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Abstract

As more is learned about lactate, it acts as both a product and a substrate and functions as a shuttle system

between different cell populations to provide the energy for sustaining tumor growth and proliferation. Recent dis-
coveries of protein lactylation modification mediated by lactate play an increasingly significant role in human health
(e.g., neural and osteogenic differentiation and maturation) and diseases (e.g., tumors, fibrosis and inflammation,
etc.). These views are critically significant and first described in detail in this review. Hence, here, we focused on a new
target, protein lactylation, which may be a “double-edged sword” of human health and diseases. The main purpose
of this review was to describe how protein lactylation acts in multiple physiological and pathological processes

and their potential mechanisms through an in-depth summary of preclinical in vitro and in vivo studies. Our work

aims to provide new ideas for treating different diseases and accelerate translation from bench to bedside.
Keywords Lactate, Lactylation, Post-translational modification

Introduction

Post-translational modifications (PTMs) refer to the
chemical modification of a protein after translation and
regulate protein activity, localization, and folding, as
well as critical interactions between proteins and other
biomacromolecules [1, 2]. Many important life activi-
ties and the occurrence of diseases have been linked not
only to the abundance of proteins but also to various
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post-translational modifications of proteins [3]. Prot-
eomic modifications are of great significance to reveal
the mechanisms of life activities, screen clinical markers
of diseases, and identify drug targets through an in-depth
study of the changes in protein post-translational modi-
fication levels [4]. It has long been believed that lactate
is a metabolic waste of glycolysis by cellular life activities
under hypoxia, thus prompting the stereotype formation
of lactate as a harmful substance [5]. However, biological
functions of lactate are being progressively discovered,
including intracellular energy supply, signal transduction,
modulation of the tumor microenvironment, inflamma-
tion regulation, etc., and are also involved in the progres-
sion of cancer, inflammatory diseases, and metabolic
diseases [6—12].

Several common PTMs, such as acetylation, methyla-
tion, ubiquitination, and phosphorylation, have received
widespread attention and have been well characterized
[13]. Interestingly, a lactate-induced lactylation modifica-
tion of histone lysine residues was first identified in 2019
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by Zhang et al. [14] and was involved in the homeostatic
regulation of M1 macrophages under bacterial infections.
Protein lactylation proposed as a new PTM not only
opens up a new field for the study of proteins but also
indicates a novel direction for exploring lactate in can-
cer, metabolism, immunity, etc. This review elaborates on
this topic based on lactate metabolism and the effects of
histone or non-histone lactylation on cellular biology. It
contributes to further understanding protein lactylation
and elucidating the role of lactate in the regulation of cell
function. Finally, we explore the possibility of targeting
potential targets of lactylation modification for the treat-
ment of various diseases.

Lactate

The lactate shuttle

Lactate is the end-product of glycolysis, a major sub-
strate for oxidative metabolism, which serves as a
bridge connecting many cellular pathways [15]. Lactate
is transported and subsequently accumulated in differ-
ent important organs via blood circulation in the body
but also plays a role in regulating cellular energy and
redox homeostasis by intracellular and cell-cell lactate
shuttles [16]. Lactate can be exchanged between cells
and the extracellular matrix and between the inner and
outer mitochondrial membranes by monocarboxylate
transporter (MCT) and lactate dehydrogenase (LDH)
[17]. Glycolytic cells trigger a large uptake of glucose
and participate in glycolysis in the cytoplasm, where
pyruvate is turned into lactate by LDHA, which then is
excreted to the extracellular matrix by MCT4. Of note,
lactate uptake by oxidative cells via MCT1 leads to the
conversion of it back to pyruvate in the cytoplasm via
LDHB, which is then transported to the mitochon-
dria via MCT1 to complete the tricarboxylic acid cycle
(TAC) and contributes to energy metabolism [18].
Moreover, under stimulation with hypoxia, hydrogen
peroxide, and lactate, the expression of hypoxia-induc-
ible factor-1 (HIF-1) is upregulated in the cell, which
promotes the expression of MCT4 and the exportation
of lactate (Fig. 1) [19]. This lactate shuttle contributes
to intercellular lactate sharing and links glycolysis with
aerobic oxidation, which is conducive to more efficient
allocation and exploitation of energy by tumor cells.

Lactate: the classic and new perspectives of metabolism

Conventional wisdom suggests that glucose is the major
source of nutrient supply and produces energy by two
metabolic means: glycolysis and mitochondrial oxida-
tive phosphorylation [20]. Both metabolic pathways
start with pyruvate, an intermediate product from the
breakdown of glucose, accompanied by the produc-
tion of small amounts of ATP and NADH [21]. Under
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aerobic conditions, pyruvate and NADH electrons enter
the mitochondria, where they are converted to acetyl-
CoA, which will then go to the tricarboxylic acid (TCA)
cycle to produce enormous amounts of ATP [22]. Under
pathological hypoxic conditions accompanied by the
failed entry of electrons into the mitochondria, pyruvate
generated from glycolysis is only converted to lactic acid
by LDH. Lactic acid is then dissociated into lactate and
H™, causing the body to accumulate lactate [23]. How-
ever, this view has been currently updated and improved.
Aerobic glycolysis, also known as the Warburg effect, still
occurs and provides a way to quickly produce energy and
lactate under stressful conditions such as tumors, exer-
cise, trauma, sepsis, and heart failure, although cells are
in an aerobic environment [6, 24]. The key mechanism of
aerobic glycolysis may lie in the up-regulation of LDHA
and pyruvate dehydrogenase kinase (PDK) in tumors and
other states to synergistically promote the conversion of
abundant pyruvate into lactate [25].

