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Abstract

Background The evolving variants of SARS-CoV-2 may escape immunity from prior infections or vaccinations. It's
vital to understand how immunity adapts to these changes. Both infection and mRNA vaccination induce T cells

that target the Spike protein. These T cells can recognize multiple variants, such as Delta and Omicron, even if neu-
tralizing antibodies are weakened. However, the degree of recognition can vary among people, affecting vaccine
efficacy. Previous studies demonstrated the capability of T-cell receptor (TCR) repertoire analysis to identify conserved
and immunodominant peptides with cross-reactive potential among variant of concerns. However, there is a need

to extend the analysis of the TCR repertoire to different clinical scenarios. The aim of this study was to examine

the Spike-specific TCR repertoire profiles in natural infections and those with combined natural and vaccine immunity.

Methods AT-cell enrichment approach and bioinformatic tools were used to investigate the Spike-specific TCRB
repertoire in peripheral blood mononuclear cells of previously vaccinated (n=8) or unvaccinated (n=6) COVID-19
patients.

Results Diversity and clonality of the TCR( repertoire showed no significant differences between vaccinated

and unvaccinated groups. When comparing the TCRB data to public databases, 692 unique TCR{ sequences linked

to S epitopes were found in the vaccinated group and 670 in the unvaccinated group. TCR{ clonotypes related

to spike regions S135-177, S264-276, S319-350, and $448-472 appear notably more prevalent in the vaccinated
group. In contrast, the S673-699 epitope, believed to have super antigenic properties, is observed more frequently

in the unvaccinated group. In-silico analyses suggest that mutations in epitopes, relative to the main SARS-CoV-2 vari-
ants of concern, don't hinder their cross-reactive recognition by associated TCR{ clonotypes.

Conclusions Our findings reveal distinct TCR signatures in vaccinated and unvaccinated individuals with COVID-19.
These differences might be associated with disease severity and could influence clinical outcomes.

Trial registration: FESR/FSE 2014-2020 DDRC n. 585, Action 10.5.12, noCOVID19@UMG.
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Background

The severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) pandemic requires continuous attention
focused on the epidemiological, virological, and immu-
nological characteristics of the evolving variants of con-
cern (VoCs). Distinct antigenic characteristics of VoCs
could allow the virus to escape from immunity generated
through previous infection and/or vaccination, elud-
ing the protective immunity against re-infections and
severe disease courses [1]. For this reason, it is important
to evaluate as many variables as possible that can influ-
ence the adaptive immunity against the infection, as well
it is relevant to understand how these variables change in
relation to the evolution of the epidemiological, virologi-
cal, and immunological landscape.

SARS-CoV-2 infection and mRNA vaccination were
shown to induce spike (S) specific T cells that can rec-
ognize and eliminate infected cells [2—5]. These S spe-
cific T cells can largely, albeit not completely, tolerate
the amino acid mutations that characterize the different
VoCs, including Delta and Omicron [6, 7], and respond
to the viral variants. Such T cell cross-reactivity against
VoCs mutant peptides contributes to protection against
severe disease, hospitalization, and death, even if the
neutralizing antibody response is partially compromised
[8-10]. However, it is important to note that the degree
of T cell cross-reactivity may vary among individuals,
and the overall effectiveness of current vaccines against
new emerging VoCs may be reduced.

The specificity of T cell response is determined by
the T cell receptor (TCR), which is produced through a
stochastic process of somatic recombination that com-
bines the unique V, D and ] gene segments of the TCRa
and TCRp genes (D segments only for TCRp), resulting
in huge range of TCRs with an incredibly diverse anti-
genic specificity. The third complementarity-determining
regions (CDR3s) localized within the TCRa and TCRf
chains are the most hypervariable regions and takes part
to direct peptide recognition. Recent advances in TCR
sequencing technologies and bioinformatic analysis allow
the characterization of the TCR repertoire, that is the col-
lection of diverse and unique TCRs within an individual’s
immune system, with great throughput and efficiency
[11]. Analysis of the TCR repertoire provides summary
indices of the diversity and clonality of T-cell responses
that may be associated with the clinical evolution of a
disease, as well as it allows extensive profiling of T cell
specificities, despite the complexity of these responses
across individuals and groups [11-13].

