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Abstract 

Background  The main challenge in personalized treatment of breast cancer (BC) is how to integrate massive 
amounts of computing resources and data. This study aimed to identify a novel molecular target that might be effec-
tive for BC prognosis and for targeted therapy by using network-based multidisciplinary approaches.

Methods  Differentially expressed genes (DEGs) were first identified based on ESTIMATE analysis. A risk model 
in the TCGA-BRCA cohort was constructed using the risk score of six DEGs and validated in external and clinical 
in-house cohorts. Subsequently, independent prognostic factors in the internal and external cohorts were evalu-
ated. Cell viability CCK-8 and wound healing assays were performed after PTGES3 siRNA was transiently transfected 
into the BC cell lines. Drug prediction and molecular docking between PTGES3 and drugs were further analyzed. Cell 
viability and PTGES3 expression in two BC cell lines after drug treatment were also investigated.

Results  A novel six-gene signature (including APOOL, BNIP3, F2RL2, HINT3, PTGES3 and RTN3) was used to establish 
a prognostic risk stratification model. The risk score was an independent prognostic factor that was more accurate 
than clinicopathological risk factors alone in predicting overall survival (OS) in BC patients. A high risk score favored 
tumor stage/grade but not OS. PTGES3 had the highest hazard ratio among the six genes in the signature, and its 
mRNA and protein levels significantly increased in BC cell lines. PTGES3 knockdown significantly inhibited BC cell 
proliferation and migration. Three drugs (gedunin, genistein and diethylstilbestrol) were confirmed to target PTGES3, 
and genistein and diethylstilbestrol demonstrated stronger binding affinities than did gedunin. Genistein and diethyl-
stilbestrol significantly inhibited BC cell proliferation and reduced the protein and mRNA levels of PTGES3.

Conclusions  PTGES3 was found to be a novel drug target in a robust six-gene prognostic signature that may serve 
as a potential therapeutic strategy for BC.
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Introduction
Breast cancer (BC) is the most common malignancy 
in women and one of the three most common cancers 
worldwide, along with lung and colon cancer [1–3]. In 
2020, BC was the most commonly diagnosed cancer in 
females after lung cancer, with an estimated 2.3 million 
new cases (11.7%), and the death rate reached 6.9% [4]. 
The main risk factors, including old age, overweight or 
obesity, tobacco exposure, early menarche, late first-
term pregnancy, high breast density and family history 
of BC, are vital influencing factors for the develop-
ment of BC [5, 6]. Four molecular subtypes of BC have 
been characterized: estrogen and progesterone recep-
tor-positive (LuminalA), estrogen, progesterone and 
HER-2 positive (LuminalB), and HER-2 positive and 
triple negative BC (TNBC) [7].

The pathogenic mechanisms of BC are diverse, 
and the typical mechanism is metabolic reprogram-
ming [2]. Profiting from the development of micro-
array and high-throughput sequencing technology, 
researchers can identify thousands of cancer-related 
genes and have innovative insights into their potential 
molecular mechanisms to apply them to fundamental 
research to benefit patients [8]. In addition, circRNAs 
are increasingly used to probe potentially novel bio-
markers related to cancer diagnosis, treatment and 
prognosis [9, 10]. Researchers have shown that muta-
tions in BC-related genes, including BRCA1, BRCA2, 
ATM and PTEN, can be used as biomarkers to pro-
mote personalized treatment of BC patients [11–13]. 
Unfortunately, the available clinical treatment strate-
gies for BC patients are limited, and the efficacy of 
these treatments is unsatisfactory. Hence, identifica-
tion of the original targets is urgently needed to pro-
vide new treatment strategies for patients with BC. A 
prognostic evaluation based on expression profiling 
and clinical information is critical for making appro-
priate treatment decisions in BC patients [14]. There-
fore, we developed a prognostic model for BC patients 
to predict overall survival, as this model could provide 
a basis for the clinical treatment of BC patients in the 
future.

In this study, a six-gene prognostic risk model was 
first constructed based on The Cancer Genome 
Atlas (TCGA) database and then validated using the 
GSE86166 and METABRIC cohorts. Then, the hub 
genes were identified in the risk model, and molecu-
lar docking analysis was performed to further explore 
the relationships between the hub genes and potential 
drugs. Finally, molecular experiments were performed 
to validate the above results in BC cell lines (Addi-
tional file 1: Fig. S1).

Materials and methods
Data collection and analysis of immune and stromal scores
The RNA-seq data of BC patients, including 594 samples, 
were downloaded from the TCGA database (http://​por-
tal.​gdc.​cancer.​gov/). Clinical information was extracted 
from the University of California–Santa Cruz (UCSC) 
Xena browser (https://​xenab​rowser.​net/​datap​ages/). The 
TCGA-BRCA data were preprocessed as follows: (1) only 
one tumor sample was selected; (2) a sample without a 
specific molecular subtype of BC was excluded; (3) a sam-
ple without clinical data and overall survival (OS) < 1 day 
was excluded; and (4) a gene with a TransPer Kilobase of 
exon Model per Million mapped reads (TPM) = 0 in 80% 
of the patients was excluded. Two NCBI Gene Expres-
sion Omnibus (GEO) datasets and their clinical infor-
mation were downloaded from the GEO website (http://​
www.​ncbi.​nlm.​nih.​gov/​geo/), the accession numbers of 
which are GSE86166 (n = 366) and GSE21653 (n = 266). 
The GEO sets were preprocessed with the following cri-
teria: (1) gene probes were transformed to the human 
gene SYMBOL, and probes matching multiple genes 
were removed; if several probes matched one gene, the 
mean value was selected as the expression profile of the 
gene; (2) the expression of the gene missing in 80% of the 
patients was excluded; and (3) the gene was normalized 
based on the methods described in a previous study (15).