It is traditionally believed that lactate is a “metabolic
waste product” and its catabolism occurs mainly in the
liver, where it undergoes gluconeogenesis and reproduces
glucose, a process known as the Cori cycle [26]. How-
ever, new concepts of lactate are gradually being estab-
lished. Using the '*C-isotope tracer and metabolomics
study by Jang C et al. [27], lactate has a higher circula-
tory turnover flux in fasted pigs despite glucose being the
most abundant circulating carbohydrate, that is, the TCA
cycle feeds primarily off circulating lactate, and glucose
mainly provides nutrients for the TCA cycle through cir-
culating lactate, suggesting that apparently many organs
simultaneously produce and consume circulating lac-
tate. Moreover, lactate is not only described in pigs but
is also widely used as a fuel in mice and humans, con-
firming that lactate is a common carbohydrate fuel in
mammals [28]. The ubiquitous expression of MCT and
the oxidation of lactate into pyruvate for the TCA cycle
in cells by LDHB also confirm that lactate has become a
nearly common carbohydrate fuel [27]. Aerobic glycolysis
has been intensively studied in pathophysiological pro-
cesses. The increased pyruvate kinase muscle isozyme 2
(PKM2)/PKM1 ratio plays an important role in promot-
ing the metabolic “conversion” of glucose oxidation to
aerobic glycolysis, which utilizes glycolysis intermedi-
ates and upregulates the glutaminolysis, pentose phos-
phate pathway, and single carbon metabolism to facilitate
the biosynthesis of nucleosides, thus contributing to cell
proliferation [29]. The production of lactate by aerobic
glycolysis has also been shown to cause a highly acidic
microenvironment in the local area, which may alter
immune cell infiltration to promote immunosuppression
and cell proliferation [30].
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Fig. 1 Regulation of lactate metabolism progress in normal, glycolytic and oxidative cells. Glucose metabolism mainly contains glycolysis

and the TCA cycle in the mitochondrion. With sufficient oxygen, normal cells produce energy mainly through the TCA cycle. Under stimulation
with hypoxia, tumors, and inflammation, glycolytic cells trigger a large uptake of glucose and participate in glycolysis in the cytoplasm,

where pyruvate is turned into lactate by LDHA, which then is excreted to the extracellular matrix by MCT4. Of note, lactate uptake by oxidative
cells via MCT1 leads to the conversion of it back to pyruvate in the cytoplasm via LDHB, which is then transported to the mitochondria via MCT1

to complete the TAC and contributes to energy metabolism

Lactate as a ligand for GPR81: a cell transduction molecule
Lactate is not only the most common carbohydrate fuel
under specific physiological conditions, but also carries
a deeper biological significance. It is thought that lac-
tate acts as a ligand for the G-protein-coupled receptor
81 (GPR81), which also mediates signal transduction to
facilitate the effects of lactate [31]. Lactate is involved in
extracellular signal-regulated kinase (ERK) dephospho-
rylation by activating GPR81 and promotes cell apop-
tosis and susceptibility to ischemic injury in ischemic
brain injury, suggesting GPR81 antagonist might be a
potential strategy for brain ischemia [32]. In contrast,
several studies support a possible protective role of lac-
tate in ischemic brain damage, possibly by supplying
energy to compensate for the bioenergetic crisis caused
by ischemia [33, 34]. Collectively, lactate at low concen-
trations may exacerbate neuronal injury by activating
the GPR81 receptor, while high concentrations protect
nerve cells through the supply of ATP. Lactate/GPR81
pathway can also inhibit lipolysis by down-regulating
cellular cAMP level, making it an important target to
intervene in lipid metabolism and treat metabolic syn-
drome [35]. In cancer treatment, lactate/ GPR81 is also

required for tumour growth. On the one side, when lac-
tate is the main energy source for tumor cells because of
the Warburg effect, deletion of GPR81 results in mito-
chondrial functional inactivation and a marked attenu-
ation of tumor growth [36]. On the other hand, lactate/
GPR81 can promote tumor progression through multiple
signaling pathways. For example, lactate-induced GPR81
activation activates the transcription factor TEAD by
reducing intracellular cAMP levels, further mediating
the programmed death-ligand 1 (PD-L1) promoter acti-
vation and increase of PD-L1 protein levels in lung can-
cer, which confirms the key role of lactate in modulating
cancer cells to evade immune surveillance [37]. Another
example is lactate/GPR81 signaling through activating
the inosine phosphoinositide 3-kinase (PI3K)/protein
kinase B (Akt)-cAMP response element binding protein
(CREB) pathway, resulting in increased production of the
pro-angiogenic mediator amphiregulin (AREG) to pro-
mote angiogenesis [38]. Additionally, on the plus side is
the fact that increased lactate release within an infection
context mediates signal transduction of the bone mar-
row endothelial lactate-receptor GPR81, thereby prefer-
ably promoting neutrophil mobilization by regulating the
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expression of endothelial VE-Cadherin and further vas-
cular permeability in bone marrow as well as inducing
the release of neutrophil mobilizers such as granulocyte
colony-stimulating factor (G-CSF) [39]. Elevated lactate
levels attenuate inflammation during delivery by acting
on uterine GPR81 to down-regulate key pro-inflamma-
tory genes in a feedback way, such as interleukin (IL)-1f,
IL-6, chemokine ligand 2, etc. [40]. Collectively, these
examples illustrate the role of the functions of lactate in
ischemic damage or neuroprotection, angiogenesis, pro-
moting tumor growth and inflammation regulation, etc.