Recent studies found that the TCR repertoire of
SARS-CoV-2 specific T cells is highly diverse, which
is important for recognizing and clearing the virus [2,
14]. Moreover, it was observed that COVID-19 patients
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affected by severe disease have a restricted TCR reper-
toire and an increased frequency of public TCRs, sug-
gesting that TCR diversity may play a role in determining
disease outcomes. The mRNA vaccines elicited a diverse
TCR repertoire, indicating a robust T cell response and
supporting the efficacy of SARS-CoV-2 vaccines in gen-
erating an adaptive immune response [10]. These analy-
ses also identified immunodominant TCRs associated
with S-specific CD8+T cell responses [10, 15]. While
these studies demonstrated the utility of T-cell repertoire
analysis in identifying conserved and immunodominant
peptides with cross-reactive potential among VoCs, pre-
dicting disease severity, and informing treatment strat-
egies, they also emphasized the need to extend TCR
repertoire analysis to different clinical scenarios.

In this study, we analyzed the TCR repertoires gener-
ated during natural SARS-CoV-2 infection in unvacci-
nated patients or hybrid immunity (infection-induced
and vaccine-induced immunity), highlighting distinctive
S-specific TCR profiles between the groups.

Methods

Study design

An observational longitudinal study was performed on
14 consecutive patients tested positive for SARS-CoV-2
with mild to severe COVID-1912 from January 24th
to July 7th, 2022. The characteristics of the participants
are summarized in Table 1. The study was conducted
according to the standards of the Declaration of Helsinki
revised in 2008 (World Medical, 2013), and was approved
by the ethical committee of the Calabria Region (Protocol
Reference: FESR/FSE 2014-2020 DDRC n. 585, Action
10.5.12, noCOVID19@UMG). Written informed con-
sent was obtained from all the participants before moAbs
administration and blood samples collection for the pur-
pose of this study.

PBMCs purification and in-vitro T-cell expansion

Peripheral venous blood was collected in EDTA vacu-
tainer tubes, and peripheral blood mononuclear cells
(PBMCs) were isolated by density gradient isolation
using Ficoll-Paque (Merck, KGaA, Darmstadt, Germany),
according to the manufacturer’s instructions. The iso-
lated PBMCs were immediately divided into two aliquots,
one subjected to RNA extraction for subsequent TCR
sequencing analysis, the other used for the T cell expan-
sion procedure. For in-vitro T-cell expansion, 10° PBMCs
were seeded cultured with Advanced RPMI Medium
1640 supplemented with 2% human serum, 2 mM L-Glu-
tamine, and 100 U/penicillin/streptomycin in 24-well.
Then cells were stimulated for 12 days with 2 pg/mL of
SARS-CoV-2 (S-pool) and 50 U/mL rIL-2 and incubated
in a humidified CO, incubator at 37 °C changing medium
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Table 1 Patient characteristics

Patient ID Gender  Age Diagnosis  Vacc n. doses Severity® Respiratory status Relevant risk factors® HLAC

NV1 F 28 PCR 0 Mild Spont.breath id A*01:01/02:01
B*35/39
DRB1*08/11
DQB1*03/04

NV2 F 83 PCR Moderate  Sup_O, DM n/a

NV3 M 80 PCR Severe Sup_0O, DM A*02:01
DRB1*04
DQB1*03

NV4 M 75 PCR 0 Mild Spontbreath DM A*02:01
B*35/44
DRB1%*11/04
DQB1*03/06

NV5 M 55 PCR 0 Severe Sup_0, id A*02:01
DRB1*04
DQB1*03

NV6 M 49 PCR Mild Spont.breath id A¥02:01/24:02

V1 M 70 PCR Mild Spont.breath DM, obesity A*02:01/11:01
DRB1*04
DQB1*03/06

V2 M 73 PCR 3 Mild Spont.breath diabetes n/a

V3 M 58 PCR 3 Mild Spont.breath id A¥02:01
B*35
DRB1*04
DQB1*03

V4 M 64 PCR 3 Mild Spont.breath id n/a

V5 M 56 PCR 3 Mild Spont.breath i.d., obesity A*02:01
B*35/44
DRB1*04

V6 M 51 PCR 3 Mild Spont.breath none n/a

V7 F 69 PCR 3 Mild Spont.breath none A*01:01/02:01
DRB1*08/11
DQB1*03/04

V8 M 37 PCR 3 Mild Spont.breath id A*02:01/03:01
B*27/40

@ Severity according to COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines [23]

b i.d.—primary/acquired immunodeficiency; DM diabetes

€ n/a—not available

with fresh S-pool and rIL-2 every 2 days [16, 17]. The
S-pool consisted in 15-mer peptides that overlapped by
10 amino acids and spanned the entire protein sequence
of the S protein of SARS-CoV-2 (Uniprot_ID=P0DTC2)
[17].

