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Abstract 

Background  Converging data have suggested that monocytic inflammation and C-reactive protein (CRP) are bio-
logically intertwined processes and are involved in diabetogenesis. This study aimed to investigate the association 
between systemic inflammation assessed by joint cumulative high-sensitivity C-reactive protein (CumCRP) and mono-
cyte to high-density lipoprotein ratio (CumMHR) and incident type 2 diabetes (T2D) and their predictive value for T2D 
in a general population.

Methods  A total of 40,813 nondiabetic participants from a prospective real-life cohort (Kailuan Study, China) were 
followed biennially from 2010/2011 until December 31, 2020. Multivariable Cox regression analyses were conducted 
to evaluate the adjusted hazard ratios (aHRs) of incident diabetes.

Results  During a median follow-up of 7.98 (IQR: 5.74–8.87) years, 4848 T2D cases developed. CumMHR and Cum-
CRP were alone or jointly associated with incident T2D after adjusting for potential confounders. Elevated Cum-
MHR levels significantly increased the risk of incident diabetes in each CumCRP strata (P-interaction: 0.0278). 
Participants with concomitant elevations in CumMHR and CumCRP levels had the highest risk (aHR: 1.71, 95% CI 
1.52–1.91) compared to both in the low strata. Notably, the coexposure-associated T2D risk was modified by age, 
sex, hypertension, dyslipidemia, and prediabetes status. C-statistics increased from 0.7377 to 0.7417 when Cum-
MHR and CumCRP were added into the multivariable-adjusted model, with a net reclassification improvement (%) 
of 12.39 (9.39–15.37) (P < 0.0001).

Conclusions  Cumulative hsCRP and MHR were both independently and jointly associated with an increased risk 
of T2D and their addition to established risk factors should improve risk prediction and reclassification of diabetes.
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Background
The high prevalence of type 2 diabetes has created a 
tremendous health burden worldwide [1]. The silent 
progressive and lifelong nature of diabetes emphasizes 
the need for epidemiological investigation to provide a 
framework for the identification and stratification of at-
risk populations from the perspectives of predicative, 
preventive and personalized/precise interventions [2].

Over time, metabolic inflammation contributes to dia-
betogenesis and has become a common hallmark in overt 
hyperglycemic settings [3, 4]. Currently, the most com-
monly used inflammatory marker for predicting the risk 
of type 2 diabetes is high-sensitivity C-reactive protein 
(hsCRP)/CRP [5, 6]. Nevertheless, emerging epidemio-
logical data have suggested that the joint assessment of 
biomarkers, rather than each in isolation, improves the 
predictive power of diabetes risk and diabetic compli-
cations [3, 7]. Genetic findings have also demonstrated 
that inflammation may play a causal role in metabolic 
diseases via its upstream effectors instead of through its 
downstream biomarker CRP [8]. In addition to being a 
marker of inflammation, CRP is an important regulator 
of inflammatory processes and is specifically engaged 
in monocyte-derived innate immunity [9]. On the one 
hand, the production of hsCRP is largely dependent on 
the response to monocytic cytokines, mainly interleu-
kin (IL)-1β and its secondary cytokine IL-6 [10, 11]. On 
the other hand, CRP negatively mediates the release of 
monocytic cytokines and the generation of monocytes 
[12, 13]. Notwithstanding the well-established bio-
logical interplay between CRP and upstream factors of 
monocytic inflammation, limited studies have indicated 
that these factors are adjuncts to the risk of diabetes. 
The monocyte to high-density lipoprotein cholesterol 
(HDL-C) ratio (MHR), derived from routine blood and 
lipid tests, has emerged as a novel biomarker for meta-
bolic inflammation [14], because of its potential to indi-
cate deteriorations in proinflammatory status that are 
enhanced by an imbalance of monocytes and deficiency 
of HDL-C [14, 15]. In addition to being an independent 
predictor for incident cardiovascular disease (CVD) [16, 
17], the MHR was established to be a potential tool can-
didate for predicting type 2 diabetesin our previous work 
[18]. Furthermore, the significant interaction between 
the cumulative MHR and hsCRP found in our previous 
study supports the potential for their combined usefor a 
more comprehensive inflammatory risk assessment.

Currently, little is known about the combination of 
hsCRP and MHR for the risk prediction of diabetes. To 
further contribute our work to this field, we therefore 
conducted an analysis based on a real-life, prospective 
cohort, the Kailuan Study to longitudinally assessed the 
independence, specificity, and magnitude of chronic 

inflammation [reflected by time-averaged cumulative 
hsCRP (CumCRP) and MHR (CumMHR) in 4 years] on 
the risk of developing type 2 diabetes among the general 
population in mainland China.

Methods
Study participants
The Kailuan Study is a large, ongoing, community-
based, real-world, prospective cohort study in China, 
and its study protocol and procedures have been previ-
ously described in detail [19, 20]. Briefly, 101,510 par-
ticipants aged 18–98  years were recruited to complete 
biennial health surveys beginning in 2006/2007; the 
latest health survey ended on December 31, 2020. All 
participants provided informed written consent. The cur-
rent study was approved by the Kailuan General Hospi-
tal Ethics Committee, China (2006–05) and the Human 
Research Ethics Committee of Edith Cowan University 
(2021–03159-BALMER).

The specific study design of the current analysis is pre-
sented in Fig.  1A, and a flowchart of the participants is 
shown in Fig.  1B. Among 57,927 original participants 
who attended the first three consecutive health surveys, 
40,813 were recruited for this study. The exclusion cri-
teria were as follows: participants with known diabetes 
(n = 8,865) or known cancer at baseline (n = 331); those 
with incomplete data or abnormal values in fasting blood 
glucose (FBG), monocyte count, hsCRP, and HDL-C dur-
ing the exposure period (n = 5,456); and those who failed 
to contribute to their follow-up time from 2010/2011 
through December 31, 2020 (n = 2,462). The numbers of 
participants who attended the follow-up visits and who 
underwent the glucose tests are provided in Additional 
file 1: Table S1.