Protein lactylation

Mechanisms of histone lactylation

In 2019, a mass shift of 72.021 Da in the histone lysine
residues was first identified through the mass spectrom-
etry analysis of MCE-7 cells by Zhang et al. [14], which
was similar to that caused by adding a lactyl group to the
e-amino group of a lysine residue. To further corroborate
this modification, they revealed lactate exposure could
promote lactylation of lysine residues through metabolic
labelling experiments using the isotope L-lactate (**C,)
[14]. Some unique amino acid residues with substrate
specificity such as lysine, arginine, and histidine present
positively charged side chains at physiological pH [41].
Moreover, lysine and arginine often are located at the
hydrophilic surface of proteins, and the e-amino group
of lysine and guanidinium group of arginine exposed to
the solvent due to the significant hydrophobicity of these
side chains are susceptible to post-translational modifica-
tion [42]. Sokalingam S et al. [43] have also demonstrated
that most e-amino and guanidinium groups of lysine
and arginine residues in protein structures are exposed
to the solvent through the analysis of the electrostatic
interactions in green fluorescent protein (GFP), which
increased their potential for interactions of various phys-
icochemical factors. Lysine is not only the most modi-
fied amino acid but also the most widely affected amino
acid by PTMs in comparison with arginine, making it a
hot topic in enzyme and chemical PTMs [44]. Arginine
plays a major structural role in driving protein folding
and stability because of its guanidinium group to form
three-dimensional ionic interactions. While the geom-
etry of lysine residues is less stable than that of arginine,
its e-amino group can form single-ion interactions, mak-
ing lysine more functionally flexible and therefore easier
to bring modified [45]. The relatively free coordination
of ions and the chemical reactivity of the e-amino make
lysine a key component of various enzymatic catalysis.
As compared to bacteria, mammals appear to have more
varieties of lysine PTMs. Interestingly, lysine is one of the
essential amino acids that mammals must obtain from
the diet, which makes lysine PTMs nutrient-sensitive and

Page 4 of 19

sense cell metabolic states to varying degrees [45]. Thus,
the nature of lysine makes these related PTMs play a cru-
cial role in the regulation of cell health.

Exogenous and endogenous L-lactate, but not D-lac-
tate, accumulates to a certain extent and directly
promotes lactylation of specific lysine residues [46]. Gly-
colysis inhibitors directly correlate with both decreased
lactate production and lysine lactylation (Kla), while
mitochondrial inhibitors and cellular hypoxia may
increase lactate production and enhance Kla [47]. In the
majority of investigated lactylation modified proteins,
lactyl moieties of lactyl-CoA from L-lactate are bound
via the e-amino group of lysines to the target protein.
Generally, this process starts with relevant enzymes.
First, the “writers’, a series of specific acylases, transfers
the lactyl group of lactyl-CoA as a substrate to a histone
or non-histone lysine residues, which alters the protein
structure and function. Then, “erasers” emerge to stop
the entire Kla cycle and prevent the protein lysine from
having lasting effects, meaning that they act as deacylases
to remove part or all of the lactyl groups from the tar-
get proteins. Finally, effector proteins called “readers”
specifically recognize this change in Kla to affect down-
stream signaling pathways and initiate various biologi-
cal events (Fig. 2) [48]. Moreover, non-enzymatic lysine
acylation involves the deprotonation of the e-amino
group of the substrate lysine by a general base, such as
aspartate or glutamate. Then, the deprotonated e-amino
group initiates the nucleophilic attack on the thioester
bond of acyl-CoA greatly [49]. Importantly, the terminal
carboxylic acids of acyl-CoA form a highly reactive cyclic
anhydride intermediate through intramolecular catalysis
and react strongly with free lysine e-amino to produce
non-enzymatic acyl-lysine modifications [50]. However,
lactyl-glutathione (LGSH), but not lactyl-CoA, as in
conventional studies, has been reported to be involved
in another unique non-enzymatic lactyl transfer [51]. A
typical non-enzymatic acyl-transfer mechanism occurs
in acetyl-glutathione, whose acetyl group is transferred to
the e-amino group of a lysine residue to generate lysine
acetylation (Kac) [52]. Gaffney DO et al. [51] further dis-
cussed the non-enzymatic kla based on LGSH consider-
ing the chemical similarity between acetyl-glutathione
and LGSH. The main conclusions are listed below: meth-
ylglyoxal, a reactive glycolytic by-product, rapidly binds
to glutathione via glyoxalase 1 (GLO1) to produce LGSH,
which transfers its own lactyl group to a protein lysine
residue in a non-enzymatic acyl-transfer mechanism.
And, LGSH is also hydrolyzed by glyoxalase 2 (GLO2) to
recycle glutathione and produce D-lactate. Thus, GLO1
amplification without an accompanying compensatory
increase in GLO2 may predispose the balance of the gly-
oxalase cycle towards LGSH and further kla production.
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Interestingly, glycolytic proteins are major targets for Kla
through the feedback regulation, presented with inhibi-
tion of glycolytic enzyme activity and reduction of glyco-
lytic metabolites [51]. Overall, knowledge regarding Kla
as a novel PTM remains limited, particularly for the sub-
strates, modification reactions (enzymatic or non-enzy-
matic), and lactylation dynamics.

Crosstalk between lactylation and other acylations

There is potential crosstalk among lysine acylations
because they are intertwined in the metabolic networks
of cells. Profoundly understanding the crosstalk in PTMs
may be helpful for further mining of lactylation modi-
fication. Therefore, attention must be paid to the meta-
bolic pathways that are interrelated and regulated when
explaining the relationship between lactylation and other
acylations [53]. Most proteins function through interac-
tions with other proteins. It is reported that many pro-
teins have at least one PTM, and many of them have more
than one, suggesting crosstalk among different PTMs of
proteins is ubiquitous [54]. In particular, there is a high
degree of similarity and coordination between lactylation
and acetylation, which are important processes linking

metabolism and epigenetics [55]. For instance, two types
of PTMs tend to target lysine and hold some enzymes
in common, e.g., p300 as the writer [14]. Li L et al.
[56] showed that Gli-like transcription factor 1 (Glisl)
enhanced levels of acetyl-coA and lactate as well as syn-
ergistically drove histone acetylation and lactylation by
transcriptional activation of glycolytic genes and higher
glycolytic flux. Moreover, lactate may act as an important
transcriptional regulator and induce histone hyperacety-
lation by promoting expression of histone deacetylase
(HDAC)-associated genes to inhibit HDAC activity [57].
Interestingly, several studies have shown that a portion of
histone acetyltransferases (HATs) and HDACs catalyze
the lactylation and delactylation of histones, respectively
[14, 46]. Since lactation and acetylation are subject to the
regulation of both HATs and HDACs simultaneously, it is
reasonable to ascertain the correlation between them [46,
58]. The link between lactylation and acetylation has been
shown in more studies. For instance, lactate simultane-
ously promotes the lactylation and acetylation of high
mobility group protein B1 (HMGB1) in macrophages
by activating p300 acetylase and inhibiting the activity
of SIRT1 deacetylase [59]. Additionally, cold exposure
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can trigger metabolic reprogramming of aerobic glyco-
lysis driven by mitochondrial damage in macrophages,
increase histone acetylation to promote the release of
inflammatory factors. In turn, the accumulation of intra-
cellular lactate results in histone lactylation as a self-
protective mechanism to initiate the transcription of
anti-inflammatory genes [60]. However, the changes of
Kla and Kac differ across cell types. Under hypoxia con-
dition, both human Hela cells and murine macrophages
show increased Kla levels, but Kac levels decrease in the
former, and remain unaffected in the latter [14]. It is for
this reason that the changes of Kla and Kac in different
cells responded to different stimulations are not always
consistent. Therefore, simply attributing the relationship
between Kla and Kac or other acylation modifications to
synergy or competition seems unreasonable.