Identification of differentially expressed genes (DEGs)
The immune score (proportion of immune ingredients), 
stromal score (proportion of stromal ingredients) and 
ESTIMATEScore (sum of the above two scores) of each 
BC sample were calculated using the ESTIMATE package 
in R software (version: 4.2.0) [16].

The median was set as the cutoff value for the ESTI-
MATE, immune and stromal scores [17]. Patient samples 
were divided into two groups based on the average value, 
namely, the high-score group and the low-score group. 
The R package limma was used to identify DEGs under 
the filtering conditions as follows: log (fold change) >|± 2|, 
with p < 0.001. The overlapping DEGs among the three 
groups mentioned above were identified using a Venn 
diagram and used for subsequent analysis. A volcano plot 
was drawn using the ggplot2 R package.

LASSO regularization and development of the risk score
LASSO can be used in biomarker screening for survival 
analysis when combined with the Cox model [18]. The 
analysis was performed using the R package glmnet. 
Univariate Cox regression analysis was used to calculate 
regression coefficients, and genes with p < 0.05 were used 
to develop the risk score. Moreover, the survival and sur-
vminer R packages were used to compare OS between 
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different groups by Kaplan‒Meier analysis with the log-
rank test.

The regression coefficients were subsequently used to 
calculate the risk score with the following formula: risk 
score = (exprgene1 * coefficientgene1) + (exprgene2 * 
coefficientgene2) + … + (exprgenen * coefficientgenen). 
The BC patients were ultimately stratified into high-risk 
and low-risk groups based on the median risk score. 
The survivalROC R package was used to conduct time‐
dependent ROC curve analyses to evaluate the predictive 
power of the gene signature. The risk stratification model 
was validated using the GSE86166 (n = 366) and META-
BRIC (n = 1258) cohorts.

Decision curve analysis (DCA) was used to evaluate 
the net benefit of each gene, and the nomogram was con-
structed with the R language using the ggDCA package. 
The immune infiltration of BC patients in the TCGA-
BRCA cohort was evaluated using the ssGSEA algorithm 
and the GSVA R package. A heatmap of immune cells in 
each sample and different group was generated using the 
pheatmap R package.

Functional enrichment analysis and identification 
of potential therapeutic targets
Gene Ontology (GO) enrichment analysis was performed 
using the clusterProfiler R package. Kyoto Encyclope-
dia of Genes and Genomes (KEGG) analyses were per-
formed using the online KOBAS 3.0 database (http://​
kobas.​cbi.​pku.​edu.​cn). All the results were visualized 
using the ggplot2 package. The FDR method was used to 
adjust for multiple comparisons, with p < 0.05. Protein‒
protein interaction (PPI) analysis was performed using 
GENEMANIA (https://​genem​ania.​org/). The potential 
drugs were identified using the open-source website tool 
DGIdb (https://​dgidb.​org/).

Molecular docking
The protein structure of PTGES3 (PDB ID: 1EJF [19]) was 
obtained from the RCSB Protein Data Bank. To ensure 
its suitability for further analysis, the structure under-
went several preparatory steps using Schrödinger 2021 
software. First, the Protein Preparation Wizard module 
was used to eliminate crystallographic water molecules, 
rectify side chains with missing atoms, add hydrogen 
atoms, and assign protonation states and partial charges 
using the OPLS4 force field [20]. Subsequently, the pro-
tein structure was subjected to minimization until the 
root-mean-square deviation (RMSD) of the nonhydrogen 
atoms reached a value of less than 0.3 Å.

Gedunin, genistein, and diethylstilbestrol were pre-
pared for subsequent docking studies. Using the Lig-
Prep module of the Schrödinger 2021 molecular 
modeling package, these compounds were processed to 

add hydrogen atoms, convert 2D structures to 3D, gener-
ate stereoisomers, and determine the ionization state at 
pH 7.0 ± 2.0 with Epik [21]. To facilitate the docking pro-
cess, a receptor grid was generated based on the prepared 
receptor structure. Finally, the compounds Gedunin, gen-
istein, and diethylstilbestrol were docked to the receptor 
using the Glide XP protocol.

Human BC specimens
Twelve BC patients who did not undergo neoadjuvant 
therapy were collected from the First Affiliated Hospital 
of Nanchang University, and the mRNA expression of six 
genes was detected in tumor tissues using qRT‒PCR. The 
study protocol was approved by the Medical Research 
Ethics Committee of the First Affiliated Hospital of Nan-
chang University [Grant no. (2023) CDYFYYLK (04-
036)]. All the experiments were performed in compliance 
with the relevant regulations, and all the patients pro-
vided written informed consent.