Assessment of the study outcome
The primary endpoint event of this study was the inci-
dence of type 2 diabetes (International Classification of 
Diseases, 10th revision [ICD-10]: E11), defined as either 
FBG ≥ 7.0 mmol/L, a self-reported history of a physician 
diagnosis, or self-reported use of oral glucose-lowering 
medications with or without insulin use [21]. Participant 
death was documented by local government vital statis-
tics offices. The date of diabetes onset was defined as the 
first follow-up examination at which a participant ful-
filled the diagnostic criteria. The follow-up period lasted 
from the end of the baseline survey (2010/2011) until 
the date of diagnosis of type 2 diabetes, death, or the last 
available follow-up visit, whichever came first.

Exposure
Chronic metabolic inflammation was assessed 
by measuring CumCRP and CumMHR 
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during a median of 3.93  years of exposure [interquar-
tile range (IQR): 3.73–4.26]. CumCRP was calculated 
as [(hsCRP1 + hsCRP2)/2 × (Visit2—Visit1)] + [(hsC
RP2 + hsCRP3)/2 × (Visit3—Visit2)]/(Visit3-Visit1) 
[22–25], where hsCRP1, hsCRP2, and hsCRP3 corre-
spond to hsCRP levels at each exposure visit. The Cum-
MHR was calculated using the same algorithm, where 
the MHR = monocyte count/HDL-C. The time-averaged 
cumulative and mean values of the MHR and hsCRP are 
displayed in Additional file 1: Table S2. Given that there 
are there are no available clinical thresholds for CumCRP, 
the suggested clinical cutoff points for transient hsCRP 
(< 1, 1 to 3, and ≥ 3  mg/L connotes lower, average, and 
higher relative cardiometabolic risk, respectively [11]) 
were used for CumCRP analyses. Additionally, defining 
participants without and with elevated CumMHR was 
based on the 50th percentile (median) of the CumMHR 

values in the study population (0.2340), according to a 
previously established method [26]. To further evalu-
ate the combined association between CumCRP and 
CumMHR and incident diabetes, the pooled sample 
was stratified according to CumCRP thresholds of < 1, 1 
to 3 and ≥ 3 mg/L and CumMHR < 0.2340 or ≥ 0.2340 to 
create 6 joint exposure subgroups after confirmation of 
a significant interaction between CumMHR (< 0.2340 
or ≥ 0.2340) and CumCRP (< 1, 1 to 3, or ≥ 3  mg/L) 
(P = 0.0278).

Covariates
Potential covariates comprising sociodemographic and 
lifestyle characteristics as well as medical and medica-
tion history were collected via face-to-face interviews 
using a standard questionnaire, as described elsewhere 
[19, 20]. Anthropometrics, including height, weight, 

Fig. 1  Study design and participant flow chart. A Design and strategy of the current study. B Flow chart of the study participants
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and blood pressure, were assessed by trained physicians. 
Laboratory assays on routine blood parameters (includ-
ing leukocyte and monocyte counts), FBG, hsCRP level, 
total cholesterol (TC), HDL-C, low-density lipoprotein 
cholesterol (LDL-C), triglyceride (TG), and creatinine 
levels were conducted at the central laboratory of Kai-
luan General Hospital using a Hitachi 7600 autoanalyzer 
(Hitachi; Tokyo, Japan). The estimated glomerular filtra-
tion rate (eGFR) was calculated by the Chronic Kidney 
Disease Epidemiology Collaboration Creatinine Equa-
tion for assessing renal function [27]. The body mass 
index (BMI) was calculated as the weight (kg) divided 
by the height squared (m2), and participants were cat-
egorized as underweight, normal weight, overweight, or 
obese. Blood pressure was categorized as normal blood 
pressure, grade I hypertension, grade II hypertension, or 
grade III hypertension. Smoking status was divided into 
three categories: never, former, and current smokers. 
Alcohol consumption was categorized as yes (drinker) or 
no (nondrinker).

Statistical analysis
All analyses were conducted using SAS version 9.4 (SAS 
Institute, Cary, NC, USA). For all analyses, two-tailed 
P values < 0.05 were considered statistically significant, 
with the exception of the interaction analysis, in which 
P < 0.1 was considered significant. Baseline characteris-
tics are expressed as the mean ± standard deviation (SD), 
median and IQR, or number (percentage) for normally 
distributed, skewed and categorical data, respectively. 
These baseline characteristics are presented for the whole 
cohort and according to the CumMHR-by-CumCRP 
strata. Differences among subgroups were determined by 
one-way analyses of variance (ANOVAs), Kruskal–Wallis 
tests, or Pearson chi-square tests, as appropriate.

The incidence rates of type 2 diabetes were calculated 
by dividing the total number of events by the person-
years of follow-up and were reported as events per 1000 
person–years. Cox regression analyses were performed 
to determine the adjusted hazard ratios (aHRs) for type 
2 diabetes and 95% confidence intervals (CIs), except for 
isolated CumCRP as the exposure (for which weighted 
Cox regression models were used because of the violation 
of the proportionality assumption). The multiplicative 
interaction between CumMHR and CumCRP were tested 
by a likelihood ratio test in the multivariable adjusted Cox 
regression model, which included both the main effects 
and the interaction term. To compare the cumulative 
incidence of type 2 diabetes across CumMHR-by-Cum-
CRP strata, Kaplan–Meier plots were generated, and the 
log-rank test was conducted. The models were adjusted 
for the following variables: age, sex, smoking status, alco-
hol consumption, BMI, and family history of diabetes 

(Model 1); all the previous variables plus lipid-lowering 
medication and antihypertensive medication use, logTG, 
LDL-C, blood pressure, FBG, eGFR, and log(leukocyte 
count) (Model 2); Model 2 plus log(CumMHR) (Model 3); 
and Model 2 plus log(CumCRP) (Model 4). Further anal-
yses were conducted to determine whether the strength 
of the association between coexposure and the risk of 
type 2 diabetes varied by age, sex, or other clinically rel-
evant factors, including baseline dyslipidemia, hyperten-
sion, and impaired fasting glucose. Subgroup analyses 
were performed for variables that were significant for 
interaction. In addition, several sensitivity analyses were 
performed to assess the robustness of the findings. First, 
to address potential reverse causation, we excluded par-
ticipants whose endpoints were reached and recorded at 
the first follow-up visit. Second, to minimize the influ-
ence of acute infection, participants with suspected acute 
infections (any participants with a hsCRP level ≥ 10 mg/L 
in the exposure period [11]) were excluded. Third, par-
ticipants who took statins were excluded to prevent 
potential confounding effects of statin use from infusing 
the study endpoint. Fourth, to minimize the influence of 
CVD, participants with preexisting CVD were excluded.