In addition to acetylation, other posttranslational
acylations, such as succinylation, crotonylation and
butyrylation, have also been reported to crosstalk with
lactylation. For instance, succinylation of PKM2 at lysine
residue K311 in LPS-induced macrophages helps PKM2
enter the nucleus to promote the expression of IL-1p and
HIF-la-dependent genes and the metabolic shift to aero-
bic glycolysis (lactate production) [61, 62]. In contrast,
SIRTS5 acts as an “eraser” of succinylation, effectively des-
uccinylates and activates PKM2, thereby reversing the
above process [61]. Moreover, histone lysine crotonyla-
tion (Kcr) and Kla are distributed widely throughout the
brain, and HDACs have been shown to “erase” histone
Kcr and Kla. While inhibition of HDACs stimulates the
levels of histone acylation modifications (H3K9cr and
H3K18la) in vivo and in vitro, and widely promotes neu-
ronal differentiation and cell proliferation processes [63].
Lactylation could also be associated with butyrylation
mediated by butyrate, which contributes to increased
levels of protein Kla in human Hela cells, and may be
prevented by inhibition of HDACs [64]. Overall, lac-
tylation may be related to other acylation modifications
in ways we do not yet understand, including other pro-
pionylation, glutarylation, betahydroxybutyrylation, and
2-hydroxyisobutyrylation [65—68].

Lactylation in health and diseases

Protein lactylation has been extensively detected and
studied in various disease models. Lactate accumula-
tion from metabolic reorganization in multiple diseases
controls the progress of disease. At the same time, lac-
tate and histone lactylation also seem to be highly nec-
essary for neurodevelopment and to orchestrate gene
expression changes [63]. The role of histone or non-
histone lactylation in neuronal development, cancer,
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inflammation, embryogenesis, cerebral disease, fibrosis,
and so on will be discussed in the following sections
(Table 1).

Cellular development and differentiation

Histone lactylation that marks numerous genes is widely
distributed throughout the developing telencephalon and
changes dynamically in the course of development, indi-
cating histone lactylation is an intrinsic pathway to regu-
late gene expression during mammalian development
[63]. There is a metabolic transition from glycolysis to
mitochondrial oxidative phosphorylation during neuro-
genesis, which contributes to lower levels of lactate and
lactyl-CoA and could have affected whole histone Kla
levels during development [69]. Dai SK et al. [63] showed
that the levels of H3K18la and even total histone H3 Kla
declined over time during neurogenesis and differentia-
tion in mice, while the increased levels of multiple his-
tone lactylations pre-activated neuronal transcriptional
programs and promoted the differentiated maturity of
neural stem cells by the inhibition of “eraser” HDAC1-3.
In contrast, p300/CBP acts as a “writer” of histone lac-
tylation, and its knockdown inhibits embryonic neural
differentiation in the normal and Rubinstein-Taybi syn-
drome brain [70]. Similarly, genes associated with neu-
ral development and differentiation remain primed in
the early stages of neurogenesis, and HATs and HDACs
separately promote the lactylation and delactylation of
histones that target these primed genes and thus regulate
neurogenesis [71, 72]. In fact, the switch for histone lacty-
lation depends on the balance between “writers” (such as
CBP/p300 and HATs) and “erasers” (such as HDACs) and
acts as regulatory elements of genes determining neural
fate. Overall, the crosstalk of multiple histone acylations,
more than just lactylation, plays a key role in the regula-
tion of neural development and disease. Another is that
glucose tends to be metabolized most to produce lactate
through aerobic glycolysis during osteogenic differentia-
tion, characterized by elevated LDHA levels [73]. JunB,
a component of the activator protein-1 (AP-1) transcrip-
tion factor family, is involved in osteoblast differentia-
tion and bone formation [74]. The lactate-derived histone
H3K18la levels gradually increase and are remarkably
enriched on the promoter of JunB to activate its expres-
sion, which contributes to the formation of mineralized
nodules and alkaline phosphatase activity [73]. Moreover,
lactate supplementation also facilitates transcriptional
elongation through enhanced histone lactylation on ger-
mline and embryo cleavage-related genes, which induces
global up-regulation of genes involved in embryo cleav-
age [55] (Table 2)
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Table 2 Therapeutic approaches targeting the lactate/lactylation axis
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Target Representative drugs Research status Example diseases Effects Ref/Trial No.

MCT1 AZD3965 Clinical trial Raji B cell ymphoma Lactate uptake NCT01791595

MCT1 BAY8002 Pre-clinical Triple negative breast cancer Lactate uptake [118]

MCT1 SR13800 Pre-clinical Neuroblastoma, lyphoma, breast  Lactate uptake [119]
cancer

MCT1 AR-C155858 Pre-clinical Breast cancer, colorectal cancer  Lactate uptake [116]

MCT1 7ACC2 Pre-clinical Pancreatic cancer Lactate uptake [117]

MCT4 Syrosingopine Pre-clinical Myeloma Lactate excretion [115]

LDHA GSK2837808A Pre-clinical Liver cancer Lactate production [98]

LDHA Oxamate Pre-clinical Prostate and lung adenocarci- Lactate production [99]
nomas

PDHK Dichloroacetate Clinical trial Metastatic breast cancer, lung Lactate production NCT01029925, NCT01386632, etc.
cancer, etc.