Enzyme-linked immunoSpot assay

Enzyme-linked immunoSpot (ELISPOT) path kit
(cod.3420-4AST-P1-1, Mabtech, Sweden) was used for
the enumeration of PBMCs secreting interferon gamma
(IFNY) in response to S-pool, according to manufactur-
er’s instructions. Spots corresponding to stimulated cells
secreting IFNy) were counted by an immunoSpot plate
analyzer (BIOREADER3000; Bio-Sys, Germany). The
IFNy-ELISPOT data were reported as stimulating form-
ing unitsx 10° PBMCs (SFU/10°), which was calculated

for each PBMC sample by subtracting spots of the
unstimulated wells from the spots of the peptide-stimu-
lated wells and normalizing to 10° PBMCs [17].

TCR sequencing

TCRP libraries for NGS sequencing were prepared using
the Oncomine™ TCR Beta-LR Assay (ThermoFisher),
according to the manufacturer’s protocol. In detail, RNA
from PBMCs samples was isolated using the Purelink
RNA Mini kit (Thermo Fisher Scientific, Milan, Italy),
reverse transcripted through the InvitrogenTM Super-
Script IV VILO Master Mix (ThermoFisher Scientific).
Libraries were prepared using the TCR beta-LR Assay Kit
(ThermoFisher Scientific), which consists of Multiplex
AmpliSeq primers target the framework region 1 (FR1)
and costant (C) regions of the TCR producing a 330 bp
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amplicon which covers the entire variable gene and the
CDR3 region. Libraries were produced for n=14 individ-
uals for a total of n=28 samples, i.e. 2 samples points for
each individual (pre and post S-specific TCR expansion).
Libraries preparation was performed manually accord-
ing to the Ion AmpliSeq Kit for Chef DL8 (ThermoFisher
Scientific). The final concentration of manually prepared
c¢DNA libraries was determined on the Agilent 2200 Sys-
tem by the Agilent High Sensitivity DNA Assay (Agilent
Technologies, Santa Clara, CA, USA), following manu-
facturer’s recommendations. Barcoded libraries were
diluted to 25 pM and then loaded onto the Ion ChefTM
Instrument (ThermoFisher Scientific) for emulsion PCR,
enrichment, and loading onto the Ion S5 530 Chip. Post-
sequencing run analysis was performed by the Ion Tor-
rent Suite Software. V, D and J-segment alignment, CDR3
identification and assembly of reads into clonotypes were
performed with MiXCR (v.4.1.2) with the built-in preset
pipeline “Oncomine’” TCR Beta-LR Assay” [18].

TCR repertoire analysis

TCR repertoire analysis was mostly performed using the
Immunarch R package [19]. The diversity of TCR reper-
toires was evaluated by the Gini, Gini-Simpson and d50
diversity coefficients. The Gini coefficient measures the
inequality in the frequency distribution of clonotypes,
with values close to zero expressing full equality of clo-
notype frequencies, while a Gini coefficient of 1 reflects
maximum inequality between clonotype frequencies,
such as the co-presence of hyper-expanded clonotypes
and rare clonotypes. The d50 coefficient calculates
the minimum number of distinct clonotypes amount-
ing to greater than or equal to 50 percent of a total of
sequencing reads obtained following amplification and
sequencing. The Gini-Simpson index is the probability
of interspecific encounter, i.e., probability that two enti-
ties represent different types. Topl0, rare and hyper-
expanded clonotypes abundance were calculated through
the repClonality function of Immunarch. The distribu-
tion of VB gene segments between COVID-19 groups
was performed using the Gene Usage Analysis tool of
Immunarch.