Hereafter, the incremental value of CumCRP and Cum-
MHR to improve risk prediction when they were added 
to classical diabetic risk factors was assessed by calculat-
ing Harrell’s C-statistic, and reclassification was assessed 
using the integrated discrimination improvement (IDI) 
and the continuous net reclassification improvement 
(NRI) [28].

Results
Baseline characteristics were determined according to the 
information provided at the start of follow-up (Table 1). 
As anticipated, the mean age of the participants at the 
start of the follow-up period was 52.2 ± 11.8  years, and 
30,634 (75.1%) were men. In terms of cumulative expo-
sures, a higher CumMHR in each CumCRP strata was 
positively associated with higher cumulative FBG and 
hsCRP levels as well as monocyte counts. With regard to 
baseline characteristics, participants with higher Cum-
MHR and CumCRP had high levels of BMI, hsCRP, TG, 
leukocyte counts, systolic and diastolic blood pressures, 
whereas had low levels of TC, HDL-C and eGFRs. Addi-
tionally, participants with higher CumMHR and higher 
CumCRP levels were more likely to be elderly, physical 
inactive, current smokers and current drinkers and have 
hypertension or dyslipidemia.

Prospective analysis of type 2 diabetes incidence
During a median of 7.98 (IQR: 5.74–8.87) years of fol-
low-up, 4,848 cases of type 2 diabetes occurred among 
the 40,813 study participants. In isolation, both the 



Page 5 of 12Wu et al. Journal of Translational Medicine          (2024) 22:110 	

Table 1  Baseline characteristics of 40,813 participants

BMI body mass index; CumMHR cumulative monocyte-to-high-density lipoprotein cholesterol ratio; CumHDL cumulative high-density lipoprotein cholesterol; 
CumMON cumulative monocytes; DBP diastolic blood pressure; eGFR estimated glomerular filtration rate; FBG fasting blood glucose; HDL-C high-density lipoprotein 
cholesterol; hsCRP high-sensitivity C-reactive protein; SBP systolic blood pressure; TC total cholesterol; TG triglyceride; LDL-C low-density lipoprotein cholesterol

The P value indicates intergroup comparison across the study subgroups

Characteristics Total CumMHR  
< 0.234 & 
CumCRP  
< 1 mg/L

CumMHR  
< 0.234 & 
1 ≤ CumCRP  
< 3 mg/L

CumMHR  
< 0.234 &  
CumCRP  
≥ 3 mg/L

CumMHR 
 ≥ 0.234 &  
CumCRP  
< 1 mg/L

CumMHR 
 ≥ 0.234 & 1  
≤ CumCRP  
< 3 mg/L

CumMHR  
≥ 0.234 &  
CumCRP  
≥ 3 mg/L

P value

Participants 40813 7743 8564 4099 5177 8848 6382  < 0.0001

Event-free time 8.0 (5.7–8.9) 8.2 (6.4–9.0) 7.9 (5.8–9.0) 8.0 (5.6–8.9) 8.0 (5.8–8.7) 7.9 (5.4–8.8) 7.8 (5.1–8.8)  < 0.0001

Cumulative characteristics

 CumMHR 0.2 (0.2–0.3) 0.2 (0.1–0.2) 0.2 (0.1–0.2) 0.2 (0.2–0.2) 0.3 (0.3–0.4) 0.3 (0.3–0.4) 0.3 (0.3–0.4)  < 0.0001

 CumHDL, mmol/L 1.5 (1.3–1.8) 1.7 (1.4–1.9) 1.6 (1.4–1.9) 1.7 (1.4–1.9) 1.5 (1.3–1.6) 1.5 (1.3–1.6) 1.5 (1.3–1.7)  < 0.0001

 CumMON, 109/L 0.3 (0.3–0.4) 0.3 (0.2–0.3) 0.3 (0.2–0.3) 0.3 (0.2–0.3) 0.4 (0.4–0.5) 0.4 (0.4–0.5) 0.4 (0.4–0.5)  < 0.0001

CumCRP, mg/L 1.6 (0.8–3.1) 0.6 (0.4–0.8) 1.7 (1.3–2.2) 4.8 (3.7–6.7) 0.7 (0.5–0.8) 1.7 (1.3–2.2) 5.2 (3.9–7.7)  < 0.0001

Baseline characteristics

Male, n (%) 30634 (75.1) 5138 (66.4) 5891 (68.8) 2660 (64.9) 4332 (83.7) 7482 (84.6) 5131 (80.4)  < 0.0001

Age, years 52.2 ± 11.8 51.2 ± 11.8 53.4 ± 11.8 56.7 ± 11.7 48.6 ± 10.5 50.6 ± 11.5 54.3 ± 12.0  < 0.0001

BMI, kg/m2 25.0 ± 3.3 23.7 ± 3.0 24.9 ± 3.2 25.3 ± 3.5 24.5 ± 3.0 25.5 ± 3.2 26.1 ± 3.6  < 0.0001

SBP, mmHg 129.6 ± 18.6 125.6 ± 18.2 130.1 ± 18.5 132.2 ± 19.4 127.0 ± 16.9 130.7 ± 18.3 133.0 ± 19.1  < 0.0001

DBP, mmHg 80.7 
(79.3–90.0)

80.0 
(74.0–90.0)

80.7 
(80.0–90.0)

80.7 
(80.0–90.0)