Hexokinase 2DG Clinical trial Prostate cancer, lung cancer, Lactate production NCT00096707, NCT00588185, etc.
breast cancer, etc.

Hexokinase 3-BrPA Pre-clinical Breast cancer, liver cancer, blad-  Lactate production [122]
der cancer, etc.

Hexokinase Tristetraprolin Pre-clinical Breast cancer Lactate production [123]

Hexokinase Lonidamine Pre-clinical Lung cancer, breast cancer, mela- Lactate production [124]
noma, etc.

GPR81 Curcumin Clinical trial Acute lymphoblastic leukemia, Lactate uptake NCT05045443, NCT04731844, etc.
prostate cancer, etc.

GPR81 LRH7-G5 Pre-clinical Triple negative breast cancer Lactate uptake [118]

HDAC ITSA-1 Pre-clinical Nasopharynx cancer Lactylation production [126]

HAT Garcinol Pre-clinical Breast cancer, colon cancer, lung  Lactylation production [127]
cancer, etc.

GCN5 CPTH6 Pre-clinical Leukemia, lung cancer Lactylation production [128]

p300/CBP  A-485 Pre-clinical Neovascularization, pituitary Lactylation production [110]

adenoma, melanoma, etc.

GPR1 G-protein-coupled receptor 81, GCN5 general control non-derepressible 5, HAT histone acetyltransferase, HDAC histone deacetylase, LDHA lactate
dehydrogenase A, MCT monocarboxylate transporter, PDHK pyruvate dehydrogenase kinase, 2DG 2-deoxy-D-glucose, 3-BrPA 3-Bromopyruvic acid

Inflammation

There is growing evidence suggesting that histone or
non-histone lactylation is strongly associated with
inflammation [14, 59, 75-77]. Current research on lac-
tylation associated with inflammation mainly focuses on
macrophages, which are highly plastic cells of the innate
immune system and could promote or resolve inflam-
mation under different functional phenotypes [78]. In
the colitis model, the toll-like receptor (TLR) stimu-
lated by LPS activates PI3K-Akt in a B-cell adapter for
PI3K (BCAP)-dependent manner, which further leads
to the accumulation of lactate and histone lactylation
and therefore enhances expression of reparative mac-
rophage genes associated with the M2-like phenotype,
such as ARG1 and KLF4 [75]. Conversely, the loss of
BCAP may exaggerate the inflammatory response fol-
lowing TLR activation. Another, lactate inhibits its
tetramer-to-dimer transition and nuclear distribution
as well as thus activates PKM2 by promoting the lacty-
lation level of PKM2 at the K62 site, ultimately inducing
a macrophage phenotypic switch toward reparative M2

macrophages, manifested by decreased expression of
inflammatory factors [77]. Similarly, macrophages could
also enhance the uptake of extracellular lactate via MCT
during polymicrobial sepsis with elevated lactate levels
and promote the lactylation of HMGB1 dependent on
the “writer” p300/CBP. And, then, HMGBI1 with elevated
lactylation levels in macrophages is more released and
accumulated into the cytoplasm via exosome secretion to
further induce endothelial barrier dysfunction [59]. Con-
cerning histone lactylation, which is most widely studied,
hypoxia and bacterial challenges boost lactate produc-
tion and elevated histone H3 lactylation at the K18 site by
glycolysis in the late phase of M1 macrophage polariza-
tion, which induces the expression of genes involved in
the damage repair homeostasis [14]. Significantly, histone
lactylation and acetylation have different temporal kinet-
ics, and histone lactylation occurs later than acetylation,
which explains the expression of repair genes in the late
phase of M1 macrophage polarization to promote home-
ostasis. Moreover, multiple studies have shown that long
non-coding RNAs (IncRNAs) play a crucial role (such
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as host immune response and pathogen transmission)
in pathogenic infections [79]. LPS treatment and bacte-
rial infection upregulate the expression of LINC00152 in
human colon cell lines by introducing histone lactylation
on its promoter, and decreasing the binding efficiency of
repressor YY1 to it, which resists both Salmonella inva-
sion and the inflammatory response [76].

Brain diseases

Lactate has been proposed as an energy substrate source
for neurons and a valuable cell-cell signaling molecule in
the brain, which is linked to neurological and psychiat-
ric diseases [80]. The abnormal expression of lymphocyte
cytosolic protein 1 (LCP1) is closely related to various
cancer stages and severity [81]. Recently, Wen et al. [82]
showed that LCP1 was significantly up-regulated on the
14th day in the middle cerebral artery occlusion (MCAO)
rat model through proteomic analysis. The elevated lac-
tylation levels of LCP1 by excessive glycolysis in cerebral
infarction reduce its own degradation and cell viability,
and enhance the cell apoptosis rate in vitro, and increase
the brain water content, infarct area, and neurological
score in vivo [83]. However, LCP1 knockdown or inhibit-
ing the glycolysis reverses the above process and relieves
the cerebral infarction injury [83]. HMGBI1 is typically
loosely bound to DNA in the nucleus but released into
the cytoplasm or extracellular space when cells are dam-
aged by external stimuli, inducing apoptosis and inflam-
matory responses [84]. Yao X et al. [85] showed that
upregulated LDHA increased the lactate content and
promoted the lactylation of histone H3K18la, which
was significantly enriched on the HMGB1 promoter and
upregulated HMGB1 expression, hence inducing cell
pyroptosis and aggravating cerebral ischemia-reperfusion
injury. Similarly, elevated lactate and histone H4K12la
levels also are observed in Alzheimer’s disease and fur-
ther promote the expression of glycolytic gene PKM2,
thus forming a positive feedback loop that contributes
to the abnormal activation and dysfunction of micro-
glia as well as neuroinflammation [86]. Interruption of
this loop by blocking PKM2 could ameliorate microglial
dysfunction and AP pathology [86]. Interestingly, stress-
associated neural excitation and social defeat stress also
increase lactate and histone H1 lactylation levels in the
brain, which is associated with a decrease in social behav-
ior and an increase in anxiety-like behavior [87].

