs1790974
rs3744856

− 0.428 0.107 6.21 ×  10–5 0.039 0.652 (0.528–0.804) 0.649 0.815

eQTLGen PRSS36 Wald ratio rs78924645 1.159 0.29 6.40 ×  10–5 0.039 3.186 (1.805–5.624) NA 0.856

ARIC study PRSS8 Wald ratio rs1060506 1.447 0.319 5.69 ×  10–6 0.004 4.252 (2.275–7.945) NA 0.982

ARIC study CPN2 Wald ratio rs11711157 − 0.2 0.053 1.44 ×  10–4 0.034 0.819 (0.739–0.908) NA 0.926

ARIC study CTSH Wald ratio rs2289702 0.197 0.052 1.44 ×  10–4 0.034 1.218 (1.101–1.348) NA 0.894

INTEVAL study CTSH Wald ratio rs34593439 0.229 0.057 5.49 ×  10–5 0.014 1.257 (1.125–1.405) NA 0.894
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MR analysis of circulating proteome identifies actionable 
targets in MG
Using proposed cis-pQTL instruments, MR analyses 
revealed significant associations between the levels 
of three circulating proteins (PRSS8, CTSH, CPN2) 
and MG susceptibility in the primary analysis, after 
FDR correction (cis-pQTL instruments in Additional 
file  2: Table  S7, and full MR results in Additional 
file  2: Table  S8), which exhibit compelling evidence of 
colocalization with MG risk (Fig.  5, Additional file  2: 
Table  S9). Notably, among these proteins, circulating 
CTSH exhibited associations that were replicated in 
two independent proteomic studies (Fig.  2, Table  2). 
The estimated associations with MG per 1 SD increase 
in the genetically predicted circulating CTSH level were 
consistent between the INTERVAL (OR = 1.257; 95% 
CI 1.125–1.405; P = 5.49 ×  10–4) and ARIC (OR = 1.218; 
95% CI 1.101–1.348; P = 1.330 ×  10–4) studies and 
displayed strong evidence of colocalization (Fig.  5). 
Despite the MR analysis failing to identify any genetically 
predicted circulating protein levels associated with MG 
susceptibility using the proposed cis-pQTL instruments 
and GWAS summary data from the FinnGen and UK 
Biobank datasets after FDR correction, a persistent 

association for Cathepsin H (CTSH) abundance 
abundance with MG was evident. This sustained 
association suggests an elevated risk of MG across three 
MG outcomes. A SD increase in genetically predicted 
circulating CTSH abundance was found to be associated 
with an elevated risk of MG (minimum OR = 1.218; 
95% CI 1.101–1.348; P = 1.329 ×  10–4), and this trend 
was consistently observed in both the UK Biobank 
(OR = 1.275; 95% CI 1.003–1.620; P = 4.713 ×  10–2) and 
FinnGen Biobank (OR = 1.185; 95% CI 1.017–1.381; 
P = 2.942 ×  10–2) datasets (Additional file 1: Figure S3).

Additionally, subgroup analyses can provide further 
insights into the nuanced relationships between these 
proteins and MG susceptibility (Fig.  3). Genetically 
predicted circulating CTSH abundance was associated 
with an increased risk of late-onset MG (OR = 1.256; 
95% CI 1.110–1.421; P = 2.957 ×  10–4). Also, genetically 
predicted elevation in circulating PRSS8 abundance is 
associated with an increased risk of MG (OR = 4.252; 95% 
CI 2.275–7.945; P = 5.69 ×  10–6), as well as heightened 
risks for both early-onset MG (OR = 8.916; 95% CI 2.558–
31.083; P = 5.948 ×  10–6) and late-onset MG (OR = 3.477; 
95% CI 1.662–7.275; p = 9.379 ×  10–4).Conversely, a 
genetically proxied increase in circulating CPN2 levels 

Fig. 2 Miami plot with circles representing the MR results for gene/protein on MG. FDR, P value (FDR adjust); Black dashed line indicates 
the threshold for significance (FDR < 0.05) threshold. The x axis is the chromosome and gene start position of each MR finding in the cis region. 
The y axis represents the −  log10 FDR of the MR findings. MR findings with positive effects (increased level of gene expression/protein associated 
with increasing the MG risk) are represented by filled circles on the top half of the plot; Conversely, MR findings suggesting a negative effect, 
implying a reduced level of gene expression or protein linked to an elevated risk of MG, are illustrated in the lower half of the plot
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demonstrated an association with decreased MG risk 
(OR = 0.819; 95% CI 0.739–0.908; P = 1.444 ×  10−4) and 
also late-onset MG (OR = 0.798; 95% CI 0.706–0.903; 
P = 3.282 × 10–04). Due to the limited number of cis-
acting pQTLs available for each protein, applying classic 
sensitivity methods to test MR assumptions becomes 
challenging.