In-silico analysis

The GLIPH2 algorithm of turboGLIPH R package was
used for clustering of TCRp sequences [12]. The mini-
mum cluster size parameter was set to 8. The mapping of
S epitopes associated with clonotypes was carried out by
recognizing in the repertoires the TCRP experimentally
associated with S epitopes (public databases MIRA [20]
and VDJdb [21]), as well as inferring the S-specificity of
clonotypes using the GLIPH algorithm.
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The pEptide tcR matchinG predictiOn (ERGO) tool
[22] was used to classify TCR-peptide binding affinity
toward S peptides. The CDR3 of TCR is the major deter-
minant of T cell specificity. The complete list of viral
peptides and CDR3 sequences used as input on ERGO is
reported in Table 3, respectively. As output, ERGO pro-
duces a binding probability score (maximum value 1 if
the TCR and the peptide bind and 0 otherwise).

Statistical analysis

Statistical tests were selected based on appropriate
assumptions with respect to data distribution and vari-
ance characteristics; p values<0.05 were considered sta-
tistically significant. Statistical significances are reported
in the figure and/or the figure legend. Statistical tests
were performed with GraphPad PRISM software 9.3
(GraphPad Software, La Jolla, CA, USA).

Results

Characteristics of the enrolled patients and donors

We enrolled 14 consecutive patients tested positive for
SARS-CoV-2 with mild to severe COVID-19 [23] from
January 24th to July 7th, 2022. At that time the Omicron
variants were predominant in our setting in Calabria
region, Southern Italy [24]. Patients with mild COVID-19
symptoms for a maximum of 7 days who did not require
oxygen support presented to the center dedicated to
early therapies for COVID-19 [25] to receive neutralizing
monoclonal antibodies (moAbs) or antivirals (i.e., rem-
desivir, nirmatrelvir/ritonavir or molnupiravir). Patients
with moderate or severe COVID-19 were admitted to
hospital. Blood samples for the purpose of this study
were collected at least 24 h before starting treatment with
moAbs or antivirals. Among these patients, those who
did not receive any doses of the approved vaccines were
categorized as “not vaccinated” (NV), while those who
received at least two doses of BNT162b2 mRNA COVID-
19 vaccine were included in the “vaccinated” (V) group
[26]. Immunocompromised patients were defined as
those affected by onco-hematological diseases, primary/
acquired immunodeficiency, systemic inflammatory dis-
eases, or those who received rituximab, methotrexate
and/or other immunosuppressive drugs. The characteris-
tics of the participants are summarized in Table 1.

Diversity and clonality of COVID-19 TCRp repertoires

We performed TCRP sequencing of PBMCs samples
both before (pre-stimulation TCRpP repertoires) and
after (post-stimulation TCRp repertoires) T cell enrich-
ment following in vitro 12-day stimulation with a pool of
S peptides (Fig. 1). Collectively, we obtained 66133 and
67160 distinct clonotypes (TCRP with unique CDR3
amino acid sequence) from the pre- and post-stimulation
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Fig. 1 Study workflow. The PBMCs from a whole blood venous sample of COVID-19 patients were divided into two aliquots. One aliquot

was directly subjected to TCRB sequencing (pre-stimulation repertoires). The other aliquot was first stimulated with S-peptides pool, in the presence
of IL-2 for 12 days, to promote the expansion of S-specific cells, and then was also subjected to TCRB sequencing (post-stimulation repertoires).
TCR repertoire analysis involved a filtering step to exclude confounding sequences not shared between pairs of pre- and post-repertoires. The
mapping of S epitopes associated with clonotypes was carried out by recognizing in the repertoires the TCRP experimentally associated with S
epitopes (public databases MIRA [20] and VDJdb [21]), as well as inferring the S-specificity of clonotypes using the GLIPH algorithm [12]

TCRp repertoires (Fig. 1). Information on TCRp reper-
toires characteristics is reported in Table 2 and Supple-
mental data.

We first analyzed the diversity and clonality of pre-
stimulation COVID-19 TCRp repertoires, as compared
to a control TCRP dataset obtained from PBMCs sample
of healthy individuals (n=14) from the TCRB-V4b Con-
trol Database [27], that matched for age, gender, and eth-
nicity with our COVID-19 cohort. To rigorously evaluate
the diversity of repertoires, we utilized TCRp repertoire
diversity and clonality estimators. Both the Gini-Simpson
and D50 diversity indices were significantly lower in the
COVID-19 groups compared to the control group, indi-
cating less diverse COVID-19 repertoires (Fig. 2a). Con-
versely, the Gini coefficient was significantly higher in
the COVID-19 groups than in the control group, indicat-
ing greater inequality of clonotype frequency (Fig. 2a).
Overall, these TCRp repertoire estimators demonstrated

that COVID-19 TCRp repertoires had higher clonality
and lower diversity than the repertoires of healthy sub-
jects, consistent with the expected clonal expansion typi-
cal of a cellular response to viral antigens. Notably, the
two patients who developed severe COVID-19 exhibited
very narrow true diversity and high clonality (Fig. 2b),
consistent with previous studies [15]. We also compared
the distribution of VP gene segments between COVID-
19 groups. In the V group, the TRBV7-2, TRB29-1, and
TRBV30 VP gene segments showed a significantly higher
clonal fraction than those observed in the NV (Fig. 2c).