80.7 
(79.0–90.0)

83.0 (80.0–90.0) 83.3 (80.0–90.0)  < 0.0001

FBG, mmol/L 5.2 ± 0.6 5.2 ± 0.6 5.3 ± 0.6 5.2 ± 0.6 5.2 ± 0.6 5.3 ± 0.6 5.2 ± 0.6  < 0.0001

HDL-C, mmol/L 1.5 (1.2–1.8) 1.7 (1.4–2.0) 1.7 (1.4–2.0) 1.6 (1.4–1.9) 1.4 (1.2–1.6) 1.4 (1.2–1.6) 1.3 (1.1–1.6)  < 0.0001

LDL-C, mmol/L 2.6 ± 0.8 2.6 ± 0.7 2.8 ± 0.7 2.3 ± 1.0 2.6 ± 0.7 2.7 ± 0.7 2.4 ± 0.9  < 0.0001

TC, mmol/L 5.0 ± 1.0 5.0 ± 1.0 5.1 ± 1.0 5.2 ± 1.0 4.8 ± 0.8 4.8 ± 0.9 4.9 ± 1.0  < 0.0001

TG, mmol/L 1.3 (0.9–1.8) 1.1 (0.8–1.5) 1.2 (0.9–1.8) 1.2 (0.9–1.8) 1.2 (0.9–1.8) 1.4 (1.0–2.1) 1.4 (1.0–2.2)  < 0.0001

HsCRP, mg/L 1.0 (0.5–2.4) 0.5 (0.3–0.9) 1.2 (0.7–2.1) 2.8 (1.0–5.8) 0.5 (0.1–0.9) 1.3 (0.6–2.4) 3.3 (1.3–6.6)  < 0.0001

Leukocytes, 109/L 6.1 (5.2–7.2) 5.5 (4.7–6.4) 5.7 (4.8–6.6) 5.7 (4.8–6.7) 6.5 (5.6–7.5) 6.7 (5.8–7.9) 6.9 (5.9–8.0)  < 0.0001

Alcohol consumption, 
n (%)

 < 0.0001

 No 26752 (65.5) 5025 (64.9) 5624 (65.7) 3020 (73.7) 3110 (60.1) 5546 (62.7) 4427 (69.4)

 Yes 14061 (34.5) 2718 (35.1) 2940 (34.3) 1079 (26.3) 2067 (39.9) 3302 (37.3) 1955 (30.6)

Smoking, n (%)  < 0.0001

 Never smoker 25248 (61.9) 5160 (66.6) 5609 (65.5) 2913 (71.1) 2895 (55.9) 4881 (55.2) 3790 (59.4)

 Ever smoker 1796 (4.4) 320 (4.1) 355 (4.1) 176 (4.3) 223 (4.3) 422 (4.8) 300 (4.7)

 Current smoker 13769 (33.7) 2263 (29.2) 2600 (30.4) 1010 (24.6) 2059 (39.8) 3545 (40.1) 2292 (35.9)

Family history of diabetes 2162 (5.3) 419 (5.4) 454 (5.3) 179 (4.4) 306 (5.9) 468 (5.3) 336 (5.3) 0.0481

Education, n (%)  < 0.0001

 Less than high school 31,295 (76.7) 5504 (71.1) 6342 (74.1) 3256 (79.4) 3961 (76.5) 6953 (78.6) 5279 (82.7)

 High school and above 9518 (23.3) 2239 (28.9) 2222 (25.9) 843 (20.6) 1216 (23.5) 1895 (21.4) 1103 (17.3)

Physical activities, n (%)  < 0.0001

 Never 13749 (33.7) 2960 (38.2) 2990 (34.9) 1464 (35.7) 1705 (32.9) 2604 (29.5) 2026 (31.7)

 Occasionally 21,329 (52.3) 3547 (45.8) 4101 (47.9) 2061 (50.3) 2848 (55.0) 5134 (58.0) 3638 (57.0)

 Frequently 5735 (14.1) 1236 (16.0) 1473 (17.2) 574 (14.0) 624 (12.1) 1110 (12.5) 718 (11.3)

Hypertension, n (%) 19733 (48.3) 2942 (38.0) 4111 (48.0) 2192 (53.5) 2226 (43.0) 4565 (51.6) 3705 (58.1)  < 0.0001

Dyslipidemia, n (%) 11100 (27.2) 1556 (20.1) 2186 (25.5) 1085 (26.5) 1317 (25.4) 2726 (30.8) 2224 (34.8)  < 0.0001

CVD, n (%) 2236 (5.48%) 297 (3.84%) 459 (5.36%) 291 (7.10%) 187 (3.61%) 506 (5.72%) 496 (7.77%)  < 0.0001

Antihypertensives, n (%) 2201 (5.4) 315 (4.1) 519 (6.1) 310 (7.6) 153 (3.0) 398 (4.5) 506 (7.9)  < 0.0001

Statin, n (%) 230 (0.6) 40 (0.5) 52 (0.6) 26 (0.6) 17 (0.3) 39 (0.4) 56 (0.9) 0.0014

Fibrate, n (%) 65 (0.2) 5 (0.1) 9 (0.1) 11 (0.3) 2 (0.0) 15 (0.2) 23 (0.4)  < 0.0001
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CumMHR and CumCRP were independently associated 
with the risk of type 2 diabetes. The aHR (95% CI) of inci-
dent diabetes per SD increase in logCumMHR (0.1995) 
in the fully adjusted model was 1.14 (1.10–1.18) in the 
entire population and differed across CumCRP strata: 
1.13 (1.05–1.21), 1.10 (1.05–1.16) and 1.17 (1.10–1.24), 
in the CumCRP < 1, 1 ~ 3, ≥ 3  mg/L strata, respectively 
(Additional file 1: Table S3). With regard to CumCRP, a 
per-SD increase in logCumCRP (0.4295) conferred an 
aHR of 1.16 (95% CI: 1.13–1.19) for developing diabetes 
(Additional file 1: Table S4).