Fibrosis

There is compelling evidence that the upregulation of
glycolysis in trophoblast cells, macrophages, and myo-
cardial endothelial cells contributes to the progression
of placental, pulmonary, and myocardial fibrosis, respec-
tively [88—90]. Reduced blood flow to the uteroplacental
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unit in preeclampsia leads to a hypoxic condition in the
placenta, which in turn promotes excessive lactate pro-
duction by trophoblast cells and induces histone lactyla-
tion to regulate the expression of genes associated with
preeclamptic placental fibrosis (FN1 and SERPINE1)
[88]. Another, TGF-P1 (transforming growth factor-p1)
stimulates the increase of lactate production in lung
myofibroblasts and secrete it into the extracellular milieu
to promote histone lactylation in the promoters of the
profibrotic genes in macrophages, thereby inducing the
expression of some profibrotic mediators [89]. Addi-
tionally, after myocardial infarction, high lactate levels
induce lactylation of Snaill, a TGF- transcription factor,
thereby activating the TGF-/Smad2 pathway to further
up-regulate endothelial-to-mesenchymal transition and
exacerbate cardiac dysfunction and fibrosis [90]. And,
p300 as a “writer” mediates lactate-induced lactylation of
histone and Snaill in these processes. Intriguingly, Wang
N et al. [91] showed that GCN5, as a writer of histone
lactylation, promoted Histone H3 lactylation in mono-
cytes in an IL-1PB-dependent manner after myocardial
infarction and activated reparative genes Lrgl, Vegf-a,
and IL-10, which is conducive to the reparative environ-
ment and the improvement of cardiac function. Overall,
these findings shed light on the mechanism underly-
ing the key contribution of lactate and lactylation to the
pathogenesis of different fibrotic diseases.

Tumors

The tumor microenvironment is often characterized
by lactate, a core metabolite produced by the Warburg
effect [92]. In the last decades, lactate may be considered
a biological marker of malignancy, and it was found to
be strongly associated with shorter overall survival and
a higher incidence of metastasis in tumor patients [93].
This association led us to question whether lactate has
a role in cancer progression. The available data already
suggest tumor-associated lysine lactylation occurs on
both histone and non-histone proteins. In hepatocel-
lular carcinoma (HCC), glypican-3 knockdown reduces
the lactylation of c-myc and further reduces the protein
stability and expression of c-myc, thereby inhibiting the
progression of liver cancer [94]. Another example is that
high lactylation of adenylate kinase 2 in HCC could sig-
nificantly reduce its own activity, mediate perturbation of
ATP metabolism and down-regulate the intrinsic apop-
tosis pathway to promote cancer cell proliferation and
migration, and predict poor prognosis in HCC patients
[95]. Concerning colorectal cancer (CRC), Hypoxia-
induced glycolysis promotes the lactylation of -catenin
to further enhance the protein stability and expression
of B-catenin, ultimately aggravating the progression of
CRC through the Wnt signaling pathway [96]. In prostate
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cancer, elevated lactate promotes the lactylation and sta-
bility of HIFla to induce KIAA1199 transcription and
KIAA1199-mediated angiogenesis, vasculogenic mimicry
and depolymerized hyaluronic acid levels [97]. Moreover,
Gu J et al. [98] showed that the lactylation of MOESIN at
lys72 enhanced TGEF-f and downstream SMAD3 signal-
ing in Treg cells through TGEF-p receptor I to regulate the
development and function of Treg cells to increase tumo-
rigenesis and tumor growth.

In addition, histone H3 (e.g., K9, K18, and K56) are also
found to be involved in the regulation of various cancer
types including lung, prostate, kidney, colon, liver, and
melanoma [99-104]. He Y et al. [99] demonstrated that
prostate and lung adenocarcinomas exhibited prefer-
ential utilization of aerobic glycolysis and concomitant
histone hyperlactylation due to an impairment of the
Parkin-mediated mitophagy, which subsequently led to
the metabolic reprogramming and neuroendocrine dif-
ferentiation following upregulation of neuroendocrine
gene expression. However, the cell fate determinant
Numb reversed this process by binding to Parkin. Lactate
also regulates cellular metabolism at least in part through
down-regulating HK-1 (glycolytic enzyme) and up-reg-
ulating IDH3G (TCA cycle enzyme) gene expression
mediated by histone lactylation in non-small cell lung
cancer [100]. In clear cell renal cell carcinoma, inactive
von Hippel-Lindau (VHL) induces histone lactylation
in a HIFs-dependent manner, thereby transcriptionally
activating the expression of platelet-derived growth fac-
tor receptor  (PDGFRp) to promote tumor progress. In
turn, overexpression of PDGFRf positively stimulates
histone lactylation [101]. Concerning hepatocellular car-
cinoma, demethylzeylasteral reduces the lactate level and
attenuates histone lactylation, which plays an anti-cancer
role by regulating the glycolytic metabolic pathway [102].
In ocular melanoma, elevated histone lactylation effec-
tively promotes the tumorigenesis through up-regulating
the transcription of YTHDF2 and further inducing the
degradation of PER1 and TP53 mRNAs via binding to
their respective m6A sites [103]. Moreover, in colorectal
cancer, elevated lactate in tumor-infiltrating myeloid cells
induced METTL3 expression by promoting histone lac-
tylation, and further m6A modification on Jakl mRNA,
which promotes its protein translation and strengthened
downstream STAT3 signal that enhanced immunosup-
pressive functions of myeloid cells to promote tumor
immune escape.