In vitro expansion of S-specific T cells was equally efficient
in PBMCs from vaccinated patients

The in vitro stimulation promotes the expansion of pep-
tide-specific T cell populations, thus allowing the detec-
tion of low-frequent clones [20]. To ensure that our
S-specific T cell enrichment strategy was effective, we
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Table 2 Information on immune repertoire sequencing and analysis
Patient ID n_sequence n_cln? n_sequence n_cln post-stimul cIn in MIRAP Spike_seq% (pre)© Spike_
pre-stimul pre-stimul post-stimul seq%
(post)
NV1 247282 6409 383272 7742 354 0.0569 0.3942
NV2 273882 5729 323193 5818 151 0.0157 0.1695
NV3 261658 819 265033 782 18 0.0021 0.0141
NV4 257575 13102 301684 14964 366 0.0167 0.1625
NV5 219148 1043 220453 971 16 0.0002 0.0066
NV6 251356 3034 257134 2954 100 0.0027 0.0250
V1 224835 9705 262842 9398 234 0.0190 0.1607
V2 254176 15466 278062 17213 262 0.0097 0.0954
V3 308290 1327 417838 1302 49 0.0258 0.2913
V4 294426 5136 349308 5136 238 0.0105 0.1746
V5 259694 7373 274769 8288 176 0.0072 0.0610
V6 257651 1197 270071 1196 34 0.0070 0.0511
V7 259800 938 262788 900 32 0.0012 0.0126
V8 229324 1054 233338 1048 17 0.0025 0.0191

@ n_cln—number of unique CDR3 amino acid sequences
b Number of clonotypes shared with the MIRA/Adaptive dataset

¢ Fraction of repertoire’ sequences relative to S-specific clonotypes

counted the T cell clones responsive to S-peptides using
the ELISPOT assay (Fig. 3a, b). Compared to unstimu-
lated PBMCs, those stimulated with S-peptides plus IL-2
showed a higher number of IFNy-secreting T cell clones
(Fig. 3a). The fraction of T cells responsive to S-peptide
was not significantly different between V and NV indi-
viduals (Fig. 3b).

To further ascertain that post-stimulation TCR reper-
toires contained S-enriched clonotypes we took advan-
tage of TCRp sequences with known S-epitope specificity
present in the public VDJdb [21] and MIRA [20] data-
bases. The merged the VDJdb/MIRA dataset contained
pairings of 26,422 unique TCRP sequences and 388 S
peptides from VDJdb and MIRA databases. The over-
lap of this dataset with our COVID-19 dataset resulted
in 952 unique TCRP sequences associated with 184
S-epitopes. For each patient, the cumulative frequency
of S-specific TCRp sequences was significantly increased
in post-stimulation TCR repertoires (median 7.8; 95%CI
1.4-17.5) than pre-stimulation ones (median 0.8; 95%CI
0.2-1.9%, P<0.0001, Wilcoxon matched-pairs signed
rank test) (Table 2). Furthermore, the 10 most abundant
clonotypes of each post-stimulation repertoire were
increased in frequency compared to the pre-stimulation
frequency (Fig. 3c, d). The S-specific TCRP sequences
accounted for an average of 12.9% (range, 0.7-38.8%) and
10.8% (range, 1.3-29.1%) of the entire post-stimulation
repertoires of NV and V group, respectively (Table 2),
indicating that the T-cell stimulation with S-peptides was

similarly efficient in PBMCs from V and NV patients, in
agreement with the ELISPOT results.

Epitope mapping of S-specific TCRB clonotypes

in COVID-19 repertoires

To further infer the specificity of the TCRp clonotypes,
we performed a clustering of TCRP sequences based
on sequence similarity to S-specific public clonotypes
present in the VDJdb/MIRA dataset. To this end, the
GLIPH2 algorithm can reliably group TCRs of common
specificity from different T-cell samples, organizing clus-
ters of TCR sequences according to their likely antigenic
specificities [12, 13, 28].