A significant interaction was detected between Cum-
MHR and CumCRP; P-interaction: CumMHR (< 0.2340, 
or ≥ 0.2340) × CumCRP (< 1, 1 to 3, or ≥ 3 mg/L) = 0.0278; 
CumMHR (0.2340, or ≥ 0.2340) × log (CumCRP) < 0.0001 
(Table  2). Concomitant elevations in both CumCRP and 
CumMHR levels significantly enhanced diabetic risk and 
incidence. Figure  2 displays the K–M curve comparing 
the cumulative incidence of type 2 diabetes. Compared 
to the reference group (CumCRP < 1  mg/L and Cum-
MHR < 0.2340), participants with the same CumMHR 
level but with elevated CumCRP had significantly higher 
risks of type 2 diabetes, with aHRs (95% CIs) of 1.43 
(1.29–1.59) and 1.42 (1.27–1.63) for 1 ≤ CumCRP < 3 and 
CumCRP ≥ 3 mg/L, respectively. Participants with normal 
CumCRP but elevated CumMHR (CumMHR ≥ 0.2340) 
had a significantly higher risk (1.32, 95% CI 1.16–1.49) 
than the reference group; those with elevated CumMHR 

and elevated CumCRP had aggressively higher risks of dia-
betes, with aHRs of 1.55 (1.39–1.72) and 1.71 (1.52–1.91) 
in the 1 ≤ CumCRP < 3 and CumCRP ≥ 3  mg/L strata, 
respectively. In each CumCRP stratum, an increased Cum-
MHR significantly increased the risk of diabetes, while a 
decreased CumMHR reduced the risk (Table 2).

When follow-up was limited to approximately 4 years, 
the short-term risk of type 2 diabetes (HR [95% CI]) was 
1.85 (1.58–2.16) in the CumCRP ≥ 3  mg/L with  Cum-
MHR ≥ 0.2340 subgroup, while the long-term risk (after 
excluding participants with diabetes onset within the first 
two follow-up visits) in this subgroup was 1.58 (1.34–
1.86) (Additional file 1: Table S5).

In the present study, there was significant heterogeneity 
in the sex-associated risk of diabetes conferred by com-
bined chronic inflammatory exposure; P-interaction: Cum-
CRP-by-CumMHR strata × sex = 0.0032 (Fig. 3, Additional 
file 1: Table S6). The aHRs (95% CIs) were 1.30 (1.12–1.51) 
for men and 1.87 (1.47–2.37) for women with Cum-
CRP ≥ 3  mg/L and a low CumMHR (< 0.2340) and were 
1.56 (1.37–1.77) for males and 2.25 (1.76–2.88) for females 
with CumCRP ≥ 3 mg/L and a high CumMHR (≥ 0.2340). 
The interaction between the CumMHR and CumCRP in 
men (P-interaction = 0.6447) was not as significant as that 
in women (P-interaction = 0.0261). When examining the 
age-related heterogeneity in the risk of diabetes conferred 
by coexposure, we observed a positive increasing trend in 
diabetes incidence rates with increasing age, particularly 

Table 2  The risk of incident type 2 diabetes upon exposure to cumulative MHR and cumulative hsCRP

P-interaction: CumMHR (< median or ≥ median) * CumCRP (< 1, 1 to 3, or ≥ 3 mg/L) = 0.0278; CumMHR (< median or ≥ median) * log(CumCRP) < 0.0001

Model 1: adjusted for age (continuous), sex, education, smoking status, drinking status, physical activity, family history of diabetes, and BMI (categorical);

Model 2: Model 1 + FBG (continuous), hypertension (categorical), logTG (continuous), LDL-C (continuous), eGFR (categorical), antihypertensives (yes or no), lipid-
lowering drugs (yes or no), and log(leukocyte) (continuous);

Model 3: Model 2 + logCumCRP;

Model 4: Model 2 + logCumMHR. Abbreviations as Table 1

Combination of CumCRP and CumMHR, HRs (95% CIs)

CumCRP < 1 mg/L & 
CumMHR < 0.2340

1 ≤ CumCRP < 3 mg/L 
& CumMHR < 0.2340

CumCRP ≥ 3 mg/L & 
CumMHR < 0.2340

CumCRP < 1 mg/L & 
CumMHR ≥ 0.2340

1 ≤ CumCRP < 3 mg/L 
& CumMHR ≥ 0.2340

CumCRP ≥ 3 mg/L & 
CumMHR ≥ 0.2340

Event/Total 527/7743 1003/8564 500/4099 522/5177 1251/8848 1045/6382

Incidence rate 9.32 16.48 17.40 14.33 20.38 23.94

Unadjusted model Reference 1.78 (1.60–1.98) 1.87 (1.66–2.12) 1.53 (1.35–1.73) 2.18 (1.97–2.42) 2.57 (2.31–2.85)

Model 1 Reference 1.53 (1.38–1.70) 1.48 (1.30–1.67) 1.43 (1.26–1.61) 1.78 (1.60–1.97) 1.88 (1.69–2.10)

Model 2 Reference 1.43 (1.29–1.59) 1.42 (1.27–1.63) 1.32 (1.16–1.49) 1.55 (1.39–1.72) 1.71 (1.52–1.91)

Model 3 Reference 1.26 (1.11–1.42) 1.10 (0.91–1.34) 1.35 (1.20–1.53) 1.41 (1.24–1.60) 1.35 (1.12–1.63)

Model 4 Reference 1.41 (1.27–1.57) 1.39 (1.23–1.58) 1.12 (0.97–1.30) 1.31 (1.15–1.48) 1.43 (1.25–1.64)

Model 1 0.65 (0.59–0.73) Reference
Reference

0.97 (0.87–1.08) 0.93 (0.84–1.04) 1.16 (1.07–1.27) 1.23 (1.13–1.34)

Model 2 0.70 (0.63–0.78) 1.01 (0.90–1.12) 0.93 (0.84–1.04) 1.11 (1.02–1.21) 1.22 (1.11–1.34)