Cell culture and transfection
The human nonmalignant breast cell line MCF-10A 
and two human BC cell lines, MDA-MB-231 and MCF-
7, were obtained from Procell (Procell Life Science & 
Technology Co., Ltd.). MCF-10A cells were cultured in 
Dulbecco′s modified Eagle′s medium/Ham′s F12 nutri-
ent medium (DMEM/F12; Procell, China) supplemented 
with 5% horse serum (HS; Procell, China), 20 ng/ml EGF, 
0.5  μg/ml hydrocortisone, 10  μg/ml insulin, 1% nones-
sential amino acids, and 1% penicillin and streptomycin. 
MDA-MB-231 cells were cultured in Dulbecco’s modified 
Eagle’s medium (DMEM; Procell, China) supplemented 
with 10% fetal bovine serum (FBS; Procell, China) and 
1% penicillin and streptomycin. MCF-7 cells were main-
tained in minimum essential medium (MEM; Procell, 
China) supplemented with 0.01 mg/ml insulin, 10% FBS 
and 1% penicillin and streptomycin. All cell lines were 
kept at 37 °C and 5% CO2 in a humidified atmosphere.

Small interfering RNAs (siRNAs) targeting the 
PTGES3 coding sequence (5′-GUC​AGU​GUU​CCA​GGU​
GUA​UTT-3′) was obtained from GenePharma (China) 
according to previous methods [22]. The siRNA sequence 
was transfected into cells (70% confluence) using jet-
PRIME transfection reagent (Polyplus, France) in strict 
accordance with the manufacturer’s instructions. After 
incubating for 48 h, the cells were collected and used to 
detect protein and mRNA expression.

Scratch wound healing assay
The transfected BC cells were seeded into 6-well plates 
and incubated at 37 °C in 5% CO2 until 100% confluence 
was reached. Thereafter, the monolayer was scraped with 
a 200 μL pipette. After removing the cell debris, the cells 
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were cultured under normal conditions. Images were 
taken at 0 h and 48 h, which show the relative distance 
between two edges.

Cell viability assay
BC cells were seeded in a 96-well plate (3000 cells/well), 
and genistein and diethylstilbestrol were subsequently 
added to the cell culture media at concentrations of 
100 μM, 50 μM, 20 μM, 10 μM and 5 μM at 37  °C in a 
5% CO2 environment. The transfected BC cells were col-
lected at 24 h and 48 h before the cell viability assay. Cell 
viability was measured by a Cell Counting Kit-8 (Beyo-
time, Shanghai, China) according to the manufacturer’s 
instructions. The absorbance was measured at 450 nm by 
a microplate reader (Bio-Rad, CA, USA). Moreover, the 
expression level of PTGES3 was determined after 48 h of 
drug intervention (50 μM).

qRT‒PCR
TransZol reagent purchased from TransGen (Beijing, 
China) was used to extract total RNA from the cell lines 
and tissues. Three micrograms of total RNA were sub-
jected to reverse transcription using HiScript II RT 
SuperMix for qPCR (+ gDNA wiper) (Vazyme, Nan-
jing, China) reagent according to the manufacturer’s 
instructions. Next, 2 × SYBR Green qPCR Master Mix II 
(SEVEN, Beijing, China) was used to perform qRT‒PCR. 
Finally, the relative expression levels of mRNA were cal-
culated by the 2−△△Ct method, and GAPDH was used as 
an internal control. The cell experiments were carried out 
using three biological replicates. The results were further 
normalized to the GADPH expression. The primers used 
are listed in Additional file 2: Table S1.

Western blot and immunohistochemistry
Cells were lysed using RIPA lysis buffer (Solarbio, Bei-
jing, China) containing 1% protease inhibitor (PMSF) to 
extract total protein, and the protein concentration was 
determined using a BCA protein concentration assay kit 
(Beyotime, Shanghai, China). Subsequently, the proteins 
were separated via 12% SDS‒PAGE and transferred to 
polyvinylidene difluoride (PVDF) membranes (Millipore, 
MA, USA). After blocking in 5% nonfat goat milk pow-
der for 2  h, the membrane and primary antibody (anti-
PTGES3: 1:5000 dilution; Proteintech, Wuhan, China; 
Cat# 67,736–1-Ig; anti-β-actin: 1:1000 dilution; Cell 
Signaling Technology, MA, USA; Cat# 8H10D10) were 
incubated overnight at 4 °C, and horseradish peroxidase 
(HRP)-conjugated secondary antibody goat anti-mouse 
IgG (H + L) (1:5,000 dilution; DY60203; Diyibio, Shang-
hai, China) was added for 2  h at room temperature. 
Finally, the protein bands were visualized using a chemi-
luminescence instrument. Western blot analysis was 

performed with ImageJ software. The Human Protein 
Atlas (HPA) database (https://​www.​prote​inatl​as.​org/) 
was also used to verify protein expression levels.

