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Abstract 

Bladder cancer (BLCA) is the most frequent malignant tumor of the genitourinary system. Postoperative chemo-
therapy drug perfusion and chemotherapy are important means for the treatment of BLCA. However, once drug 
resistance occurs, BLCA develops rapidly after recurrence. BLCA cells rely on unique metabolic rewriting to maintain 
their growth and proliferation. However, the relationship between the metabolic pattern changes and drug resist-
ance in BLCA is unclear. At present, this problem lacks systematic research. In our research, we identified and ana-
lyzed resistance- and metabolism-related differentially expressed genes (RM-DEGs) based on RNA sequencing 
of a gemcitabine-resistant BLCA cell line and metabolic-related genes (MRGs). Then, we established a drug resist-
ance- and metabolism-related model (RM-RM) through regression analysis to predict the overall survival of BLCA. We 
also confirmed that RM-RM had a significant correlation with tumor metabolism, gene mutations, tumor microenvi-
ronment, and adverse drug reactions. Patients with a high drug resistance- and metabolism-related risk score (RM-RS) 
showed more active lipid synthesis than those with a low RM-RS. Further in vitro and in vivo studies were imple-
mented using Fatty Acid Synthase (FASN), a representative gene, which promotes gemcitabine resistance, and its 
inhibitor (TVB-3166) that can reverse this resistance effect.

Statement of Significance 

The RM-RM aid to accurately predict survival rates and are used to help guide BLCA patients to choose the appropri-
ate treatment option, and by inhibiting the fatty acid synthesis pathway involved in FASN a potential therapeutic 
strategy for BLCA is presented
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Introduction
BLCA is the most frequent diagnosed malignant tumor 
of the genitourinary system [1]. Although unprecedented 
progress has been made in early diagnosis of BLCA 
tumors and multiple treatment options have been estab-
lished (such as surgery and intravesical BCG) for pri-
mary BLCA in the past decade, the high recurrence rate 
and poor prognosis of this disease still remains invasive, 
especially for individuals diagnosed with muscle-invasive 
BLCA [2]. Long-term regular infusion of chemotherapy 
drugs after surgery is the most effective preventive care 
to reduce the recurrence of nonmuscle-invasive BLCA, 
while postoperative chemotherapy is the first-line thera-
peutic strategy for BLCA with progression. However, due 
to intratumor heterogeneity and chemotherapy resist-
ance, the efficacy of the current treatment methods for 
BLCA is largely limited, and the 5  year of survival rate 
is still unsatisfactory [3, 4]. The median survival rate of 
patients who received the most common chemotherapy 
regimen, gemcitabine and cisplatin (GC scheme), was 
limited to a timespan of 14 months [5]. Therefore, explor-
ing the mechanism of tumor resistance is crucial for dis-
covering new targets for chemotherapy sensitivity and 
promoting the progress of precision therapy.

It is well known that metabolic reprogramming is a 
hallmark of cancer [6]. More and more evidence has 
shown that cancer cell response to treatment is con-
trolled by the metabolic state, suggesting that metabo-
lism-related pathways could overcome resistance through 
the controlled metabolic state [7]. Li Y et  al. reported 
that the GLUT1/ALDOB/G6PD axis regulate glucose 
metabolism reprogramming and promotes chemother-
apy resistance in pancreatic cancer [8]. Zhou et al. proved 
the important role of lipid metabolism during the process 
of cancer resistance in the treatment of castration resist-
ant prostate cancer [9]. Wong TL et  al. confirmed that 
SCD1 promotes the formation of lipid droplets to target 
5-fluorouracil and cisplatin resistance in gastric cancer 
[10]. Solanki S et  al. identified amino acid metabolism 
to be essential in the cellular reprogramming process of 
chemoresistance in chemotherapeutic-resistant patients 
diagnosed with colon cancer [11]. However, there are 
few studies on metabolism in chemotherapy-related 
pathways resistance in BLCA. BLCA cells rely on their 
own unique metabolic transformation to maintain the 
energy needed for their growth and proliferation [12]. 
At the same time, the metabolism of bladder cancer is 
characterized by increased fatty acid synthesis and the 
phosphopentose pathway, and decreased AMP-activated 
protein kinase and Krebs cycle activity. The mRNA modi-
fication of PKM2 promotes glucose metabolism in BLCA 
[13]. Afonso J et  al. described that glucose metabolism 
could be a target to improve BLCA immunotherapy [14]. 

However, there is a lack of systematic analysis on the rela-
tionship between the potential mechanism of chemother-
apy resistance and metabolic recombination in BLCA.

In this study, we obtained drug-resistant differentially 
expressed by RNA sequencing of the established gemcit-
abine-resistant bladder cancer cell line, combined with 
MRGs, and then established and justified a prognostic 
model that is found in several BLCA databases through 
Cox and LASSO regression analysis. Our studies found 
that this model is a very accurate predictor of overall 
survival (OS), and is significantly related to metabolic 
reprogramming, gene mutation, and the tumor micro-
environment. In addition, FASN was considered the 
representative gene of RM-RM. We proved that FASN 
promoted BLCA gemcitabine resistance, while TVB-
3166, an inhibitor of FASN, reversed BLCA gemcitabine 
resistance in vitro and in vivo.

In summary, we will provide a new model for predict-
ing the survival and therapeutic strategies for BLCA 
patients.

Results
Identification of gemcitabine resistance 
and metabolism‑related differentially expressed genes 
in BLCA
With the purpose of studying the molecular biologi-
cal changes in BLCA cells after gemcitabine resistance, 
we obtained drug-resistant differential genes by RNA 
sequencing of the established gemcitabine-resistant 
BLCA cell line (Fig.  1A). Subsequently, we performed 
GO (Additional file 1: Figure S1A) and KEGG (Fig. 1B) 
enrichment analyses. The KEGG results revealed that 
these gene were related to lipids, fatty acid metabolism, 
cholesterol metabolism and amino acid metabolism. 
The top ten GO terms were enriched in cholesterol syn-
thesis and metabolism, the response to the lipid, extra-
cellular matrix, and the response to the chemical, etc.