We applied GLIPH2 to a dataset that included our
COVID-19 TCR clonotypes and the VDJdb/MIRA data-
set. We identified 347 specificity groups shared by N,
NV, and VDJdb/MIRA datasets, while 21 and 33 speci-
ficity groups were shared by NV and VDJdb/MIRA, or
V and VDJdb/MIRA datasets, respectively (Fig. 4a, b).
The presence of TCRp sequences from the VDJdb/MIRA
dataset in each of the clustered specificity groups allowed
us to infer the epitope specificity of the TCRp sequences
from the NV and V datasets within the same cluster [13]
(Fig. 4c, d). We identified a total of 1171 TCRp sequences
associated with 149 peptides, of which 130 epitopes were
shared between V or NV groups (Table 3). The cluster
TCRp sequences account for an average of 30% of the
entire post-stimulation repertoires.
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Fig. 2 TCRQ repertoires diversity and clonality of COVID-19 and healthy groups. a For Gini-Simpson, D50 and Gini diversity significance see

the Methods section. Statistical comparison was performed by Kruskal-Wallis test. b TCR repertoire fraction of the top 10, rare, and hyper-expanded
clonotypes for all repertoires. Top 10 clonotype refers to the 10 most abundant clonotypes from each repertoire; rare and hyper-expanded refer

to clonotype with a frequency less than 107, or greater than 1072, respectively. The position of the value observed for the patient who experienced
severe COVID-19 is highlighted in yellow. ¢ Comparison of V@ usage between V and NV COVID-19 groups. Statistical comparison was performed

by Mann Whitney test

Among the 130 shared peptides, TCRP clonotypes asso-
ciated with S regions S135-177, S264-276, S319-350 and
S448-472 were significantly more abundant in the post-
stimulation repertoires of V group than the NV group
(Fig. 5a, b and Table 4). Conversely, TCRp clonotypes
associated with protein region $S673-699 was significantly
more abundant in the post-stimulation repertoires of NV
group than the V group (Fig. 5a, b and Table 4). Moreo-
ver, the S645-645 and S751-760 peptides were exclusively
associated with TCRp clonotypes in the NV group, while

§778-789, S863-871 and S1260-1269 peptides were exclu-
sively associated with TCRP clonotypes in the V group
(Fig. 5a, b and Table 4). These results indicate a distinct
profile of TCR epitope specificity between the N and NV
COVID-19 groups following infection with SARS-CoV-2.

Effect of epitope mutations on TCR-peptide binding
affinity

The T cell expansion procedure was performed using
ancestral Wuhan-Hu-1-derived S peptides to stimulate
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of SFU of IFNy-secreting cells following stimulation with the S-peptide pool in NV and V COVID-19 patient. *p=0.003, **p=0.006, Fisher's test).
Statistical comparison was performed by Kruskal-Wallis test. ¢, d Representative examples of tracking of the top 10 most abundant clonotypes

from the post-stimulation repertoires of NV (c) and V (d) COVID-19 patients

PBMCs from Omicron/BA2, BA.4, and BA.5-infected
patients. One potential concern was that TCR specific-
ity might vary between individuals exposed to both the
Wuhan-Hu-1 and Omicron antigens (group V) versus
those exposed only to the Omicron antigen (group NV).

Among the relevant S peptides of the ancestral Wuhan-
Hu-1 strain, the S673-688 and S975-985 were subjected
to amino acid substitution within the variants BA.1,
BA.2, BA.2.12.1, BA.2.75, BA.4, BA.5, BQl.1, XBB1.5.
We addressed the impact of amino acid substitution on
TCRP binding by performing an in-silico analysis using
ERGO, a reliable and robust tool for TCR-peptide bind-
ing affinity prediction and classification [22]. ERGO-II
results indicated that the variant in the S975-985 region
(S981L > F, of Omicron/BA.1) increased the peptide bind-
ing probability score of TCRp clonotypes from both N
and NV groups, while the variant in the S673-688 region
(S679N>K, S682N>K of Omicron/BA2, BA.4, BA.5,
BQ1.1 variants) did not affect the peptide binding prob-
ability score of TCRpP clonotypes associated with this
region (Fig. 5c). These results suggested that epitope
mutations did not preclude cross-reactive recognition by
TCR clonotypes of our groups.