Other epigenetic regulations

In addition to those above, lactate-induced lactyla-
tion can additionally contribute to DNA repair, embryo
implantation, and the improvement of the fatty liver,
but it can also lead to the worsening of pulmonary
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hypertension and proliferative retinopathies [105-110].
Sun Y et al. [105] found that hyperlactylation of PARP1
regulated its ADP-ribosylation activity and might con-
tribute to DNA repair based on an alkynyl-functionalized
bioorthogonal chemical reporter, YnLac. The bioorthog-
onal lactylation chemical reporter opens up new avenues
for the functional research and analysis of this newly
discovered lactylation in normal physiology and disease.
During pregnancy, increased levels of histone H3K18
lactylation and lactate help to maintain glutathione-
based redox homeostasis and apoptotic balance, which
are essential for successful embryo implantation [106].
However, inhibition of LDHA activity reduces lactate
and histone lactylation, thereby impairing embryonic
pre-implantation development [107]. Another important
benefit is that MPC1 knockout induced lactate accumula-
tion, promoted the lactylation of FASN at the K673 site in
hepatocytes to inhibit activity of FASN, and mediated the
down-regulation of liver lipid accumulation, as reported
by Gao R et al. [108]. On the downside, hypoxia-induced
mitochondrial reactive oxygen species (mROS) triggers
lactate accumulation and histone lactylation in pulmo-
nary artery smooth muscle cells (PASMCs) by upregu-
lating HIF-1a/PDK1&2/p-PDH-Ela axis, which further
promotes the proliferation of PASMCs and vascular
remodeling and exacerbates hypoxic pulmonary hyper-
tension [109]. Moreover, hyperlactylation of non-histone
YY1 under hypoxia is regulated by p300 as a “writer” YY1
is directly bound to the promoter of FGF2 and promotes
the transcription of FGF2 through its high lactylation,
thus promoting the formation of neovascularization. This
situation is reversed by the p300/CBP inhibitor A-485
[110].

Lactylation in different cell biology processes

Increasing studies focus on the role of lactate-mediated
lactylation in different cell biology processes to under-
stand the function of protein lactylation. We will specifi-
cally discuss lactylation-mediated antitumor immunity
and also focus on macrophages, immune cells, and other
types of cells.

Macrophages

Macrophages are a highly heterogeneous cell population
and act as scavengers that regulate immune reactions
and also participate in the maintenance and restoration
of immune homeostasis [111]. Activated macrophages
are generally divided into two phenotypes: proinflam-
matory macrophages, so-called M1-type macrophages,
and anti-inflammatory M2-type macrophages [112]. In
the early tumor development stage, tumor-associated
macrophages facilitate the development of a proinflam-
matory environment in the tumor, but in later stages,
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elevated lactate-derived histone H3K18la levels by gly-
colysis skews macrophage polarization toward the M2
phenotype [14]. In polymicrobial sepsis, lactate-derived
HMGBI1 in macrophages has elevated lactylation lev-
els, which accumulate in the cytoplasm via exosome
secretion and result in endothelial dysfunction [59].
Elevated histone H4K8la levels in macrophages upregu-
late LINCO00152 by reducing the negative regulatory
efficiency of YY1 on LINC00152, thereby inhibiting sal-
monella invasion and inflammatory response and pro-
moting tumor growth [76]. Moreover, TGE-B1 stimulates
the increase of lactate production in myofibroblasts and
secreted it into the extracellular milieu to promote his-
tone lactylation in macrophages, thereby inducing the
expression of some profibrotic mediators [89]. Overall,
lactylation affects the metabolic reprogramming and
immunomodulatory effects of macrophages. Mainly,
it promotes polarization changes that have a positive
effect on promoting the repair of damage and tumor
phenotype.

Immune cells

Elevated lactylation of MOESIN at Lys72 in Treg cells
mediated by lactate from cancer enhances TGF-p and
downstream SMAD3 signaling to regulate the develop-
ment and function of Treg cells to control tumorigen-
esis and antitumor therapy [98]. A high level of histone
lactylation in tumor-infiltrating myeloid cells induces
METTL3 expression and m6A modification of Jakl
mRNA, which leads to the protein translation of Jakl
and the stimulation of downstream STAT3 signal that
enhances myeloid immunosuppressive functions [104].
Overall, these studies show that lactylation may have
an immunosuppressive effect on the several types of
immune cells in tumor microenvironment.

Neurocytes and osteoblasts

The lactylation level of histone H3 in neural stem cells
has been observed to decrease over time during mouse
neurogenesis. However, multiple histone Kla levels ele-
vate significantly to orchestrate gene expression changes
and widely participate in neuronal differentiation and
cell proliferation processes significantly by inhibiting the
“eraser” HDAC1-3 or activating the “writer” p300/CBP
[63]. Similarly, the increased expression level of H3K18la
in osteoblasts promotes the formation of cell mineralized
nodules and alkaline phosphatase activity, which plays an
important role in the differentiation of osteoblasts [107].
And, the elevated lactylation of LCP1 and histone H3 in
neurocytes after cerebral infarction reduce its own deg-
radation and cell viability and enhance the expression
of IL-18 and IL-1p and the apoptosis rate of neurocytes
[83, 85]. Activated microglia in Alzheimer’s disease are
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overly lactate and histone lactylated, further promoting
glycolytic gene PKM2 expression, resulting in abnormal
activation and dysfunction [86]. Moreover, an increase in
lactate and histone lactylation levels in neurocytes occurs
in response to social defeat stress and stress-associated
neural excitation, which are associated with increased
anxiety-like behavior [87]. In summary, the existing stud-
ies have revealed the non-canonical function of lactyla-
tion during nerve and osteogenic differentiation.

Tumor cells

The lactylation of c-myc and AK2 in HCC cells affects
the degradation and activities of the cells themselves,
which result in their viability, migration, and invasion
[94, 95]. Similarly, enhanced lactylation of B-catenin in
colon cancer cells amplifies the stability and manifesta-
tion of B-catenin, thus exacerbating the progression of
colon cancer via the Wnt signaling pathway [96]. HCC
cells also exhibit elevated lactylation levels of histone
H3, which DML can reduce and play an anticancer role
by regulating the glycolytic metabolic pathway [102]. Ele-
vated histone lactylation levels have also been reported in
lung cancer cells, renal cancer cells, and melanoma cells
to promote tumor occurrence and development through
mediating HK-1 and IDH3G gene expression, or tran-
scriptionally activating the expression of PDGFRpP and
YTHDEF2 [100, 101, 103]. Moreover, a prostate cancer cell
with elevated lactylation of HIF-1a activates KIAA1199,
simulates KIAA1199-mediated angiogenesis and vas-
culogenic mimicry, and increases depolymerized hyalu-
ronic acid [97].