Statistical analysis
All the statistical analyses were performed using the R 
language. Nonparametric tests (Wilcoxon rank-sum test 
for independent groups and Wilcoxon signed-rank test 
for paired groups) were used to compare the median 
values of two sets of continuous variables. p < 0.05 was 
considered to indicate statistical significance, and all the 
statistical tests were two-sided.

Results
Identification of the hub genes in the TCGA‑BRCA cohort
The ImmuneScore, StromalScore, and ESTIMATEScore 
were first calculated for the TCGA-BRCA cohort. K‒M 
curves revealed the correlation of immune and stromal 
proportions with OS, indicating that the immune score 
was positively correlated with OS (log-rank p = 0.01; 
Additional file  1: Fig. S2a). However, neither the Stro-
malScore (log-rank p = 0.25; Additional file  1: Fig. S2b) 
nor the ESTIMATEScore (log-rank p = 0.77; Additional 
file 1: Fig. S2c) was significantly correlated with OS. We 
further identified the DEGs in the samples, and the vol-
cano plot shows upregulated and downregulated DEGs 
compared with those in the low-loading group (Fig-
ures  S2a-c). A total of 2018 overlapping DEGs (Addi-
tional file  1: Fig. S2d, Additional file  2: Table  S2-S4), 
including 996 upregulated and 1022 downregulated 
DEGs, were obtained and used for further analysis. The 
2018 DEGs were subjected to dimensional reduction 
analysis via LASSO regression analysis. A total of 14 hub 
genes were identified through LASSO-Cox analysis (min-
imum error rate λ = 0.044) and were significantly associ-
ated with OS (p < 0.05) (Fig. 1a). Unfortunately, three hub 
genes, AC015813.6, CCN1 and SEMA3B-AS1, were iden-
tified are unique to the TCGA database; thus, they were 
excluded from the following analysis.

Univariate Cox proportional hazard regression sug-
gested that five candidate genes, APOOL, BNIP3, HINT3, 
PTGES3 and RTN3, were not associated with BC prog-
nosis (Fig. 1b), except for F2RL2. The DCA analysis indi-
cated that the predictive ability of the nomogram model 
was greater than that of the other components at the 
high-risk threshold (Fig.  1c), suggesting that the nomo-
gram model has the highest predictive ability. K‒M anal-
ysis revealed that high expression levels of five candidate 
genes (APOOL, BNIP3, F2RL2, HINT3, PTGES3 and 
RTN3) were significantly positively associated with poor 
prognosis (Additional file  1: Fig. S3). Moreover, a high 
F2RL2 expression level was positively associated with a 
good prognosis (Additional file 1: Fig. S3a).

https://www.proteinatlas.org/
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Construction and validation of the risk stratification model 
in in/external cohorts
Thus, we further constructed a prognostic risk 
model by calculating the risk score as follows: 
risk score = 0.700*expAPOOL + 0.445*expBNIP3—
0.156*expF2RL2 +  0.633*expHINT3 +  0.821*expPTGES3 

+ 0.621*expRTN3. Based on the median risk score 
(7.364; Additional file  2: Table  S7), BC patients were 

categorized into high-risk or low-risk groups (Fig. 1d). 
There was a greater mortality rate in the high-risk 
group than in the low-risk group (Fig.  1e). The OS of 
patients in the high-risk group was significantly lower 
than that of patients in the low-risk group (p < 0.001). 
The predictive performance of the risk score for OS was 
evaluated by time-dependent ROC curves, and the area 
under the curve (AUC) reached 0.78 at 1  year, 0.69 at 
3 years, and 0.66 at 5 years (Fig. 1f ).

Fig. 1  Prognostic analysis of the six-gene signature model in the TCGA-BRCA cohort. a Tuning parameter selection by tenfold cross-validation 
in the LASSO model and trajectory changes of each independent variable. The partial likelihood deviance was plotted against log (Lambda/λ), and λ 
was the tuning parameter. The Y-axis shows LASSO coefficients and the X-axis is − log (lambda); b Univariate Cox regression analysis result of six 
genes; c DCA analysis; d The distributions of overall survival status, overall survival and risk score in the TCGA-BRCA cohort; Hierarchical clustering 
of six core genes between low- and high-risk groups. Red, up-regulated; Blue, down-regulated; e Kaplan–Meier survival curve based on the six-gene 
signature; f ROC curve of the 6-gene signature for 1-year, 3-year and 5-year survival in the training set
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To test the stability and accuracy of the model, the 
prediction efficiency of our six-gene signature was also 
calculated in both external validation cohorts (META-
BRIC and GSE86166). The DCA analysis indicated the 
same results (Fig.  2a, e) as in the TCGA-BRAC cohort, 
suggesting that the nomogram model based on six genes 
is a robust risk model. Patients in both cohorts were 
also divided into high-risk and low-risk groups, and the 
median value was calculated using the same formula 
used for the TCGA-BRCA cohort (Fig.  2b, f ). In both 
external cohorts (Fig. 2c, g), patients in the low-risk score 
group had longer OS than did those in the high-risk 
group (METABRIC cohort, log-rank p = 0.047; GSE86166 
cohort, log-rank p = 0.0037). The ROC curve showed 
that the accuracy of the prognostic six-gene signature 
for 1-year, 3-year and 5-year survival was 0.69, 0.58 and 
0.58, respectively, in the METABRIC cohort (Fig. 2d), and 
0.67, 0.69 and 0.63, respectively, in the GSE86166 cohort 
(Fig. 2e). Therefore, the results indicated that the six-gene 
prognostic model for predicting the cancer-specific sur-
vival of BC patients has good reliability and repeatability.