Model 1 0.56 (0.51–0.62) 0.86 (0.79–0.94) 0.83 (0.75–0.92) 0.80 (0.72–0.89) Reference 1.06 (0.97–1.15)

Model 2 0.65 (0.58–0.72) 0.92 (0.84–1.01) 0.92 (0.83–1.03) 0.85 (0.77–0.95) Reference 1.10 (1.01–1.20)

Model 1 0.53 (0.48–0.59) 0.81 (0.74–0.89) 0.78 (0.70–0.87) 0.76 (0.68–0.84) 0.95 (0.87–1.02) Reference

Model 2 0.58 (0.52–0.66) 0.84 (0.76–0.92) 0.84 (0.75–0.93) 0.77 (0.69–0.86) 0.91 (0.83–0.99) Reference
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in those aged 50–70  years. The highest CumCRP and 
CumMHR strata were jointly associated with the highest 
risk of diabetes across age subgroups. However, the risk 
of diabetes differed markedly by age subgroup; P-interac-
tion: CumMHR-by-CumCRP strata × age subgroup (< 40, 
40–49, 50–59, 60–69, ≥ 70  years) = 0.0074 (Fig.  3, Addi-
tional file  1: Table  S7). Participants aged < 40  years had a 
markedly high risk (3.10, 95% CI: 2.06–4.68) after adjust-
ing for sex, age, BMI, education, smoking, drinking habits 
and family history of diabetes. The risk was further attenu-
ated in the fully adjusted model, with aHRs (95% CIs) of 
2.43 (1.59–3.71), 1.86 (1.50–2.30), 1.94 (1.60–2.35), 1.43 
(1.13–1.81) and 1.43 (0.91–2.17) for participants aged < 40, 
40–49, 50–59, 60–69, and ≥ 70 years, respectively. Notably, 
the significant interaction between CumMHR and Cum-
CRP persisted in those younger than 50 years but disap-
peared in those older than 50 years.

Participants’ dyslipidemia, hypertensive status or pre-
diabetic status further modified the risk of incident 

diabetes upon chronic inflammatory exposure to Cum-
MHR and CumCRP. The CumMHR × CumCRP inter-
action and the association between joint inflammatory 
exposure and incident diabetes were attenuated in partic-
ipants with dyslipidemia, hypertension, or impaired fast-
ing glucose in comparison to those without (Additional 
file 1: Tables S8-S10).

In the sensitivity analyses, the CumMHR × CumCRP 
interaction and the association between joint inflamma-
tory exposure and incident diabetes remained significant 
when excluding participants with suspected infection, 
those treated with statins, those with preexisting CVD, 
or those with diabetes onset at the first follow-up visit 
(Additional file 1: Table S11).

Additionally, concomitant elevations in the baseline 
MHR and hsCRP levels were associated with increased 
risk and incidence of diabetes (Additional file  1: 
Table S12). The interaction between BasMHR (< median, 
or ≥ median) and BasCRP (< 1, 1 to 3, or ≥ 3  mg/L) 

No. at risk
G1 7743 7702 7487 7100 6857 6319 6054 5114 4074

G2 8564 8495 8179 7742 7436 6734 6355 5191 4198

G3 4099 4047 3843 3658 3487 3177 3004 2481 2062

G4 5177 5152 5008 4656 4407 4071 3848 3224 2614

G5 8848 8786 8428 7909 7433 6802 6364 5266 4287

G6 6382 6299 5932 5589 5264 4813 4503 3750 3097
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Fig. 2  Cumulative incidence of type 2 diabetes across CumCRP-by-CumMHR strata. G1 CumCRP < 1 mg/L & CumMHR < 0.2340; G2 
1 ≤ CumCRP < 3 mg/L & CumMHR < 0.2340; G3 CumCRP ≥ 3 mg/L & CumMHR < 0.2340; G4 CumCRP < 1 mg/L & CumMHR ≥ 0.2340; G5 
1 ≤ CumCRP < 3 mg/L & CumMHR ≥ 0.2340; G6 CumCRP ≥ 3 mg/L & CumMHR ≥ 0.2340. Kaplan–Meier curves demonstrating the cumulative 
incidence and number at risk of diabetes across CumCRP-by-CumMHR subgroups in the entire population; No. at risk indicates the number 
of participants at specified time intervals with partially censored data
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was not statistically significant, whereas it was signifi-
cant when BasCRP was tested as a continuous variable 
(logBasCRP).

Clinical utility
Among all the study participants, the addition of Cum-
CRP and CumMHR to the traditional risk model for dia-
betes increased the predicted value of incident diabetes 

from 0.7377 (95% CI 0.7302–0.7451) to 0.7417 (95% CI 
0.7343–0.7491), with an NRI (%) of 12.39 (9.39–15.37) 
(P < 0.0001) and an IDI (%) of 0.16 (0.11–0.22) (Table 3). 
Additionally, the predictive value of the multivariable 
model was significantly greater (P < 0.01) in the Cum-
CRP < 1 stratum (C-statistic = 0.7621, 95% CI 0.7473–
0.7769) than in the other CumCRP strata (Additional 
file 1: Table S13).