Other cell types

Generally, research suggests that lactylation in different
cell types functions differently in different conditions.
Non-histone YY1 with hyperlactylation regulated by the
“writer” p300 in retinal microglia under hypoxia directly
interacts with the promoter of FGF2 and promotes its
transcription, thereby activating neovascularization
[110]. Moreover, lactylation histone H3 is reported to
associate with endometrial cells, oocytes, and embryonic
cells and contributes to the maintenance of glutathione-
based redox homeostasis and apoptotic balance, which
are essential for successful embryo implantation [106,
107]. Furthermore, pulmonary hypertension and fatty
liver disease are exacerbated by the lactylation change of
histone H3 in pulmonary smooth muscle cells and FASN
in hepatocytes, respectively [108, 109].

Lactate/lactylation-targeting drugs

The abundance and immunomodulatory effects of lac-
tate and lactylation may be a novel direction for targeted
therapy in various diseases, alone or in combination with
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other therapeutic strategies. Lactate and its transporter
proteins will likely serve as a new therapeutic target, such
as targeting MCT1, MCT4, and LDHA, which are cur-
rently under preclinical investigations and clinical trials.
High LDH levels in the blood and tumor microenviron-
ment are associated with a poor prognosis [113]. The
transport capacity of MCT1/4 is critical for intracellu-
lar and extracellular lactate levels and transports lactate
into and out of the cell according to the concentration of
the substrate [114]. Several MCT inhibitors, including
syrosingopine, AR-C155858, 7ACC2, BAY8002, SR13800
and AZD3965, have been shown to inhibit MCT activ-
ity, but only the MCT1 inhibitor AZD3965 is currently
in human clinical trials (NCT01791595) [115-119].
For example, metabolic changes induced by the MCT1
inhibitor AZD3956 (particularly the decrease in lactate
export) promote increased infiltration of anti-tumor
immune cells (dendritic and natural killer cells), thereby
inhibiting tumor growth in mice [120]. Moreover, clini-
cal trials in humans have shown AZD3965 to be well
tolerated at doses that deliver target engagement, most
commonly with electroretinogram changes, fatigue, and
anorexia, all of which are reversible [121]. Co-treatment
with anti-PD-1 and the LDHA inhibitor GSK2837808A
has a stronger anti-tumor effect than anti-PD-1 therapy
alone. Mechanically, lactate degradation reduces regu-
latory T (Treg) cell induction and tumor growth and
enhances anti-tumor immunity [98]. In addition, oxam-
ate and dichloroacetate also inhibit lactate production for
the treatment of a variety of tumors as well as metabolic
diseases by targeting LDHA and pyruvate dehydrogenase
kinase (PDHK), respectively [99, 101]. And, 2-deoxy-
D-glucose (2DG), 3-Bromopyruvic acid (3-BrPA), tris-
tetraprolin, and lonidamine have also been reported to
be involved in inhibiting hexokinase and thus regulating
glycolysis [122-124]. Interestingly, the lactate receptor
GPR81 induces chemoresistance in hepatic cancer cells
by binding to lactate [125]. And, curcumin and LRH7-
G5 can restore the sensitivity of resistant tumor cells to
chemotherapy by targeting GPR81 [118, 125]. Overall,
targeting lactate and its transporter not only enhances
the antitumor responses of the immune system, but also
significantly increases their therapeutic efficiency and
plays a synergistic effect in combination with checkpoint
inhibitors.

Several drugs targeting protein post-translational
modifications (i.e., enzymes that catalyze the lactyla-
tion and delactylation of proteins) have been shown to
be therapeutically effective for a variety of diseases in
clinical trials. Highly selective delactylase agonists (e.g.,
ITSA-1 targeting for HDACs) and inhibitors of lactyla-
tion induction (e.g., garcinol targeting for HATs) affect
various physiological processes regulated by histone or
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non-histone lactylation and can be targeted for thera-
peutic purposes in a variety of diseases [126, 127].
Moreover, the p300/CBP inhibitor A-485 also exerts
an anti-retinal neovascularization effect in prolifera-
tive retinopathies through the inhibition of lactylation
modification of YY1 at the K183 site [110]. Similarily,
CPTHS, a selective GCN5 HAT inhibitor, can induce
apoptosis in human leukemia cells [128]. Control-
ling the switch from lactate production and lactyla-
tion to acetyl-CoA production and the TCA cycle may
provide new opportunities for targeted cancer thera-
pies. Therefore, the exact mechanism of lactylation
requires further study to identify novel targets for drug
development.

Conclusions and perspectives

In summary, the new target, protein lactylation, is a
“double-edged sword” for human health and diseases.
Because it is closely related to multiple physiological
and pathological processes, such as neuronal develop-
ment, embryogenesis, cancer, inflammation, cerebral
disease, fibrosis, and so on. Briefly, the positive effects of
protein lactylation on human health are typically mani-
fested as a key regulatory role in the differentiated matu-
rity of neural stem cells and osteoblast differentiation
and bone formation, as well as transcription elongation
of embryo cleavage-related genes. In addition, lactyla-
tion also contributes to DNA repair, embryo implanta-
tion, and the improvement of the fatty liver. However,
on the other hand, elevated lactylation may have either
a causative or predisposing role in the worsening of can-
cer, inflammation, fibrosis, and brain diseases, pulmo-
nary hypertension, and even proliferative retinopathies.
These perspectives are critically significant and are first
described in detail in this review. Although the functions
of protein lactylation in health and disease have been
reported, to aid in the development of more targeted lac-
tylation inhibitors/agonists and facilitate their application
in clinical practice, additional studies exploring the con-
crete molecular mechanisms of lactylation are needed.
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