In addition, functional enrichment analysis revealed 
that the six novel genes were related mainly to RNA-
directed DNA polymerase activity (MF), mitochondrial 
membrane organization and energy derivation by oxida-
tion of organic compounds (BP), and the organelle outer 
membrane (CC) (Additional file  1: Fig. S3b, Additional 
file  2: Table  S5). KEGG pathway analysis revealed that 

PTGES3 participates in the regulation of the arachi-
donic acid metabolism pathway and metabolic pathways; 
BNIP3 participates in the regulation of legionellosis, 
mitophagy-animal, autophagy-animal and FoxO sign-
aling pathways; F2RL2 participates in the regulation of 
complement and coagulation cascades; and RTN3 par-
ticipates in the regulation of Alzheimer disease (Addi-
tional file 1: Fig. S3c, Additional file 2: Table S6). The PPI 
network analysis revealed that 6 genes significantly inter-
acted with 23 genes (Additional file 1: Fig. S3d).

Independent prognostic value of the six‑gene signature
Univariate and multivariate Cox regression analyses were 
carried out among the available variables to determine 
whether the risk score was an independent prognostic 
predictor for OS. According to univariate Cox regres-
sion analyses, the risk score was significantly associ-
ated with OS in the TCGA-BRCA, METABRIC and 
GSE86166 cohorts (TCGA-BRCA cohort: HR = 1.635, 
95% CI 1.406–1.902, p = 1.86E-10; METABRIC cohort: 
HR = 11.512, 95% CI 8.22–16.12, p < 0.001; GSE86166 
cohort: HR = 13.33, 95% CI 3.871–45.902, p < 0.001) 
(Fig. 3). The risk score still proved to be an independent 
predictor of OS after correction for other confounding 
factors according to multivariate Cox regression analysis 
(TCGA-BRCA cohort: HR = 1.527, 95% CI 1.297–1.798, 
p = 3.87E−7; METABRIC cohort: HR = 6.781 95% CI 
4.377–10.505, p < 0.001; GSE86166 cohort: HR = 9.783, 

Fig. 2  Validation of the risk model basing on six-gene in GEO and METABRIC cohort. a, e DCA analysis. b, f The distributions of overall survival status, 
overall survival and risk score; Hierarchical clustering of six core genes between low- and high-risk groups. Red, up-regulated; Blue, down-regulated. 
c, g Kaplan–Meier survival curve based on the six-gene signature. d, h ROC curve of the 6-gene signature for 1-year, 3-year and 5-year survival
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Fig. 3  Univariate and multivariate Cox regression analyses of the six-gene signature. a Forest plot of the univariate and multivariate Cox regression 
analyses in TCGA-BRCA cohort. b Forest plot of the univariate and multivariate Cox regression analyses in METABRIC cohort. c Forest plot 
of the univariate and multivariate Cox regression analyses in the GSE86166 cohort
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95% CI 2.916–32.828, p < 0.001) (Fig.  3). In addition, 
clinicopathological parameters, including tumor grade, 
tumor size and stage, were identified as independent 
prognostic factors in both external cohorts (Fig.  3b, c). 
In summary, the six-gene signature can be considered an 
independent prognostic indicator of BC.

All the parameters, including the risk score, were sub-
sequently used to develop a nomogram in the in- and 

external cohorts. By scoring the predictors, the survival 
time decreased as the total score increased. The calibra-
tion curves of the 1-year, 3-year and 5-year OS probabili-
ties showed good consistency between the nomogram 
predictions and the results observed in the TCGA-BRCA 
cohort (Fig.  4a). Moreover, the nomogram and calibra-
tion curves for the probabilities of 1-, 3-, and 5-year OS 
in both external cohorts indicated excellent agreement 

Fig. 4  Nomograms for prediction of the outcome of patients with breast cancer. a Nomogram developed by integrating the signature risk-score 
with the clinicopathologic features in the TCGA-BRCA cohort. And calibration curves of nomogram for predicting overall survival at 1-year, 3-year 
and 5-year in the TCGA-BRCA cohort. b Validated by METABRIC cohort. c Validated by GSE86166 cohort
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between the nomogram prediction and observed out-
comes (Fig. 4b, c). In summary, the risk score was better 
able to predict OS in BC patients and could be an inde-
pendent prognostic factor.

The baseline characteristics of the BC patients and risk 
score distributions for clinicopathological parameters 
in the external cohorts
The high-risk group was significantly associated with 
older age and advanced TN stage in the TCGA-BRCA 
cohort (Table 1). For both external cohorts,

The high-risk subgroup in the METABRIC cohort was 
significantly associated with higher tumor grade and size 
(Table  1). The high-risk group in the GSE86166 cohort 

was significantly associated with higher tumor grade 
(Table 1).