Discussion

In this study, we first highlighted the differences in the
general characteristics of the TCRp repertoire between
individuals with COVID-19 who were either vaccinated
or unvaccinated. Then, we specifically examined the
S-specific TCRp repertoire, identifying differences that
may be important in predicting disease progression and
cross-reactivity towards viral variants.

The ability of adaptive immunity to achieve effec-
tive TCR diversification may determine the chances of
improved outcomes and immune control in infectious
and cancer diseases [29-32]. A study on the T cell rep-
ertoire in SARS-CoV-2 infected patients showed that
TCR diversity may influence disease outcomes, and that
patients with asymptomatic or mild clinical infection
have a highly diversified TCR repertoire, while patients
with severe COVID-19 have a less diverse TCR reper-
toire [15]. Consistent with this previous observation, we
found that patients with SARS-CoV-2 exhibited lower
diversity and higher clonality compared to the healthy
control group, which is expected in the presence of a
productive infection. Furthermore, COVID-19 patients
with breakthrough infections after vaccination, all of
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whom had a mild clinical course, showed a trend towards
greater diversity compared to non-vaccinated COVID-19
patients, although this difference did not reach statisti-
cal significance. Additionally, the distribution of diversity
indices within the two groups appeared different, with
much more homogeneous diversity values in vaccinated
patients compared to the unvaccinated ones. It is possible
that in patients with breakthrough infections, the pres-
ence of established immunological memory from vacci-
nation allowed for a more expansion of S-specific T cells,
resulting in a repertoire with a greater and homogeneous
diversity compared to the unvaccinated group. It should
be noted that the two patients who developed severe
COVID-19 exhibited very narrow true diversity and high
clonality, consistent with the previous referenced studies
[15].

The analysis of VB gene segments distribution within
the TCRp repertoire showed that TRBV7-2, TRB29-1,
and TRBV30 Vf gene segments had a significantly higher
clonal fraction than those observed in the unvaccinated
group. T cells expressing the TRBV7-2 gene segment
have been associated with various clinical conditions,

including immune response to human rhinovirus infec-
tion and autoimmune diseases such as multiple sclero-
sis and rheumatoid arthritis [33, 34]. Our results further
expand the conditions associated with TRBV7-2 V[3 gene
segment and support further investigations to uncover
the clinical significance of this association in COVID-19.

The S673-699 region was specifically linked to TCRp
clusters in the unvaccinated group, among the S regions
that were differentially associated with TCRp from vac-
cinated or unvaccinated groups. Some researchers have
suggested that this region may have super antigenic prop-
erties, which could potentially contribute to the severe
immune response observed in some COVID-19 patients,
leading to cytokine storms and multiorgan failure [35—
37]. Superantigen-mediated T cell expansion occurs
through a less specific interaction with TCRs, lead-
ing to the activation of a large proportion of the T-cell
population [38]. Although the super antigenic char-
acter of the S673-699 region is still being investigated,
it is possible that the efficacy of the mRNA COVID-19
vaccines in preventing severe disease and death is also
due to reduced exposure to the super antigenic viral
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Fig. 5 Mapping of TCR@ associated with S epitopes as resulted from GLIPH2 analysis. a Median clonal fraction refers to the median of clonotype
frequencies from the individual pre-stimulation repertoires. Dimension of bubbles correlates with the number of distinct clonotypes
associated with the epitope. b Glimpse of panel A highlighting the S regions (overlapping epitopes) associated to TCRB differentially abundant

between COVID-19 groups. C TCR binding prediction of S peptides from original Wuhan-Hu-1

strain and VOCs variants. The distinct TCRB sequences

associated with the indicated S peptide (Table 3) were evaluated in-silico for predicted binding affinity by the ERGO tool (Mann Whitney test)

determinant, through neutralizing antibodies or reduced
viral replication. We also found that TCRp clonotypes
associated with S regions S135-177, S264-276, S319-350
and S448-472 were significantly more abundant in the
vaccinated group than in the unvaccinated group. There
could be several reasons for this difference, which are
likely related to the various ways in which these peptide
regions are expressed and presented to the immune sys-
tem between vaccination and natural infection. In our

small cohort study, the presence of specific clonotypes
associated with these S regions was found to be linked
with a milder course of the disease. Therefore, detecting
T cells that are specific to these regions may have a posi-
tive impact on disease prognosis and could potentially be
used as a prognostic tool.