With the purpose of studying the metabolic changes 
of in BLCA cells after gemcitabine resistance, we fur-
ther screened 597 resistance- and metabolism-related 
differentially expressed Genes (RM-DEGs, Fig.  1C). 
Patients with BLCA were divided into two subgroups 
on the basis of RM-DEG expression in the TCGA 
BLCA database by consensus clustering (Additional 
file 1: Figure S1B–E). The two subgroups included 177 
and 189 patients (Fig. 1D, E), respectively. Through KM 
analysis, we discovered noteworthy differences in OS 
between the two subgroups. (Fig.  1F). Then, we car-
ried out further functional analysis of RM-DEGs. The 
KEGG analysis revealed that the RM-DEGs were signif-
icantly linked with fatty acid biosynthesis, steroid bio-
synthesis, the PPAR signaling pathway, ferroptosis and 
other metabolic pathways (Fig.  1G). The top ten GO 
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Fig. 1  Identification of Gemcitabine Resistance and Metabolism-Related Differentially Expressed Genes in BLCA. A By comparing T24 
gemcitabine-resistant cells with nonresistant cells, a volcano map of differentially expressed genes (DEGs) was drawn. Blue represents 
downregulated genes, and red represents upregulated genes in drug-resistant cells. p < 0.05, |FC|> 2 B Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analysis of DEGs. Adjusted p < 0.01, p < 0.05 C Venn diagram for the Resistance and Metabolism-related Differentially Expressed 
Genes (RM-DEGs) D, E, F Consensus clustering of TCGA BLCA cohorts based on the RM-DEGs. Consensus matrix for optimal k = 2. The optimal 
k = 2 for the principal component analysis (PCA) database. Kaplan‒Meier analysis was used to analyze the overall survival (OS) curve of patients 
in different groups. G, H RM-DEGs were concentrated and analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG). Adjusted p < 0.01 and p < 0.05

(See figure on next page.)

enrichment pathways mainly included the following 
aspects (Fig. 1H): biological process included fatty acid, 
steroid and purine nucleotide metabolism procedure; 
cellular components included extracellular matrix, 
endoplasmic reticulum and lipid droplet; molecular 
function included glycosyltransferase activity, oxidore-
ductase activity and extracellular matrix binding activ-
ity. In short, the above consequences revealed that 
metabolic reprogramming of tumors play a significant 
role in drug resistance progression and on the overall 
survival of BLCA Patients.

Establishment of the RM‑RM to predict the OS of BLCA 
patients
First, by analyzing the relationship between a single gene 
and the OS of BLCA, we selected 134 OS-related RM-
DEGs (P < 0.05, Additional file  2: Form S1). As shown 
in Additional file 1: Figure S2A, most of the OS-related 
RM-DEGs were closely correlated, indicating that the 
progression of BLCA resistance is a whole metabolic 
rearrangement. Then, we performed LASSO Cox regres-
sion analysis on OS-related RM-DEGs to further narrow 
the range of the primary genes that predict prognos-
tic risk. As shown in Fig. 2A, B, 28 genes were obtained 
by removing any overfitting data to avoid the minimum 
likelihood of bias. Finally, through the multivariable Cox 
regression analysis, we obtained 7 independent prog-
nostic genes. As shown in Fig. 2C, the hazard ratio and 
95% confidence interval of the four genes were greater 
than 1, and the remaining three genes were less than 1. 
This suggested that GPC2, CNOT6L, GALNT12 and 
CARD10 were independent protective factors and that 
FASN, MAP2 and BMP6 were independent risk fac-
tors. Through the gene index obtained from multivari-
able Cox regression analysis, we constructed RM-RM 
and drug Resistance and Metabolism-Related risk Score 
(RM-RS) = (−  0.16) *GPC2 gene expression + (−  0.65) 
* CNOT6L gene expression + 0.42 * FASN gene expres-
sion + 0.18 * MAP2 gene expression + (−  0.15) * 
GALNT12 gene expression + 0.18 * BMP6 gene expres-
sion + (− 0.13) * CARD10 gene expression. After calculat-
ing the risk score, we divided 366 BLCA patients into a 

high-hazard cluster and a low-hazard cluster in accord-
ance with the median of the RM-RS (Fig. 2D). As shown 
in Fig. 2E, the OS of the high-hazard cluster was appar-
ently shorter than that of the low-hazard cluster. Com-
pared with patients subjected to low RM-RS, patients 
with high RM-RS usually have a poor prognosis (Fig. 2F). 
The results showed that the area under the curves 
(AUCs) were 0.74,0.75, and 0.76 in the first, third, and 
fifth years, respectively. (Fig.  2G). The ROC curve sug-
gested that RM-RM had good sensitivity and specificity 
and was better than other clinical parameters (Fig. 2H). 
These clinical parameters included sex, age, T stage, N 
stage, M stage and clinical stage. Finally, we carried out 
univariate regression and multivariate regression analy-
ses. The results (Fig. 2I) showed that RM-RM was closely 
related to OS and was potentially the most meaningful 
independent predictor for BLCA. As shown in Fig. 2J and 
Additional file 1: Figure S2B, we found that the distribu-
tion of RM-RS was routinely consistent with the distri-
bution of other clinical findings. We also found that as 
RM-RS increased, the expression of FASN, MAP2 and 
BMP6 increased, and that of GPC2, CNOT6L, GALNT12 
and CARD10 decreased.

Justification of the prognostic value of the RM‑RM in two 
BLCA databases and real‑world study
In order to verify the prognostic value of the RM-RM, 
we checked two databases including OS data of BLCA 
patients: GSE69795 and GSE31684. According to the 
calculation formula of RM-RS obtained above, we also 
calculated the RM-RS of each patient, and divided the 
patients into high-hazard clusters and low-hazard clus-
ters in accordance with the RM-RS (Additional file 1: Fig-
ure S3A). Similar to the TCGA dataset, we obtained the 
connection between the RM-RS and the survival rate. The 
results demonstrated a noteworthy difference between 
the two clusters (Fig. 3A), and the higher the result of the 
RM-RS, the worse the prognosis of the patients (Addi-
tional file  1: Figure S3B). As shown in Fig.  3B, RM-RM 
has excellent diagnostic value in both short- and long-
term survival rates. For the two independent validation 
sets, RM-RM was also superior to the other only clinical 
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features in terms of diagnostic sensitivity and specificity 
(Fig. 3D). Next, we carried out univariate regression and 
multivariate regression analyses in accordance with the 
two databases. Although the clinical data of the two vali-
dation sets are not as comprehensive as the TCGA data-
base, RM-RM was still the best independent predictor of 
OS for only the existing clinical data within the two inde-
pendent BLCA cohorts. In addition, as shown in Addi-
tional file  1: Figure S3C, we obtained coherent results 
compared to the TCGA database in two validation sets 
by analyzing the correlation among RM-RS, clinical char-
acteristics and independent prognostic genes expression.

Finally, we further verified the prognostic value of the 
RM-RM by using samples of collected tissues in a real-
world Study. As shown in Fig.  3E and Additional file  1: 
Figure S3D, immunohistochemistry (IHC) was finished to 
detect the expression of genes in RM-RM on the basis of 
protein expression (pRM-RS), and pRM-RS was obtained 
according to the immune response score of genes in 
RM-RM. The results were consistent with the TCGA 
database. FASN, MAP2 and BMP6 were highly expressed 
in bladder cancer, while GPC2, CNOT6L, GALNT12 
and CARD10 were expressed at low levels in bladder 
cancer (Fig.  3F). According to pRM-RS, BLCA patients 
with survival data were divided into two subgroups. The 
KM survival analysis also directly revealed that the OS 
of the high-hazard cluster was notably shorter than that 
of the low-hazard cluster (Fig. 3G). shows that pRM-RS 
was closely related to grade, T stage, M stage and clinical 
stage.