Except for the downregulated expression of the prog-
nostic protective gene F2RL2 in the high-risk group, 
the other five genes were upregulated in the high-risk 
group compared with the low-risk group in the three 
cohorts (Fig. 5a). Similar results were further confirmed 
in the clinical in-house cohort (Fig. 5b). The risk scores 
were significantly greater (p = 0.025) in the advanced-
stage tumor cohort (from stage III to stage X) than in the 
early-stage tumor cohort (from stage I to stage II) in the 
TCGA-BRCA cohort (Fig.  5c). Interestingly, advanced 
tumor stage was associated with a high risk score, and 
the risk score was significantly distributed across mul-
tiple BC subtypes in the TCGA-BRCA cohort (Fig.  5d). 

Table 1  Baseline characteristics of the BRCA patients between the low and high-risk groups in different cohorts

Characteristic TCGA-BRCA cohort METABRIC cohort GSE86166 cohort

Low risk High risk p Low risk High risk p Low risk High risk p

Age (mean (SD)) 56.34(12.78) 59.90(12.72) 0.001 60.78 (12.26) 60.61 (13.70)) 0.87

 M (%) 0.492

  M0 268(90.2) 262(88.5)

  M1 4(1.3) 8(2.7)

  MX 25(8.4) 26(8.8)

N (%) 0.041

 N0 140(47.1) 134(45.3)

 N1 106(35.7) 91(30.7)

 N2 30(10.1) 47(15.9)

 N3 19(6.4) 15(5.1)

 NX 2(0.7) 9(3.0)

 T (%) 0.008

  T1 95(32.0) 57(19.3)

  T2 164(55.2) 194(65.5)

  T3 29(9.8) 31(10.5)

  T4 9(3.0) 13(4.4)

  TX 0(0.0) 1(0.3)

 Grade (%)  < 0.001 0.002

 G1 62(10.2) 43(6.6) 25(13.7) 11(6.0)

 G2 272(44.9) 209(32.1) 85(46.4) 63(34.4)

 G3 272(44.9) 400(61.3) 66(36.1) 102(55.7)

 G4 6(3.3) 5(2.7)

 G5 1(0.5) 2(1.1)

Tumor size (mean (SD)) 24.72 (12.85) 27.12 (16.68) 0.005

 Stage (%) 0.143 0.714 0.221

  Unknown 0(0.0) 1(0.2) 7(3.8) 3(1.6)

  Stage I 55(18.5) 37(12.5) 212(35.0) 210(32.2) 2(1.1) 2(1.1)

  Stage II 175(58.9) 172(58.1) 341(56.3) 378(58.0) 62(33.9) 49(26.8)

  Stage III 61(20.5) 76(25.7) 50(8.3) 59(9.0) 84(45.9) 92(50.3)

  Stage IV 4(1.3) 6(2.0) 3(0.5) 4(0.6)

  Stage X 2(0.7) 5(1.7)
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Accordingly, the risk score was also significantly associ-
ated with advanced tumor grade (G3 + G4 in the META-
BRIC cohort or G3 + G5 in the GSE86166 cohort) and 
tumor size (> 20 in the METABRIC cohort) in both 
external cohorts (Fig. 5e, g). Moreover, advanced tumor 
stage/grade was associated with a high risk score (Fig. 5f, 
h), and the risk score was also significantly distrib-
uted among the BC subtypes in the METABRIC cohort 
(Fig. 5f ). In conclusion, the results showed that the six-
gene signature is an accurate prognostic model for BC 

patients, possesses a high ability to distinguish early and 
advanced BC, and could be a novel tool for the prediction 
of malignant tumors.

The infiltration of immune cells was also evaluated 
using the ssGSEA algorithm in the TCGA-BRAC cohort 
and in the low- and high-risk groups (Additional file  1: 
Fig. S4a). A total of 23 of the 27 immune cells exhibited 
significant differences between the two groups, among 
which 4 immune cell types increased and 19 immune cell 
types decreased in the high-risk group compared with 

Fig. 5  Expression level of six genes and clinicopathological parameters in the risk model. Expression level of 6 genes in TCGA-BRAC, METABRIC, 
GSE86166 cohorts (a) and in-house cohort (b). The risk score distribution in early- and advanced- breast cancer in TCGA-BRAC cohort (c), METABRIC 
cohort (e) and GSE86166 cohort (g). The risk score distribution in different subtypes and pathologic stage in TCGA-BRAC cohort (d), METABRIC 
cohort (f), and GSE86166 cohort (h); *p < 0.05, **p < 0.01; ***p < 0.005, ****p < 0.001, ns, no significance



Page 11 of 16Yin et al. Journal of Translational Medicine           (2024) 22:84 	

the low-risk group (Additional file  1: Fig. S4). In addi-
tion, the distribution of immune cells was significantly 
different between patients with early-stage tumors and 
patients with advanced-stage tumors (Additional file  1: 
Fig. S4b).