Fig. 3  Forest plot of the risk of incident type 2 diabetes across CumCRP-by-CumMHR strata stratified by sex and age. G1 CumCRP < 1 mg/L 
& CumMHR < 0.2340 G2 1 ≤ CumCRP < 3 mg/L & CumMHR < 0.2340; G3 CumCRP ≥ 3 mg/L & CumMHR < 0.2340; G4 CumCRP < 1 mg/L & 
CumMHR ≥ 0.2340; G5 1 ≤ CumCRP < 3 mg/L & CumMHR ≥ 0.2340; G6 CumCRP ≥ 3 mg/L & CumMHR ≥ 0.2340. P-interanion: CumCRP-by-CumMHR 
strata × sex (male/female) = 0.0032; CumCRP-by-CumMHR strata × age subgroups (< 40, 40 ~ 49, 50 ~ 59, 60 ~ 69, or ≥ 70 years) = 0.0074. All models 
were adjusted for age (continuous), sex (except for sex subgroup analysis), education, smoking status, drinking status, physical activity, family 
history of diabetes, BMI (categorical), FBG (continuous), hypertension (categorical), logTG (continuous), LDL-C (continuous), eGFR (categorical), use 
of antihypertensives (yes or no), use of lipid-lowering drugs (yes or no), and log(leukocyte) (continuous). Abbreviations as in Table 1
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Discussion
In this longitudinal analysis of 40,813 participants free of 
preexisting diabetes, we observed a significant associa-
tion between cumulative exposure to either an elevated 
MHR or hsCRP levels in isolation and incident type 2 
diabetes. A significant interaction between CumMHR 
and CumCRP was observed. Specifically, increases in the 
CumMHR in each CumCRP stratum increased the risk 
of type 2 diabetes; concomitant increases in CumMHR 
and CumCRP conferred significantly higher incidence 
rates and risks of diabetes. Furthermore, the association 
between chronic inflammation (reflected by the joint 
cumulative MHR and hsCRP exposure) and incident 
diabetes was highly age- and sex-specific and influenced 
by hypertension, dyslipidemia or prediabetes. The addi-
tion of the CumMHR and CumCRP to the clinical risk 
model significantly improved the prediction of incident 
diabetes.

Particularly relevant to the current findings, compel-
ling studies in recent years have consistently documented 
the extensive involvement of monocytic immunity in dia-
betogenesis, which induces islet inflammation, beta-cell 
malfunction and insulin resistance [29, 30]. Additionally, 
it is essential to know that the inflammatory response is 
a complex signaling network involving diverse inflam-
matory factors. Converging evidence has suggested that 
the combined effects of these factors are likely to be more 
important than those of factors in isolation [3, 7]. Con-
sistent with this theory, we observed a significant interac-
tion between CumMHR and CumCRP and an increased 
risk of diabetes conferred by joint increases in CumMHR 
and CumCRP compared to that of each biomarker alone. 
The underlying mechanism of this association may be a 
bidirectional relationship between the monocytic inflam-
matory cascade and CRP levels. As a primary acute-
phase reactant, CRP is produced largely dependent on 
the response to monocytic cytokines [11]. In turn, CRP 

mediates innate immunity [12] and monocyte generation 
[31]. Additionally, HDL-C metabolism significantly nega-
tively influences monocytosis and attenuates monocytic 
inflammation [32]. Indeed, in the diabetes-prone milieu, 
a deficiency of HDL-C due to insulin resistance and lipid 
disorders is commonly observed [33, 34], suggesting the 
usefulness of the MHR as a biomarker for tracking an 
inflammatory imbalance preceding the occurrence of 
diabetes [18]. Taken together, our epidemiological obser-
vations, coupled with emerging experimental evidence, 
support the possibility that the biological interactions 
between monocytic inflammation and CRP may have 
functional consequences for diabetogenesis.

In the present study, the age-related attenuation in the 
diabetic risk conferred by coexposure to CumMHR and 
CumCRP was of interest. The occurrance of a significant 
CumCRP-CumMHR interaction was limited in partici-
pants aged < 50 years, and a markedly greater risk of type 
2 diabetes (approximately 3 times greater) was observed 
in those aged < 40  years than in other age subgroups, 
indicating an age-dependent pattern of inflammation-
associated risk of diabetes. Several interpretations may 
explain this finding. First, the downward trend in the risk 
of diabetes associated with joint exposure to CumCRP 
and CumMHR as age increases is consistent with the 
consensus that aging is the greatest risk factor for type 
2 diabetes [2]. Type 2 diabetes is a typical age-related 
disease that mostly occurs in middle age and is partly 
attributed to the cumulative nature of age-associated 
inflammation, also known as “inflammaging” [35]. The 
increase in inflammation with increasing age may in part 
explain the decreasing trend in the inflammation-related 
risk of type 2 diabetes with aging. Our findings corrob-
orate the involvement of chronic inflammation in the 
etiology of early-onset diabetes and merit specific atten-
tion. Epidemiological evidence indicates a consistent 
increase in early-onset diabetes, especially in developing 

Table 3  Prediction performance in the entire population for the full-adjusted model and with the addition of cumulative MHR and 
hsCRP

The Multivariable model:was adjusted for age (continuous), sex, education, smoking status, drinking status, physical activity, family history of diabetes, BMI 
(categorical), FBG (continuous), hypertension (categorical), logTG (continuous), LDL-C (continuous), eGFR (categorical), antihypertensives (yes or no), lipid-lowering 
drugs (yes or no), log(leukocyte) (continuous), and log(hsCRP)

The baseline MHR, cumulative MHR and cumulative hsCRP were all log-transformed and added in the models

IDI integrated discrimination improvement; NRI net reclassification improvement; others as in Table 1

Models C-statistics (95% CI) SE NRI, % (95% CI) P value IGI, % (95% CI) P value

Multivariable model 0.7377 (0.7302–0.7451) 0.00381 – – – –

Multivariable model + baseline MHR 0.7380 (0.7305–0.7453) 0.00381 4.14 (1.14–7.13) 0.0069 0.01 (0.00–0.02) 0.0056

Multivariable model + cumulative MHR 0.7397 (0.7322–0.7471) 0.00379 8.36 (5.36–11.35)  < 0.0001 0.11 (0.07–0.15) 0.0004

Multivariable model + cumulative hsCRP 0.7408 (0.7333–0.7482) 0.00377 12.02 (9.02–15.01)  < 0.0001 0.07 (0.03–0.12) 0.0017

Multivariable model + cumulative 
MHR + Cumulative hsCRP

0.7417 (0.7343–0.7491) 0.00376 12.39 (9.39–15.37)  < 0.0001 0.16 (0.11–0.22)  < 0.0001
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countries [36]. Leveraging this age-specific association 
between chronic inflammation and type 2 diabetes may 
be a promising method for achieving early identifica-
tion of at-risk young adults and developing personalized 
interventions.