In summary, we concluded that RM-RM had a high 
diagnostic value of prognosis for BLCA.

The molecular function and mechanism of RM‑RM in BLCA
To analyze the molecular function of RM-RM, we com-
pleted GSEA and found that the risk model was strongly 
linked with the incidence, recurrence, distant metastasis, 
tumor proliferation and angiogenesis of BLCA (Fig. 4A). 
With the purpose of further analyzing the mechanism 
of the model, we performed gene expression analysis on 
two risk subgroups and obtained 878 significantly dif-
ferentially expressed genes (DEGs), of which 687 genes 
were overexpressed in the high-hazard subgroup and 191 

genes were overexpressed in the low-hazard subgroup 
(Fig. 4B). Through KEGG analysis, we discovered that the 
DEGs were strongly connected with drug metabolism, 
regulation of lipolysis in adipocytes, galactose metabo-
lism and the PPAR signaling pathway (Fig. 4C). As shown 
in Additional file 1: Figure S4A, the result of GO analysis 
demonstrated that these DEGs were strongly linked with 
the reaction to the fibroblast growth factor, intermedi-
ate filament organization, cellular response to xenobiotic 
stimulus and intermediate filament cytoskeleton organi-
zation, suggesting that the two subgroups in RM-RM had 
different microenvironments and tumor stroma.

Energy metabolism is an important support for tumor 
function. Through ssGSEA, we obtained the meta-
bolic score of each BLCA patient in the TCGA database 
(Fig. 4D). As can be seen from the Fig. 4E and Additional 
file  1: Figure S4B, the high-hazard subclass was exten-
sively higher than the low-hazard subclass in terms of 
fatty acid synthesis, monocarboxylic acid transport and 
ATPase (Resp. complex V). In the GSEA of representa-
tive metabolic pathways, we obtained the same results 
(Fig.  4F). The results suggested that the high-hazard 
subgroup was mainly involved in fatty acid synthesis, 
while the low-hazard subgroup correlated with phospho-
inositide metabolism. The two subgroups also showed 
different amino acid metabolism.

RM‑RM is correlated with the mutation and tumor 
microenvironment characteristics of BLCA
Gene mutations can lead to the development of mutant 
cells which may have some selective advantages over 
adjacent cells. To explore the connection between 
gene mutations and drug resistance in BLCA, we ana-
lyzed gene mutations in the RM-RM subgroups, As 
can be seen from the Fig.  5A. By comparing the top 
twenty genes with the highest mutation rates, we sug-
gested noteworthy variances in the gene mutation lev-
els between the two groups. Missense variation was 
the most frequent category, and the results demon-
strated no obvious differences compared to the transi-
tion and transversion of mutant genes between the two 
subgroups. Among the six transition and transversion 
events of the subgroups, the proportion of groups c 

(See figure on next page.)
Fig. 2  Establishment of an RM-RM to Predict the OS of BLCA Patients. A, B Least absolute shrinkage and selection operator (LASSO) Cox regression 
of OS-related key drug resistance and metabolism-related differentially expressed genes (RM-DEGs). C Multivariate Cox regression analysis 
was performed on seven key genes obtained based on cross validation and the minimum partial likelihood deviance. D The drug resistance 
and metabolism-related risk score (RM-RS) distribution of the cancer genome atlas (TCGA) BLCA. The median was the dividing line, blue was the low 
RM-RS subgroup, and red was the high RM-RS subgroup. E The overall survival distribution of the two subgroups. Blue represents alive, while red 
represent death. F Kaplan‒Meier analysis of overall survival (OS) curves of TCGA BLCA patients in the two subgroups. G The receiver operating 
characteristic (ROC) curves of 1-, 3-, and 5 year OS of patients in TCGA BLCA database was predicted based on RM-RS. H Comparison of ROC curves 
between RM-RS and clinical features. I Univariate and multivariate Cox regression analyses of RM-RS and clinical features. J The heatmap of RM-RM 7 
component gene expression in the TCGA BLCA database, including RM-RS and clinical features
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Fig. 2  (See legend on previous page.)
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and t demonstrated the highest transitions. By com-
paring the mutation probability of the two subgroups, 
we obtained the top ten most distinct differences of 
mutant genes (Fig.  5B). These gene mutations may be 
an important factor leading to the progression of drug 
resistance in BLCA.

The tumor microenvironment (TME) mainly includes 
tumor cells, tumor extracellular matrix, immune cells, 
cancer-associated fibroblasts (CAFs), cancer-associated 
adipocytes and tumor-derived endothelial cells (TECs). 
The TME could be subdivided into an immunological 
microenvironment led by immune cells and a nonim-
munological microenvironment led by cancer-associated 
fibroblasts. As shown in Fig.  5C, the stroma score of 
the high RM-RS cluster was higher than that of the low 
RM-RS cluster, suggesting that the nonimmunological 
microenvironment led by fibroblasts in the high-hazard 
cluster was more vigorous than the nonimmunological 
microenvironment led by fibroblasts in the low-hazard 
cluster. The detailed TME regulatory pathway of GSEA 
enriched by RM-RM mainly included positive regula-
tion of fibroblast proliferation, responses to the drug, 
carcinoma-associated fibroblasts and angiogenesis, as 
shown in Additional file  1: Figure S5A. Then, we used 
three classical algorithms: xCell, MCP-counter and EPIC, 
to calculate the ratio of TME cells in BLCA patients from 
the TCGA database (Fig. 5D and Additional file 1: Figure 
S5B). We found that CAFs, endothelial cells, adipocytes 
and CD4+ T cells were more abundant in the high RM-RS 
subgroup. As shown in Fig.  5E, F and Additional file  1: 
Figure S5C, the RM-RS subgroup was strongly connected 
with the marker gene expression of TECs and CAFs. 
The higher the risk genes expression (FASN and BMP6) 
(Fig. 5G), the higher the expression of an endothelial cell 
marker gene (CD34) and a fibroblast cell marker gene 
(CXCL12).