Our study obtained TCRp sequences specific for the S
protein from PBMCs of patients infected with the Omi-
cron/BA2, BA4, and BA.5 variants, after stimulation
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Table 4 Summary of TCRP associated with spike peptides. In bold, the data represented in Fig. 5b are highlighted
aa Position? Unvaccinated Vaccinated p value®
n. clonotypes® Median Median clonal  n. clonotypes Median Median clonal
enrichment© fraction® enrichment fraction
23-59 55 15.8 0.0063 13 8.8 0.0162 0.1589
82-94 9 12,1 0.0115 73 15.0 0.0203 0.3630
135-177 20 11.3 0.0015 11 9.8 0.0222 0.0116
207-240 10 84 0.0021 9 8.8 0.0159 0.1834
264-276 16 19.8 0.0025 5 8.4 0.0261 <0.0001
319-350 118 11.2 0.0051 108 8.8 0.0203 <0.0001
385-423 41 16.5 0.0039 58 8.6 0.0187 0.7000
448-472 30 8.7 0.0039 26 10.3 0.0194 <0.0001
488-506 21 8.8 0.0094 10 9.3 0.0296 0.071
582-591 1 8.0 0.0027 0 -
645-645 5 17.9 0.0062 0 -
673-699 24 15.5 0.0041 29 15.5 0.0004 0.0013
705-732 25 182 0.0191 17 8.7 0.0156 0.6349
751-760 2 9.6 0.0084 0 -
778-792 0 3 9.9 0.0070 -
859-864 16 8.8 0.0039 16 838 0.0050 0.2016
893-902 0 2 84 0.0120 -
986-999 18 8.6 0.0088 12 89 0.0176 0.2381
1015-1027 15 74.2 0.0352 14 103 0.0266 0.6230
1046-1059 21 153 0.0074 16 132 0.0061 0.1289
1260-1269 0 1 14.7 0.012 -

2 Amino acid position in the spike protein (uniprot ID PODTC2)

b Number of clonotypes associated to epitope within the indicated spike region; showing a post/pre frequency > 8

€ Median of the enrichment (post/pre stimulation ratio of clonal fration) showed by the clonotypes associated to epitope within the indicated spike region

4 Median of the pre-stimulation clonal fration showed by the clonotypes associated to epitope within the indicated spike region

€ Statistical differences were evaluated by Mann-Whitney test

with a pool of S peptides derived from the ancestral
Wuhan-Hu-1 sequence. In vitro expansion of these cells
indicated that TCRp cross-reacted with peptides from
the ancestral strain. Our in-silico analysis using the
ERGO tool showed that the variant in §975-985 region
increased the probability score of TCRp clonotype pep-
tide binding in both vaccinated and unvaccinated groups,
while the variant in the S673-696 region did not affect the
probability score of peptide binding of TCRp clonotypes
associated with this region. These findings suggest that
TCRp clonotypes from both groups can recognize cross-
reactive epitopes despite mutations.

The study provides TCRP sequences, which is a
valuable information for understanding the immune
response. However, it is important to note that the lack
of alpha chain information represents a limitation to
the study. Indeed, the alpha chain plays a critical role in
shaping the T cell receptor’s specificity and affinity for
antigen recognition. However, although the absence of
alpha chain information may hinder the interpretation

of epitope specificity, this limitation is diminished by
the fact that the prediction algorithms we used were
predominantly trained with TCRp data. Moreover, the
potential confounding factors in our study, particularly
in relation to the small and diverse sample size, limit
the ability to draw any association of TCR signature
with clinical variables. The presence of both immuno-
competent and immunodeficient patients, the limited
number of severe cases (n=2), and variations in vacci-
nation status and HLA types indeed pose challenges in
interpreting the TCR data with high precision. Moreo-
ver, we recognize that the limited scope of our sample
size, comprising only 14 individuals, restricts our abil-
ity to generalize our findings to a broader population.
This sample size limitation is especially pertinent given
the complexity of TCR repertoires and their interac-
tions with various clinical variables. Our study’s focus
on selected aspects of the immune response further
narrows the scope of our findings.
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Conclusions

Overall, our findings reveal significant differences in
TCR specificity between natural and breakthrough
infections and identified unique TCR signatures asso-
ciated with disease severity, providing insights into the
potential factors influencing clinical outcomes.
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