In addition, we found significant sex differences the 
risk of diabetes conferred by coexposure to CumCRP and 
CumMHR. Compared with males, females had a greater 
risk of type 2 diabetes conferred by joint increases in 
CumCRP and CumMHR. Sex hormones may account 
for these sex differences [37, 38]. Previous studies have 
reported sex differences in the risk of diabetes associated 
with inflammatory markers, and these results support 
our findings [37, 38]. Our data reinforce the idea that 
monocyte-related inflammatory processes may be par-
ticularly important in diabetogenesis among women.

Moreover, the association between joint inflammatory 
exposure and incident diabetes was more pronounced in 
participants without hypertension, dyslipidemia or predi-
abetes. The attenuation of the inflammation-related risk 
for developing diabetes in these subsets of participants 
is likely because these factors greatly contribute to the 
occurrence of diabetes rather than inflammation per se. 
Taken together, our findings suggest that inflammatory 
exposure may be more important in the pathogenesis of 
diabetes among individuals in low-risk groups.

The surge in type 2 diabetes incidence in recent years 
has become a major health threat in the Chinese popula-
tion [39] and is attributed to substantial changes in life-
style, e.g., excess nutrient intake and increased sedentary 
behaviors, as a result of rapid economic development 
[40]. The chronic progressive nature of diabetes and the 
enormous burden of subsequent comorbidities further 
highlight the urgent need to address this critical public 
issue. Although aging and genetics are nonmodifiable 
risk factors, other risk factors can be modified through 
lifestyle changes [2]. The monocytic inflammation pro-
file is strongly influenced by life activities and metabolic 
conditions, e.g., diet [41], sleep disruptions [42], chronic 
stress [43], and glucose and cholesterol dysregulation [30, 
44], thereby indicating the potential benefits of moni-
toring risk-related metabolic conditions. Furthermore, 
the risk of type 2 diabetes conferred by concomitant 
increases in MHR and hsCRP levels was observed among 
low-risk participants, i.e., young, female, nonhyperten-
sive, nondyslipidemic and nonprediabetic individuals, 
signaling that targeted assessment and management 
of joint cumulative MHR and hsCRP exposure may be 
especially important for further reducing risk of inci-
dent diabetes. Importantly, the significant improvement 
in predicting diabetes onset by the addition of cumula-
tive MHR and hsCRP into traditional risk factors and 
the significantly high predicted value in the CumCRP < 1 

stratum highlighted the need for ongoing evaluation of 
the inflammatory risks for a precise prediction of type 2 
diabetes. The dual advantages of cost-effectiveness and 
wide availability of cumulative MHR and hsCRP in the 
current clinical setting potentiate their widespread use as 
convenient tools for risk prediction of diabetes.

The strengths of the current study include longitudi-
nally examining the influence of metabolic inflamma-
tion over time on the development of diabetes. Although 
prolonged inflammatory exposure is the most important 
factor for cardiometabolic diseases, prior studies in this 
field have been mostly based on transient exposure or 
cross-sectional data, which may lead to the potential for 
underestimating the true association between chronic 
inflammation and type 2 diabetes. Additionally, contro-
versies regarding the stability of hsCRP levels over time 
[10, 19] and the vulnerability of peripheral monocyte 
pools [20, 21] require repeated measurements to deter-
mine the stability and validity of the results. Another 
merit of this study is the assessment of systemic inflam-
mation by the combination of monocytic inflammation 
and hsCRP levels. The inflammatory response is a com-
plicated network involving multiple factors, suggesting 
that the use of other inflammatory biomarkers, in addi-
tion to the commonly used hsCRP levels, may allow a 
more comprehensive assessment of inflammation-related 
risks. Furthermore, the ability to extend the current 
understanding of this topic among specific age and sex 
subgroups is a unique contribution to the literature.

Limitations of the current study should be noted. First, 
this study primarily comprised participants from an 
occupation-based community among the Han Chinese 
population, which potentially limits the generalizability 
of the findings to the whole country or to other ethnici-
ties/races. However, the relative homogeneity of the study 
population in terms of inflammatory exposure enhanced 
the internal validity of our findings. Second, we could not 
distinguish type 1 from type 2 diabetes, although mis-
classification is likely to be minimal, as type 2 diabetes is 
the predominant form of diabetes (> 95%), and the aver-
age age of the study participants was greater than the 
onset age of type 1 diabetes. Third, we did not investigate 
the confounding effects of oral hormone replacement 
therapy on the background levels of the MHR and hsCRP 
in postmenopausal women, which may have led to bias in 
the study outcome among these women. Fourth, data on 
hemoglobin A1c concentrations for the diagnosis of type 
2 diabetes were lacking, potentially resulting in underes-
timation of the true incidence of type 2 diabetes. Fifth, to 
provide reliable results regarding the association between 
study exposures and incident diabetes, we included 
individuals with complete data on the study exposure 
and outcomes, which may have inevitably introduced 
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selection bias. Sixth, the study examined inflammatory 
exposure during a given period before follow-up, with-
out calculating the cumulative exposure from baseline 
to the occurrence of diabetes or the last available fol-
low-up visit. Further studies in this topic are warranted 
to minimize within‐follow‐up variation and to evaluate 
longstanding inflammatory status. Seventh, although 
we excluded participants with statin use as a sensitivity 
analysis to address the potential confounding effect, it is 
notable that the use of statins reported in the study par-
ticipants was strikingly low and may have led to some 
bias. The reasons for the low prevalence of statin use 
reported at baseline may include potential recall bias, 
region- and nation-specific differences in drug resources 
and policies, the low prevalence of existing cardiometa-
bolic diseases among the study participants and patient 
compliance in that era. Evaluation of the reproducibility 
of the existing findings in other populations is needed.

Conclusions
Our study is the first attempt to disentangle the epide-
miological interaction between monocytic inflammation 
and hsCRP levels and to investigate the utility of their 
combined use for predicting type 2 diabetes. In light of 
our findings, ongoing monitoring of the MHR and hsCRP 
levels over time might provide a supplemental method 
for the early determination of the risk of type 2 diabetes, 
especially for individuals at low risk defined by tradi-
tional risk factors.
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