Sensitivity of Drugs in the two RM‑RS Subgroups
After viewing the previous KEGG analysis (Fig.  4C) 
which demonstrated that RM-RS is involved in drug 
metabolism, we further studied the different sensitivities 

of BLCA individuals to drugs in different RM-RS sub-
groups. First and foremost, we comprehensively analyzed 
the pathways of drug metabolism relevant to BLCA resist-
ance through GSEA in the two RM-RS groups (Fig. 6A). 
These results indicated that the high RM-RS cluster 
was correlated with drug response, aging, hypoxia, and 
doxorubicin resistance pathways, while the low RM-RS 
group correlated with endocrine therapy resistance, DNA 
repair, and decreased resistance to gefitinib. As shown 
in Fig. 6B, the MSI score of the high RM-RS cluster was 
meaningfully lower than that of the low RM-RS cluster, 
and the exclusion score was meaningfully higher than 
that of the low RM-RS cluster. The results suggested that 
the immune escape potential of the high RM-RS group 
was enhanced, and the effect of immunotherapy drugs is 
poor. From the Additional file 1: Figure S5D it is shown 
that there was no meaningful difference in dysfunction 
scores between the two subgroups. To provide treat-
ment guidance for different BLCA clusters, we compared 
the sensitivity of two RM-RS clusters to various anti-
cancer drugs. For chemotherapeutic drugs commonly 
used in BLCA, the drug sensitivity of high RM-RS indi-
viduals was significantly lower than that of low RM-RS 
individuals such as gemcitabine, carboplatin, docetaxel 
and epirubicin (Fig. 6C). Then, we recommended sensi-
tive drugs in different subgroups. The high-risk (Fig. 6D) 
subgroup was sensitive to BRD2/3/4 inhibitors (e.g., 
OTX015_1626), tankyrase inhibitors (e.g., WIKI4_1940), 
B-RafV600E inhibitors (e.g., PLX-4720_1036), and HMG-
CoA reductase inhibitors (e.g., lovastatin), while the low-
risk (Fig. 6E) subgroup was sensitive to PARP inhibitors 
(e.g., Olaparib_1017), tyrosine kinase inhibitors (e.g., 
Gefitinib_1010), vincristine, and maleimide analogs (e.g., 
MIRA-1_1931).

Upregulation of FASN promotes drug resistance and poor 
prognosis in BLCA
Through the analysis of the molecular function and 
mechanism of RM-RM in bladder cancer, we found that 
BLCA resistance is closely related to lipid metabolism. In 
order to further uncover the connection between genes 

Fig. 3  Justification of the Prognostic Value of the RM-RM in Two BLCA Databases and Real-World Study. A Kaplan–Meier analysis for overall 
survival (OS) curves of patients in low or high drug resistance and metabolism-related risk score (RM-RS) subgroups from two independent 
validation cohorts (GSE69795, GSE31684). B The receiver operating characteristic (ROC) curves of 1-, 3-, and 5 year OS of patients in GSE69795 
and of 3-, 5-, and 10 year OS of patients in GSE31684 were predicted based on RM-RS. (C) The ROC curve of RM-RS was compared with that of 
only other clinical features in GSE69795 and GSE31684. D Univariate and multivariate Cox regression analyses of RM-RS and only other clinical 
features in GSE69795 and GSE31684. E, F Immunohistochemical (IHC) staining was used to detect the protein expression of metabolism-related 
differentially expressed genes (RM-DEGs) (FASN, MAP2, BMP6, GPC2, CNOT6L, GALNT12 and CARD10) in 60 normal tissues and 170 tumor tissues. 
The immunohistochemical staining immune response score (IRS) score was statistically analyzed and the violin diagram shows a representative 
image. G, H pRM-RS was obtained by IRS and RM-RM. The median pRM-RS was divided into a high-risk group and a low-risk group, and KM analysis 
and difference analysis of other clinical features between the two subgroups were performed. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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in RM-RM and gemcitabine resistance in BLCA, we 
established another bladder cancer gemcitabine-resistant 
cell line (UMUC3). (Additional file  1: Figure S6A). The 
BODIPY assay (Fig. 7A) was conducted, and the results 
validated our prediction that lipid metabolism in drug-
resistant cells is more active. We detected the content 
of free fatty acids (FFAs), triglycerides (TGs), and total 
cholesterol (T-CHO) in gemcitabine-resistant cells and 
normal BLCA cells (Fig. 7B), and the results showed lipid 
accumulation in T24 gemcitabine-resistant (T24-R) cells 
and UMUC3 gemcitabine-resistant (UMUC3-R) cells. 
Through the establishment of the RM-RM, we found that 
FASN has the highest risk ratio (Fig.  2C). As shown in 
Fig. 7C, we demonstrated that FASN is overexpressed in 
drug-resistant BLCA cells. In order to prove the function 
of FASN in the development of gemcitabine resistance, 
we first established T24 and UMUC3 BLCA gemcit-
abine-resistant cells with stable low expression of FASN 
(Fig. 7D).

Subsequently, we used gemcitabine to treat T24-R 
and UMUC3-R cells with FASN knockdown. The results 
showed that T24-R and UMUC3-R cells were refrac-
tory to gemcitabine, and T24-R and UMUC3-R cells 
with FASN knockdown had restored sensitivity to gem-
citabine, indicating that FASN promotes gemcitabine 
resistance in BLCA (Fig.  7E). It also indicated that the 
overexpression of FASN promotes the proliferation of 
BLCA cells. The sensitivity of FASN knockdown on 
T24-R and UMUC3-R cells to gemcitabine was consist-
ent with the above results (Fig. 7F). In the Colony forma-
tion assay shown in Fig. 7G, after FASN expression was 
knocked down, the tumorigenic ability of single cells of 
drug-resistant cells was inhibited, and the inhibitory 
effect was more obvious under gemcitabine treatment, 
while the control group was not sensitive to gemcitabine 
(Additional file  1: Figure S6B). Through the BODIPY 
assay (Fig.  7H) and the determination of lipid content 
(Fig.  7I), we further verified the relationship between 
the expression of FASN and cellular lipid metabolism. 
The results showed that the intracellular lipid content 
decreased after FASN knockdown. Therefore, we can 
conclude that FASN further promotes drug resistance 
progression in BLCA cells by affecting lipid accumulation 

in BLCA cells. In order to further verify our prediction, 
we conducted in  vivo tumor formation experiments in 
mice (Fig. 7J). As shown in Fig. 7K, L, after FASN knock-
down, the tumor growth rate was significantly repressed 
and the resistance of the tumor to gemcitabine was 
reversed. Altogether, the above results revealed that 
knockdown of FASN inhibit tumorigenesis of gemcit-
abine-resistant BLCA cells in vitro and in vivo.