PTGES3 was a potential therapeutic target in the six‑gene 
signature
Because the ImmuneScore was positively correlated with 
OS (Additional file  1: Fig. S2a), the correlation between 
the ImmuneScore and risk score was calculated (Addi-
tional file 1: Fig. S5a). The risk score was negatively cor-
related with the ImmuneScore; 5 genes (APOOL, BNIP3, 
HINT3, PTGES3 and RTN3) were positively correlated 
with the risk score and negatively correlated with the 
ImmuneScore (Additional file 1: Fig. S5b, c); and F2RL2 
was negatively correlated with the risk score and posi-
tively correlated with the ImmuneScore (Additional 
file 1: Fig. S5b, c).

Notably, PTGES3 had the highest HR (Fig.  1b) and 
highest correlation with the risk score (Additional 
file 1: Fig. S5b); thus, its mRNA and protein levels were 
detected. The mRNA expression levels in the TCGA-
BRCA, METABRIC and GSE21653 cohorts were greater 
in the tumor group than in the normal group (Fig.  6a). 
These results were confirmed in two BC cell lines (MDA-
MB-231 and MCF-7) and in MCF-10A cells (Fig.  6b). 
Moreover, the protein level of PTGES3 was also increased 
according to immunochemical analysis of the BC samples 
(Fig. 6c), and increased protein levels were also observed 
in the two BC cell lines (Fig. 8c). The results showed that 
PTGES3 siRNAs significantly decreased PTGES3 expres-
sion at the protein and mRNA levels after they were tran-
siently transfected into the two BC cell lines (Fig. 7a, b). 
PTGES3 knockdown significantly reduced the viability 
and migration of both BC cell lines (Fig. 7c, d).

Notably, PTGES3 was a novel potential target of 
gedunin, genistein and diethylstilbestrol (Fig. 6d). There-
fore, molecular docking between the drugs above and 
PTGES3 was carried out to further clarify the possibil-
ity that PTGES3 is a potential target. Gedunin has been 
confirmed to dock and inactivate PTGES3 [23]. Overall, 
genistein and diethylstilbestrol demonstrated stronger 
binding affinities to PTGES3 than did gedunin based on 
docking scores and interaction analysis (Fig.  6e–h). In 
terms of docking scores, genistein exhibited the high-
est score of −  5.15  kcal/mol, followed by diethylstilbes-
trol, with a score of − 3.28 kcal/mol. Both of these scores 
surpassed gedunin’s docking score of −  2.76  kcal/mol 
(Fig.  6e–g). According to the interaction analysis, gen-
istein formed four hydrogen bonds with the amino acids 
TRP8, LEU89, THR90, and LEU96 (Fig.  6e, h). Diethyl-
stilbestrol formed two hydrogen bond interactions 

with LEU89 and THR90 (Fig. 6f, h). On the other hand, 
Gedunin only formed one hydrogen bond with LEU89 
(Fig. 6g, h).

Subsequently, the effects of genistein and diethylstil-
bestrol on BC cell proliferation were investigated. The 
results indicated that both drugs significantly inhibited 
the viability of BC cells (Fig. 8a). Both drugs significantly 
inhibited the expression of PTGES3 at the mRNA and 
protein levels (Fig.  8b, c), suggesting that they inhibited 
PTGES3 expression in BC cells.

Discussion
As the most common type of malignancy, BC affects 
approximately 12% of women worldwide [24]. There 
are many treatment strategies for this disease, includ-
ing resection, chemotherapy and radiotherapy. These 
methods are constantly improving, but because of their 
limited sensitivity and specificity, the prognosis of BC is 
not ideal [25, 26]. For the prevention, screening, diagno-
sis and treatment of BC, accurate prognostic biomark-
ers or signatures that aid in predicting the survival of BC 
patients are needed.

In this study, we constructed a robust six-gene signa-
ture independent of clinical factors to predict the OS of 
BC patients. Among the prognostic risk genes in the risk 
model, APOOL, BNIP3, HINT3, PTGES3 and RTN3 were 
associated with a high risk score. In contrast, high expres-
sion of the prognostic protective gene F2RL2 was a pro-
tective factor. Studies have indicated that BNIP3 plays an 
important role in the regulation of autophagy, metabolic 
pathways, and metastasis-related processes in different 
tumor types [27, 28] and can be regulated by p21 to pro-
mote cell cycle arrest in pancreatic cancer [29]. BNIP3 
promotes cell apoptosis in lung cancer [30] and pancre-
atic cancer [29] and is also a predictive factor for lung 
adenocarcinoma and small-cell lymphoma in individuals 
in the autophagy-related biomarker groups, indicating 
that BNIP3 is a prognostic marker [30]. In lung adeno-
carcinoma, PTGES3 is also an independent poor prog-
nostic biomarker, and a high PTGES3 expression level 
is associated with immune invasion in cancer cells [31]. 
PTGES3 knockdown significantly inhibited lung tumor 
growth [22], and these results were also confirmed in our 
study. PTGES3 knockdown markedly suppressed BC cell 
proliferation and migration. KEGG enrichment analy-
sis revealed that PTGES3 participates in the regulation 
of the arachidonic acid metabolism pathway, which has 
been proven to be a new therapeutic target for BC metas-
tasis [32], but its specific molecular mechanism needs to 
be further explored. A study showed that RTN3 functions 
as a new inhibitor and can activate the Chk2/p53 path-
way to suppress hepatocellular carcinoma, which pro-
vides additional clues for a better understanding of the 
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Fig. 6  Expression level of PTGES3 in breast cancer and molecular docking analysis. a mRNA expression level in three cohorts. b The mRNA 
expression level in breast cancer cell lines; c Protein level in breast cancer samples. d Potential drugs targeted PTGES3; Genistein (e), 
Diethylstilbestrol (f) and Gedunin (g) docked into the PTGES3 crystal structure. h Molecular docking analysis of three drugs. *p < 0.05, **p < 0.01; 
***p < 0.005, ****p < 0.001
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carcinogenic role of HBV [33]. Many other studies have 
shown that F2RL2 is a biomarker for a variety of tumors, 
such as colon adenocarcinoma and glioma [34, 35]. In BC 
patients, F2RL2 is associated with the process by which 
metastatic BC spreads to bone [36]. APOOL and HINT3 
are tumor-related genes that were first discovered in this 
study as new prognostic markers for BC, but the mecha-
nism of these genes in BC remains to be clarified.