We also searched in the PhenoScanner database to 
assess potentially pleiotropic effects of the cis-pQTLs 
of MR-prioritized proteins by testing the association of 
cis-pQTLs with other diseases or traits [26] (Additional 
file 1: Figure S4). We observed no evidence of pleiotropic 
effects for the cis-pQTL associated with CPN2 
(rs11711157). We discovered an association between 
the CTSH cis-pQTL (rs34593439) and narcolepsy, a 
condition for which immune-mediated dysregulation 
has been considered as one of the potential causes [30]. 
Also, we found that PRSS8 cis-pQTL (rs1060506) was 
associated with a broad spectrum of weight-related traits, 
including whole body fat mass and body fat percentage, 
among others, which was consistent with the findings 
for cis-eQTL for PRSS36. This suggests that our MR 

estimate of the effect of the above-mentioned proteins 
on MG susceptibility may have been biased by the stated 
confounders.

Identifying immune‑cell‑specific effects
Given the pivotal role of immune cells in the pathogenesis 
of MG, we aim to investigate whether potential genetic 
effects exhibit specificity toward certain cell types. 
Leveraging immune cell eQTL datasets from the DICE 
database, we conducted a comprehensive genetic 
colocalization analysis for each of the six identified 
loci (CDC42BPB, CD226, PRSS36, PRSS8, CTSH, and 
CPN2) from the preceding analysis. Remarkably, we 
identified robust evidence of colocalization, with a 
posterior probability of 0.854, linking CTSH expression 
in  TH2 cells and MG risk (Additional file  2: Table  S10, 
Additional file  1: Figure S5).  TH2 cells are renowned 
for their capacity to produce cytokines that stimulate B 
cell activation and differentiation of B cells, essential for 
antibody production [31]. Furthermore, while analyzing 
data from other immune cell subsets, we observed less 
pronounced evidence specific to individual cell types 

Fig. 3 Forest plot showing MR estimate for genetically proxied gene and protein expression on MG and its subgroups. Forest plot showing MR 
estimate (95% CI) from two sample MR analyses. P are unadjusted. CI confidence interval. MR estimates of significant MR results used cis-eQTL 
instruments on MG and its subgroups. MR estimates of significant MR results used cis-pQTL instruments on MG and its subgroups
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Fig. 4 LocusCompare plot depicting colocalization of the top SNP associated with eQTL surrounding CDC42BPB (A), PRSS36 (B) and CD226 (C) 
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(Fig.  6). The identification of a colocalization signal 
within a cell type relevant to MG pathogenesis suggests 
a potential direct contribution of the genetic variant to 
disease development by influencing gene expression 
within that specific cell subset.

Discussion
Gaining an in-depth understanding of the intricate 
relationship between genetic discoveries and 
pharmaceutical targets holds paramount importance 
in effectively translating GWAS findings into clinical 
applications [32]. Our study assumes pioneering 
significance as the first to center on actionable druggable 
genes, unlocking the potential of drug repurposing 
strategies within the domain of MG treatment. Notably, 
we identified three genes (CDC42BPB, CD226, and 
PRSS36) and three proteins (PRSS8, CTSH, and CPN2) 
as having significant MR results using cis-eQTL and cis-
pQTL genetic instruments, which also exhibit compelling 
evidence of colocalization with MG. Additionally, 
through a meticulous exploration of immune cell-specific 
effects, this study may shed light on mechanistic insights 
underlying the loci associated with MG.