TVB‑3166 inhibited BLCA progression and reversed 
gemcitabine resistance
TVB-3166 is an orally active, reversible and selective 
inhibitor of FASN. As shown in Additional file 1: Figure 
S6C, under the action of TVB-3166, the FASN content 
of T24-R and UMUC3-R cells was significantly reduced. 
The results of plate cloning experiments and CCK-8 
assays indicated that TVB3166 could almost completely 
eliminate the influence of FASN on the proliferation and 
gemcitabine resistance of T24-R and UMUC3-R cells 
(Fig. 8A, B, C). also shows that TVB-3166 reversed gem-
citabine resistance in BLCA. Second to the lipid changes 
presented after TVB-3166 treatment, as shown in the 
BODIPY assay (Fig.  8D) and the determination of lipid 
content (Fig. 8E), the treatment group showed lower lipid 
aggregation than the contrast group. Next, in vivo experi-
ments, we obtained consistent results (Fig. 8F–H). These 
results demonstrated that compared with the control 
group, the volume, proliferation rate and mass of subcu-
taneous tumors treated with TVB-3166 decreased, while 
the volume, proliferation rate and mass of subcutaneous 
tumors treated with gemcitabine were not meaningfully 
different from those of the contrast group. The volume, 
proliferation rate and mass of subcutaneous tumors in 
mice treated with gemcitabine after TVB-3166 treat-
ment significantly decreased, indicating that TVB-3166 
improved the sensitivity to gemcitabine in gemcitabine-
resistant BLCA cells. The ELISA results (Fig. 8I) showed 
that TVB-3166 reduced the FASN gene of the tumor, 
consistent with the in vitro results. BODIPY staining and 
IHC assay detection were carried out on subcutaneous 
tumors (Fig.  8J). TVB-3166 treatment can reduce lipid 
accumulation, inhibit cell proliferation and increase the 
apoptosis rate. Thus, these results proved that by contrast 

(See figure on next page.)
Fig. 4  The Molecular Function and Mechanism of RM-RM in BLCA. A Gene set enrichment analysis (GSEA) of drug resistance 
and metabolism-related score (RM-RS) and BLCA occurrence, metastasis and progression signaling pathways. p < 0.05 B Heatmap of differentially 
expressed genes (DEGs) by comparing the expression between the high and low RM-RS groups. p < 0.05 and |FC|> 2. Blue represents the low-risk 
subgroup and red represents the high-risk subgroup. C Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of these DEGs. D Single-sample 
gene set enrichment analysis (ssGSEA) of metabolic pathway gene sets in the TCGA BLCA database. Heatmap of Metabolic pathway score of TCGA 
BLCA patients. E The violin plot shows the difference analysis of the metabolic scores of the high- and low-risk subgroups. F Metabolism-related 
gene sets enriched in the high- and low-risk subgroups (p < 0.05)
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Fig. 4  (See legend on previous page.)
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with the control group, the proliferation and apoptosis 
rate of mice xenograft tumor cells treated with gemcit-
abine alone did not change significantly, while the pro-
liferation rate of mice xenograft tumor cells treated with 
gemcitabine after TVB-3166 was inhibited and the apop-
tosis rate increased, indicating that TVB-3166 reversed 
gemcitabine resistance.

Discussion
Gemcitabine is the most common drug in cancer chem-
otherapy, including BLCA. The occurrence of gemcit-
abine resistance remains the most important challenge 
in the treatment of tumor patients [15]. Drug-resistant 
cancers, under pharmacological pressure, exhibit com-
plex molecular mechanisms aimed to inhibit treatment 
[16]. Gu J et al. found a novel therapeutic target to over-
come gemcitabine resistance in pancreatic cancer [17]. 
Studies have found that cisplatin resistance in BLCA is 
related to epigenetic mechanisms such as DNA methyla-
tion, noncoding RNA regulation, m6A modification and 
posttranslational modification. Cocetta V et al. described 
the relationship between cisplatin resistance and cancer 
metabolism in detail [18]. However, there are a lack of 
systematic studies on gemcitabine resistance in BLCA 
cells. In our study, we identified and analyzed RM-DEGs 
based on RNA sequencing of gemcitabine-resistant 
BLCA cells and metabolic-related genes (MRGs). We also 
constructed and validated an RM-RM for predicting the 
OS of BLCA patients using several BLCA databases.

Tumor cell metabolism is a representative pattern 
of variable, alloplastic, and adaptive phenotypic char-
acteristics. It is the result of a combination of internal 
and external factors that enable cancer cells to outlive, 
pervade the body, and obtain resistance to antineoplas-
tic drugs [19]. Bacci M et  al. described the function of 
abnormal lipid metabolism in affecting the antitumor 
treatment response and maintaining drug resistance [20]. 
Considering the essential role of tumor metabolism in 
chemotherapy resistance, we collected all MRGs on the 
basis of the MSigDB, established a gemcitabine-resist-
ant cell line of BLCA cells, scientifically and thoroughly 
considered the metabolic model of BLCA resistance, 
and designed an RM-RM on the basis of OS to support 

precise prognosis information and guidance of treatment 
for BLCA patients.

In our research, we initially recognized and considered 
RM-DEGs in the TCGA BLCA dataset. The RM-DEGs 
were mostly associated with fatty acid and amino acid 
metabolism. Notably, these RM-DEGs were also enriched 
in extracellular matrix organization and drug metabolic 
processes. According to these RM-DEGs, we subdivided 
BLCA sufferers into two clusters with noteworthy vari-
ances in OS. These findings indicated the heterogene-
ity of BLCA metabolism, and that BLCA patients with 
diverse modes of metabolism have different prognoses.

Then, by means of univariate, LASSO and multivari-
ate Cox regression analyses, we selected seven central 
RM-DEGs related to survival. Based on these seven 
genes, the TCGA dataset was viewed as the training 
data to create an RM-RM for predicting the survival of 
BLCA sufferers. The consequences showed that RM-RS 
was closely related to T, N, M and clinical stage, reveal-
ing that the deterioration of BLCA was associated with 
the reprogramming of tumor metabolism. Afterward, we 
used a variety of analytical methods to further prove that 
RM-RM was a reliable detached predictor and demon-
strated the highest accuracy compared with other clinical 
indicators. Subsequently, two GEO datasets were used to 
further verify that RM-RM could be a promising clinical 
predictor for BLCA treatment. To discover the prospect 
of RM-RM for clinical conversion, we used immunohis-
tochemistry to detect the protein expression levels of 
clinical specimens. The study further found that RM-RS 
in these patients was intimately linked with the prognosis 
and clinical characteristics.

The metabolism of BLCA patients represents a key 
issue for cancer research. Cao D et  al. found that some 
genes, through inhibiting glucose metabolism, repressed 
tumor proliferation and improved cisplatin-induced 
apoptosis of BLCA cells [21]. We divided BLCA patients 
into two subclasses of different RM-RSs subgroups and 
performed GSEA and ssGSEA analysis. It was found that 
gemcitabine resistance in BLCA cells was closely related 
to lipid metabolism. Patients in the high RM-RS group 
showed more active lipid synthesis than those in the low 
RM-RS group.