Notably, PTGES3 was the key gene with the highest 
hazard ratio and was the target of gedunin, genistein 
and diethylstilbestrol. Chaitanya [23] demonstrated that 
Gedunin can bind to the surface of PTGES3 and promote 
cancer cell apoptosis. Here, similar molecular docking 
results were confirmed between PTGES3 and Gedunin. 
Interestingly, genistein and diethylstilbestrol had stronger 
binding affinities for PTGES3 than did gedunin. Two 
drugs, for instance, a high dose of genistein, induce BC 

cell apoptosis [37] and increase the sensitivity of TNBC 
to antiestrogen therapy [38]. In the present study, gen-
istein and diethylstilbestrol inhibited BC cell growth and 
decreased PTGES3 expression at the protein and mRNA 
levels, indicating that the antitumor effects of these drugs 
were closely related to PTGES3. However, the potential 
underlying mechanisms should be explored in further 
experiments.

Based on univariate and multivariate Cox proportional 
risk model analyses, Liang et  al. also established a new 
ferritin decorrelation gene marker to predict the overall 
survival rate of patients with hepatocellular carcinoma 
[39]. Wang [40] also developed a prognostic marker that 
included nine ferroptosis-related genes via the LASSO-
Cox regression model and suggested that this gene 
could be used as a new biomarker to predict the prog-
nosis of BC patients. Moreover, Zheng et al. constructed 

Fig. 7  Decreased PTGES3 expression effectively inhibits cell proliferation and migration in breast cancer cell lines. Protein (a) and mRNA (b) levels 
of PTGES3 in MDA-MB-231 and MCF-7 cells. c Cell viability CCK-8 assay; d Wound-healing assay; **p < 0.01; ***p < 0.005, ****p < 0.001. NC, negative 
control
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an 8-gene signature based on the energy metabolism of 
esophageal carcinoma [41]. In contrast to the findings of 
previous research, the risk model in this study was accu-
rate in characterizing the immune response and predict-
ing overall survival in patients with BC. In this study, 
Kaplan‒Meier curves confirmed that all six genes were 
significantly related to OS, and the AUC of the ROC 
curve in TCGA, METABRIC and GSE86166 datasets was 

close to 0.7. The results showed that the six-gene signa-
ture had a high AUC and involved fewer genes, which 
could show strong potential for clinical translation and 
help in the clinical diagnosis of BC.

Some limitations of this study should also be noted. 
First, our prognostic model was both constructed and 
validated with retrospective data from public databases; 
if additional prospective real-world data are available, its 

Fig. 8  Genistein and diethylstilbestrol inhibited cell viability and suppressed the expression of PTGES3. a Effect of genistein and diethylstilbestrol 
on cell viability measured by CCK-8 assay in breast cancer cell lines; The mRNA expression (b) and protein level (c) of PTGES3 were decreased 
after exposure to the genistein and diethylstilbestrol in breast cancer cell lines. **p < 0.01; ***p < 0.005, ****p < 0.001. DES, diethylstilbestrol; GE, 
genistein
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clinical utility can be better verified. Second, our sam-
ple lacked clinical follow-up information; therefore, fac-
tors such as other health conditions were not considered 
when determining prognostic biomarkers. Addition-
ally, the results obtained through bioinformatics analy-
sis alone were less convincing and need to be verified by 
further molecular biology experiments. Finally, further 
genetic and experimental studies based on a larger sam-
ple size and experimental validation are needed.

In summary, the results showed that the novel six-
gene signature has prognostic value for additional clin-
icopathological risk parameters and is more accurate at 
predicting OS in BC patients than clinicopathological 
risk factors alone. This risk model might, therefore, pro-
vide solid support for patient risk stratification and pre-
cise management of BC patients. However, PTGES3 was 
confirmed to be a novel drug target that may serve as a 
therapeutic target for BC.
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