Our MR analysis establishes a compelling link between 
genetic variants associated with increased CDC42BPB 
gene expression and an elevated MG susceptibility. 
This finding underscores the potential of CDC42BPB 
inhibitors as a promising avenue for therapeutic 
intervention. CDC42BPB is a serine/threonine protein 
kinase intricately involved in regulating actin cytoskeleton 
dynamics and cell contraction. Several small molecules 
or biological inhibitors of CDC42BPB, such as SR-7826, 
BDP8900 and BDP9066 [33], have exhibited antitumor 
activity. However, a comprehensive understanding of 
the mechanistic underpinnings through which elevated 
CDC42BPB contributes to the pathophysiology of 
MG necessitates further investigation. Conversely, we 
observed a protective effect associated with increased 

CD226 gene expression against MG. CD226, also known 
as DNAX accessory molecule-1 (DNAM-1), is a member 
of the immunoglobulin superfamily and is expressed on 
various immune cells, including natural killer (NK) and 
T cells [34]. CD226, along with the inhibitory receptors 
TIGIT and CD96, constitutes cell-surface receptor family 
3, binding to nectin and nectin-like proteins [35]. Prior 
research emphasizes the potent roles of this receptor 
family in regulating tumor immunity [36]. These findings 
underscore the importance of maintaining the expression 
of the activating receptor CD226, in orchestrating 
effective immune responses. Genetic polymorphisms 
within the CD226 gene have been associated with serval 
autoimmune diseases, including multiple sclerosis [37]. 
Building on these insights, we hypothesize that targeted 
manipulation of CDC42BPB and CD226 expression could 
potentially serve as a potent therapeutic strategy for 
managing MG. Nonetheless, a comprehensive validation 
of these proposed therapeutic targets necessitates further 
rigorous investigation.

Our study emphasizes a consistent and robust 
association between genetically predicted circulating 
Cathepsin H abundance and an elevated risk of MG across 
diverse datasets, including the UK Biobank and FinnGen 
Biobank. The subgroup analyses further revealed 
nuanced insights, particularly the association between 
genetically predicted circulating CTSH abundance and 
an increased risk of late-onset MG. Additionally, the 
posterior probability that CTSH expression levels in  TH2 
cells and MG outcomes shared a single causal signal in 
the 1-Mb locus around the cis-pQTL, rs12148472, was 
0.8854 for MG susceptibility (Additional file  1: Figure 
S5). This observation implies that CTSH abundance 
might serve as a biomarker or contribute to the biological 
mechanisms underlying MG. CTSH encodes cathepsin 
H, a member of the papain-like cysteine proteases that 
are involved in major histocompatibility complex class 
II antigen presentation. Notably, CTSH has garnered 

Fig. 6 Colocalization results between GWAS and eQTLs across immune cell types. PPH4 of shared genetic signal between GWAS and eQTLs for MG 
across different immune cell types
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attention for its involvement in type 1 diabetes [38] and 
narcolepsy risk [39], both of which prominently feature 
autoimmune components. Worth noting is the fact that 
other members of the cathepsin family, such as cathepsin 
S and cathepsin K, have received more attention as drug 
targets for autoimmune diseases. For example, cathepsin 
S inhibitors have been investigated for their potential in 
treating diseases like and multiple sclerosis [40].

Furthermore, our study provided robust genetic 
evidence supporting a potential causal role of increased 
CPN2 protein levels in reducing the risk of MG. CPN2, 
also known as Carboxypeptidase N Subunit 2, forms a 
complex with enzymatically active small subunits (CPN1). 
CPN plays a pivotal role as a zinc metalloprotease 
responsible for cleaving and partially inactivating 
anaphylactic peptides, specifically complement 
component 3a (C3a) and C5a, within the classical and 
lectin pathways of complement activation [41]. Protein–
protein interaction studies using the STRING database 
(https:// string- db. org/) have shown interactions between 
CPN2 and C5 (Additional file  1: Figure S6). It is widely 
recognized that dysregulated complement activation is 
a primary pathogenic mechanism in MG. Notably, C5 
inhibitors, such as Eculizumab, have proven effective in 
preventing complement-dependent membrane attacks 
at the neuromuscular junction, presenting a promising 
avenue for the treatment of MG [42]. Future research 
is warranted to investigate the potential therapeutic 
implications of CPN2 in MG.

A significant hurdle in our analytical pursuit lay 
in discerning whether the association with MG risk 
stemmed from PRSS36, PRSS8, or both entities, given 
the substantial correlation between the cis-eQTL 
instrument for PRSS36 (rs78924645) and cis-pQTL 
instrument (rs1060506) for PRSS8  (r2 = 0.93 in 1000 
Genomes Project European ancestry participants). 
Considering that both PRSS36 and PRSS8 belong to the 
serine protease family, a group of proteolytic enzymes 
involved in diverse biological processes, we regard them 
as potential drug targets for MG. It is worth noting that 
PRSS8 inhibits TLR4-mediated inflammation in human 
and mouse models of inflammatory bowel disease [43], 
thereby implicating its plausible relevance to TLR4-
mediated inflammation pathways in the context of MG. 
As such, the identification of PRSS36 and PRSS8 as 
putative targets holds promise; however, the trajectory 
towards their validation as credible therapeutic avenues 
warrants further inquiry, coupled with a comprehensive 
assessment of their viability for subsequent drug 
development endeavors.