Fig. 5  RM-RM is correlated with the mutation and tumor microenvironment characteristics of BLCA. A The top 20 mutated genes in different 
risk subgroups of TCGA BLCA were sorted according to the mutation rate. The color coding represents the mutation type. The total number 
of mutations is shown above, the percentage of mutations is shown on the right, and the distribution of base mutation types is shown below. B 
The top 10 genes with significant differences in mutant genes between the high- and low-risk subgroups. C Comparison of the immune, stromal 
and microenvironment scores in different risk subgroups. D Tumor microenvironment (TME) cells with significant differences in different RM-RS 
subgroups based on the x Cell algorithm. E Correlation heatmap of RM-RS and endothelial cell marker gene expression. F The expression of CD34 
and CXCL12 in different risk subgroups. G Multiple immunofluorescence analysis (MIF) of different risk subgroups. The staining of these genes 
was quantified by corrected total cell fluorescence (CTCF). *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001

(See figure on next page.)



Page 12 of 21Zhou et al. Journal of Translational Medicine           (2024) 22:55 

Fig. 5  (See legend on previous page.)



Page 13 of 21Zhou et al. Journal of Translational Medicine           (2024) 22:55 	

Fig. 6  Sensitivity of Drugs in the two RM-RS Subgroups. A Drug metabolism-related gene sets enriched in the high- and low-risk subgroups 
(p < 0.05, false discovery rate (FDR) < 0.25). B Comparison of MSI score and exclusion score in different risk subgroups. C Sensitivity assessment 
of different risk subgroups for the current clinical preferred drug therapy. D, E Prediction of sensitive drugs recommended by different risk 
subgroups



Page 14 of 21Zhou et al. Journal of Translational Medicine           (2024) 22:55 

Through gene mutation analysis, we uncovered con-
siderable differences between the two different RM-RS 
subgroups. Previous studies have shown that ARID1A 
gene alterations may mediate resistance to platinum-
based chemotherapy and estrogen receptor degradation/
modulators [22]. Our study also found the top ten genes 
with the most obvious differential mutations, includ-
ing ARID1A. The specific mechanisms of these genes 
are subjected to further research. In addition, current 
researches have proven that the TME plays a vital role 
in the procedure of tumor drug resistance [23] and have 
also proven the cross-link interference between meta-
bolic reprogramming of cancer cells and the changes in 
the TME [24, 25]. Saw PE et al. proposed targeting can-
cer-associated fibroblasts (CAFs) to overcome anticancer 
drug resistance [26]. Particularly, in our study, we discov-
ered that endothelial cells and fibroblasts obviously infil-
trated in the TME of the high RM-RS subgroup. This may 
provide a new therapeutic target for patients with chem-
otherapy resistance of BLCA.

After that, we also found that the high RM-RS group 
was insensitive to a variety of classic chemotherapy reg-
imens but was sensitive to other drugs, such as antian-
giogenic drugs (B-RafV600E inhibitor: PLX-4720_1036) 
and lipid-lowering drugs (lovastatin). By predicting the 
different sensitivities of the two groups to anticarcino-
gen, we could precisely provide compatible drugs for 
patients with different metabolic sensitivities, suggesting 
the potential application of RM-RM in clinical guidance 
in the future.

The key genes in the RM-RM include FASN (Fatty Acid 
Synthase), MAP2 (Microtubule Associated Protein 2), 
BMP6 (Bone Morphogenetic Protein 6), GPC2 (Glypi-
can 2), CNOT6L (CCR4-NOT Transcription Complex 
Subunit 6 Like), GALNT12 (Polypeptide N-Acetylgalac-
tosaminyltransferase 12) and CARD10 (Caspase Recruit-
ment Domain Family Member 10). We found that FASN, 
MAP2, and BMP6 were upregulated in BLCA tissues, 
while GPC2, CNOT6L, GALNT12 and CARD10 were 

downregulated. FASN is an essential enzyme in fatty 
acid synthesis [27]. It not only plays a vital role in lipo-
metabolism, but also is related to tumor proliferation. In 
addition, FASN can adjust the immune microenviron-
ment and take part in epithelial-mesenchymal transition, 
thereby regulating tumor progression [28]. Li Y et  al. 
found that FASN was associated with sorafenib resist-
ance in patients with liver cancer [29]. MAP2 belongs 
to the microtubule-associated protein of the MAP2/Tau 
family, which is related to the collection of signal proteins 
and the modulation of microtubule-mediated transport 
[30]. Pulkkinen HH et al. found that BMP protein regu-
lates angiogenesis and endothelial cell proliferation [31]. 
GPC2 protein is a promising therapeutic target for pan-
tumor [32]. Katsumura S et al. found that CNOT6L pro-
tein can coordinate energy intake and consumption when 
stimulated [33]. Guda K et al. identified the mutation of 
GALNT12 protein in colon cancer patients and explored 
its function in the occurrence and progression of colon 
cancer [34]. CARD10 protein mediates the occurrence 
and progression of various kinds of cancers [35]. Zhu L 
et al. revealed that CARD10 protein also plays a crucial 
role in the formation of a growth factor signaling axis 
that mediates immunosuppression and tumorigenesis by 
TBKBP1 and TBK1 [36].

FASN, as a representative gene, was further verified as a 
promoting factor for gemcitabine resistance in vitro and 
in  vivo. Previous researches have proven that the effect 
of a FASN inhibitor (TVB-3166) on carcinogenic signals 
and gene expression enhances the antitumor efficacy of 
various xenograft tumor models [37]. Our study further 
demonstrated that TVB-3166 can reverse gemcitabine 
resistance.

In summary, this study constructed an RM-RM with 
high diagnostic accuracy for predicting OS and treat-
ment response in patients with bladder cancer. We hope 
that the constructed RM-RM can provide guidance in the 
treatment of BLCA patients.

Fig. 7  Upregulation of FASN promotes drug resistance and poor prognosis in BLCA. A The lipid content of bladder cancer cells 
and gemcitabine-resistant cells was quantified by BODIPY staining corrected total cell fluorescence (CTCF). B The contents of free fatty acids (FFAs), 
triglycerides (TGs) and total cholesterol (T-CHO) were used as intracellular lipid indexes. C The expression of FASN in bladder cancer cells resistant 
to different concentrations of gemcitabine was detected by Western blotting (WB). Density measurement and statistical analysis. Representative 
images are shown. D The expression of FASN in gemcitabine-resistant bladder cancer cells after FASN knockdown was detected by WB. E, F Cell 
viability and sensitivity to gemcitabine under all conditions were determined by CCK-8 assay. G The tumorigenic ability of single cells under all 
conditions was determined by colony formation assay. H, I The lipid content of gemcitabine-resistant cells after FASN knockdown was quantitatively 
detected by BODIPY staining corrected total cell fluorescence (CTCF) and the contents of free fatty acids (FFAs), triglycerides (TGs) and total bilirubin 
(T-CHO). J, K, and L Mice with stable knockdown expression of T24-R xenografts were treated with vector control or gemcitabine (50 mg/kg. IP. 
QOD) for approximately 5 weeks. Tumor volumes were measured every 5 days (n = 5 per group). Tumors were weighed after resection. The graphs 
show the means ± SEMs. One-way ANOVA followed by Tukey’s multiple comparison test. α = 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****p < 0.0001; 
ns, no significance

(See figure on next page.)
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Fig. 7  (See legend on previous page.)
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Materials and methods
Cell culture and reagents
T24 and UMUC3 cells were obtained from the American 
Type Culture Collection (ATCC, Manassas, VA). These 
BLCA cells were cultured in DMEM (for UMUC3 and 
UMUC3-R) and RPMI-1640 (for T24 and T24-R) medi-
ums added into 10% foetal bovine serum (Gibco, USA). 
The lentivirus was used to knock down FASN and the 
vector were purchased from GeneChem. Our operation 
steps were strictly used for maintaining the instruction 
requirements. Gemcitabine (HY-17026) and TVB-3166 
were purchased from MCE.

Establishment of gemcitabine‑resistant cell lines
Two types of BLCA cell lines (T24, UMUC3) were first 
incubated with gemcitabine in several concentration gra-
dients (0–20 μg/ml) for 48 h. The IC50s were calculated 
depending on their absorbances. Then, the cell lines were 
cocultured with gemcitabine at the concentration levels 
at which the IC50s were attached. Repeat the above steps. 
RI (resistance index) is calculated as the IC50 of the 
drug-resistant cells divided by the IC50 of the wild-type 
(WT) cells. 1–5 indicated low drug resistance, 5–15 indi-
cated moderate drug resistance, and more than 15 indi-
cated high drug resistance. Previous studies have found 
that the IC50 values of gemcitabine-resistant cells in two 
cell lines are 5 to 10 times higher or more compared to 
WT cells [38]. When the RI (resistance index) > 5, then 
we considered that drug-resistant cell lines were success-
fully constructed.

RNA sequencing
Three groups of repeated cells were used for RNA 
sequencing after the establishment of the T24 gemcit-
abine-resistant cell line. This sequencing was completed 
by APT (APPLIED PROTEIN TECHNOLOGY). By 
means of the R “limma” (Version 3.54.0) package [39], we 
checked out the drug-resistant differential genes of gem-
citabine resistance (p < 0.05, |Fold change|> 2).

Data acquisition
The MRGs were collected from MSigDB [40]. The TCGA 
BLCA database was acquired from UCSC Xena as the 
training set, and two BLCA data: GSE69795 [41] and 
GSE31684 [42] were acquired from GEO as the validation 
set. The marker genes of endothelial cells and fibroblasts 
were collected from the literature, CellMarker database 
and R “xCell” (Version1.1.0) package [43].

Visualization of differentially expressed genes
The volcano plot and heatmap are presented by R 
“ggplot2” (Version 3.4.0) [44] to demonstrate the distri-
bution of DEGs. Moreover, the Venn diagram demon-
strated the connection of differentially expressed genes of 
gemcitabine resistance (R-DEGs) and metabolic-related 
genes (MRGs) to gain resistance and metabolism-related 
differentially expressed genes (RM-DEGs).

Enrichment analysis of genes
GO analysis and KEGG analysis were carried out by the 
R “clusterProfiler” (Version 4.6.0) package to deeply study 
the major molecular functions and significantly enriched 
pathways of the DEGs [45]. We took P < 0.05 as the stand-
ard of significant difference.

Unsupervised clustering analysis
We used the R ConsensusClusterPlus’ (version 1.62.0) 
package to perform hierarchical consistency clustering 
analysis [46].

Establishment and validation of the drug resistance 
and metabolism‑related prognosis risk assessment model 
(RM‑RM)
First, we screened out the main genes that correlated 
with the OS of BLCA patients from RM-DEGs by using 
univariate Cox regression. Then, the R “glmnet” (Ver-
sion 4.1–6) package [47] was used for LASSO Cox 

(See figure on next page.)
Fig. 8  | TVB-3166 inhibited BLCA progression and reversed gemcitabine resistance. A, B Cell viability and sensitivity to gemcitabine under all 
conditions were determined by CCK-8 assay. C The tumorigenic ability of single cells under all conditions was determined by colony formation 
assay. D, E The lipid content of gemcitabine-resistant cells after treatment with TVB-3166 was quantitatively detected by BODIPY staining corrected 
total cell fluorescence (CTCF) and the contents of free fatty acids (FFAs), triglycerides (TGs) and total cholesterol (T-CHO). F, G, and H The mice were 
divided into 4 groups with 5 mice in each group: Group I (DMSO: DMSO), group II (DMSO: gemcitabine), group III (DMSO: TVB-3166) and group IV 
(gemcitabine: TVB-3166). Tumor volumes were measured every 5 days (n = 5 per group). Tumors were weighed after resection. The graphs show 
the means ± SEMs. One-way ANOVA followed by Tukey’s multiple comparison test. α = 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****p < 0.0001; 
ns, no significance. I Enzyme-linked immunosorbent assay (ELISA) was used to determine the FASN content of xenograft tumors in each group. J 
Statistical analysis was performed on the rate of KI67- and TUNEL-positive cells in each group of xenograft tumors by immunohistochemical staining 
(IHC). The corrected total cell fluorescence (CTCF) of BODIPY staining was used to quantitatively detect the lipid content of xenograft tumors 
in each group. Representative images are shown
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Fig. 8  (See legend on previous page.)
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regression to evade the overfitting of characteristics 
and to narrow the number of factors for predicting 
OS. Finally, we further evaluated the genes that were 
recognized by LASSO regression using multiple Cox 
regression analysis, obtained seven key genes, and 
used them to create a forecast risk model on the basis 
of drug resistance and metabolism. The drug resistance 
and metabolism-related risk score (RM-RS) formula is 
described below: RM-RS = ∑ (β × Exp), in which β and 
Exp are respectively representation of coefficient and 
genes expression that were standardized.

Survival analysis
In accordance with the median RM-RS, patients with 
BLCA were subdivided into a high RM-RS group and 
a low RM-RS group. KM survival analysis was used to 
prove the variance in OS of different RM-RS groups. 
In addition, the ROC curves were used to estimate the 
prognostic value of the RS-RS using the R “Survival 
ROC” package. Subsequently, through the R “survival” 
(Version 3.5–5) package, we carried out the analysis of 
independent factors affecting BLCA prognosis by uni-
variate and multivariate regression. The above determi-
nation methods were verified in two independent gene 
sets.