Genetic variation controls transcriptional regulation in 
a cell type-specific manner to regulate immune pathways 
[44, 45]. The cell-type specificity of the effects elicited 

by common genetic variants on both gene and protein 
expression engenders a pronounced reliance on the 
precise cellular contexts. In navigating this intricacy, the 
relationships underpinning eQTL and pQTL manifest 
a profound dependence on the distinct cell types under 
scrutiny. In this study, we embarked on a comprehensive 
exploration, utilizing genetic colocalization analysis, to 
delineate the interplay between immune-cell-specific 
eQTLs and MG susceptibility, thereby unearthing the 
underlying molecular mechanisms. This approach 
yielded valuable insights into the genetic orchestration 
governing CTSH expression across an array of distinct 
cell types. Of note is the robust colocalization unveiled 
between CTSH expression within  TH2 cells and the 
propensity for MG risk, signifying a putative involvement 
of CTSH expression within this cellular subtype in 
driving the genesis and advancement of MG. This 
revelatory aspect of our study underscores the imperative 
of acknowledging and integrating cell type heterogeneity 
within the realm of future research pursuits aimed 
at identifying potential therapeutic targets for MG. 
This newfound awareness stands poised to wield 
transformative influence in guiding the trajectory of 
future scientific explorations and therapeutic innovations 
targeting MG and other akin disorders.

The current study notably complements and extends 
previous efforts by employing key approaches to protect 
against potential biases, strengthen causal inference and 
enhance understanding of potential mechanisms. With 
our rigorous instrument selection process that used 
comprehensive datasets on gene expression and plasma 
protein levels, we have facilitated a thorough evaluation 
of actionable drug targets, notably including the 
previously unexplored CTSH. Our study, enriched with 
multi-omics data, has successfully overlooked targets that 
do not align with the potentially druggable gene targets 
prioritized in the Chia et  al. study, as indicated by the 
Priority Index analysis [9, 46]. It is crucial to underscore 
that the peak cis-eQTL or cis-pQTL identified at each 
locus did not attain the genome-wide significance level 
threshold. Consequently, these loci were not deemed 
significantly associated with MG in Chia et  al.’s study. 
This constitutes a noteworthy extension to previous 
study, emphasizing our pivotal role in contributing novel 
insights that surpass the confines of earlier investigations.

Several limitations need to be considered in our study. 
Firstly, only a small proportion of genes/proteins may 
be effectively instrumented by multiple SNPs, with the 
majority being instrumented by only two or one SNP. 
This limitation restricts our ability to conduct sensitivity 
analyses. Secondly, there is a potential concern related 
to the presence of epitope-binding artifacts caused by 
coding variants. These artifacts may introduce spurious 

https://string-db.org/
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signals, potentially leading to false-positive cis-pQTLs. 
Thirdly, our study is confined to AchR-positive MG cases, 
so caution is advised when extrapolating our results 
to patients with anti-MuSK and other autoantibodies. 
Additionally, although the GWAS summary data 
integrated into our study already constitute the most 
extensive MG GWAS dataset currently available, 
the limited number of cases in both the primary and 
replication datasets constrained our ability to replicate 
the MR estimates observed in the discovery cohort. 
Therefore, it is crucial to conduct further research with 
larger and more diverse populations, especially including 
non-European individuals and patients with anti-MuSK 
and other autoantibodies.

Conclusions
Overall, this study contributes valuable insights into 
the genetic and molecular factors associated with MG 
susceptibility, with CTSH emerging as a potential 
candidate for further investigation and clinical 
consideration. Moreover, by laying bare the intricacies 
of cell-specific genetic influences on gene and protein 
expression, our investigation serves as a clarion call for 
a nuanced consideration of cellular contexts in the quest 
for unraveling the underlying mechanisms of complex 
diseases like MG. It is imperative to underscore, however, 
that a requisite next step involves undertaking further 
studies, encompassing rigorous functional analyses, to 
definitively validate the viability of these targets and 
to ascertain their appropriateness for subsequent drug 
development endeavors.
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