Immunohistochemical staining assay
We performed an immunohistochemical staining 
assay on the tissue chips in accordance with a previ-
ously described method [48]. The antibodies we used 
included anti-GPC2 (1:200, AF2304SP, Goat, IgG, 
Novus), anti-CNOT6L (1:75, abs108959, Rabbit, IgG 
Absin), anti-FASN (1:300, 66,591-1-Ig, Mouse, IgG, 
Proteintech), anti- MAP2 (1:2500, 66,846-1-Ig, Rab-
bit, IgG, Proteintech), anti-BMP6 (1:500, bs-10090R, 
Rabbit, IgG, Bioss), anti-CARD10 (1:300, bs-7081R, 
Rabbit, IgG, Bioss), anti-GALNT12 (1:100, ab201196, 
Rabbit, IgG, Abcam), anti-IgG (ab238004, Mouse, 
Abcam), anti-IgG (A7007, Goat, Beyotime), and 
anti-IgG (30,000-0-AP, Rabbit, Proteintech). The IRS 
(value, 0–12) was calculated by multiplying the stain-
ing strength grade by the positive area grade. The grade 
of staining strength was prescribed below: 0, negative; 
l, weak; 2, moderate; and 3, strong. The positive area 
grade was described as follows: zero-grade, less than 
5%; first-grade, 5% to 25%; second-grade, 26% to 50%; 
third-grade, 51% to 75%; and fourth-grade, greater than 
75%.

GSEA and ssGSEA
GSEA (Gene Set Enrichment Analysis) was carried out 
by means of the “clusterProfiler” package and GSEA 

software (4.3.2) to reveal the relevant signaling pathways, 
and visualization was implemented by means of the R 
“enrichplot” package (Version 1.20.0) and the “ggplot2” 
package. The ssGSEA (single sample Gene Set Enrich-
ment Analysis) was performed by the R “GSVA” package 
(Version 1.48.3), and the individual score of each sample-
specific pathway was obtained by the sample-related gene 
expression. In order to explore the metabolic pathway of 
BLCA gene sets, we searched for relatable papers [49, 50] 
and data in the MSigDB.

Gene mutation analysis
We obtained somatic mutation information using 
the TCGA BLCA database. Meanwhile, using the R 
“Maftools” (Version 2.14.0) package, we analyzed various 
differences in mutations in the two RM-RS subgroups 
[51].

Analysis of the TME
In order to evaluate the immune and stromal scores of 
each BLCA patient, we used different algorithms on the 
online tools: the xCell, MCP-counter, and EPIC. Sub-
sequently, we evaluated the infiltration of different cells 
in the two subgroups by box plot visualization. Finally, 
we performed an association analysis by means of the 
R “corrplot” package (Version 0.92) to prove the inti-
mate connection between RM-RS and characteristic cell 
marker genes.

Multiplex immunofluorescence staining assay
We performed an immunofluorescence staining assay on 
the tissue in accordance with the method illustrated pre-
viously [52]. The antibodies we used included anti-FASN 
(1:200, 66,591-1-Ig, ProteinTech), anti-BMP6 (1: 3,000, 
bs-10090R, Bioss), anti-CXCL12 (1:200, 17,402-1-AP, 
ProteinTech) and anti-CD34 (1:200, ab81219, Abcam). 
Through ImageJ software analysis, we obtained corrected 
total cell fluorescence (CTCF) to evaluate the content of 
protein expression in BLCA and adjacent tissues.

Prediction of drug sensitivity
With the purpose of predicting the sensitivity of two 
risk subgroups to multiple chemotherapeutic drugs, we 
jointly analyzed the TCGA database, Genomics of Drug 
Sensitivity in Cancer (GDSC) and Cancer Therapeutics 
Response Portal (CTRP) data. By means of the R “onco-
Predict” package [53], we obtained the IC50 of each sam-
ple in two different RM-RS groups for hundreds of drugs.

Statistical analyses
Our data processing was performed by R software (ver-
sion 4. 2. 1).
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Human samples
With the agreement of the Ethics Committee of the First 
Affiliated Hospital of Zhengzhou University, we gathered 
BLCA tissues and normal bladder tissues from BLCA 
patients, partially collected them in a -80 °C freezer and 
partially embedded them in paraffin.

BODIPY staining
First, we placed cells or fresh tissues in 4% paraformal-
dehyde solution. Subsequently, we incubated cells or tis-
sues with BODIPY and DAPI in the dark for 30 min and 
10 min. Then ImageJ software was used for analysis.

FASN, FFA, TG and T‑CHO measurement assay
The levels of FASN were assessed by enzyme-linked 
immunosorbent assay (ELISA) in accordance with the 
FASN ELISA kit’s instructions (Abcam, ab279412). The 
contents of FFAs, TGs and T-CHO were correspondingly 
assessed by an FFA assay kit, TG assay kit, and T-CHO 
assay kit (Nanjing Jiancheng Bioengineerin), in accord-
ance with the instructions.

Western blotting
The proteins of cells and tissues were extracted using 
RIPA buffer containing phosphatase and protease inhibi-
tors. Subsequently, 30 µg of protein was put into a Bis–
Tris gel to accomplish protein electrophoresis. Then, 
we transferred the proteins to polyvinylidene fluoride 
(PVDF) membranes and blocked the membranes in 5% 
skim milk. After that, we took the membrane together 
with primary antibodies overnight, incubated it with the 
second antibody for 1  h, and exposed the membrane. 
The antibodies included anti-FASN (1:1,000, 66,591-1-
Ig, ProteinTech) and anti-β-actin (1:10,000, 20,536-1-AP, 
Proteintech).

Cell proliferation assays
Gemcitabine-resistant cell lines (T-24 and UMUC3 cells) 
treated with TVB-3166 (1 μmol) or transfected with shRNA 
were treated with gemcitabine (5 μg/ml). Cell viability was 
determined by using Cell Counting Kit-8 (CCK-8) in accord-
ance with the manufacturer’s instructions [54].

Drug sensitivity test
After transfection with shRNA for 48  h or treatment 
with TVB-3166 (1  μmol), gemcitabine-resistant cell 
lines (T-24 and UMUC3 cells) were treated with gem-
citabine for 24 h at six concentrations (1 μg, 2 μg, 4 μg, 
8  μg, 16  μg and 32  μg per ml). Their viabilities were 
detected by CCK-8 according to the guidelines pro-
vided by the manufacturer.

Colony formation assay
Different reagents were added as needed: gemcitabine 
(5 μg/ml) and TVB-3166 (1 μmol). A total of 1000 cells 
were cultured per well of the 6-well plate for 1  week, 
followed by colony analysis.
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