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Abstract 

Background  Neoantigens have emerged as a promising area of focus in tumor immunotherapy, with several estab-
lished strategies aiming to enhance their identification. Human leukocyte antigen class I molecules (HLA-I), which 
present intracellular immunopeptides to T cells, provide an ideal source for identifying neoantigens. However, solely 
relying on a mutation database generated through commonly used whole exome sequencing (WES) for the identifi-
cation of HLA-I immunopeptides, may result in potential neoantigens being missed due to limitations in sequencing 
depth and sample quality.

Method  In this study, we constructed and evaluated an extended database for neoantigen identification, based 
on COSMIC mutation database. This study utilized mass spectrometry-based proteogenomic profiling to identify 
the HLA-I immunopeptidome enriched from HepG2 cell. HepG2 WES-based and the COSMIC-based mutation data-
base were generated and utilized to identify HepG2-specific mutant immunopeptides.

Result  The results demonstrated that COSMIC-based database identified 5 immunopeptides compared to only 1 
mutant peptide identified by HepG2 WES-based database, indicating its effectiveness in identifying mutant immun-
opeptides. Furthermore, HLA-I affinity of the mutant immunopeptides was evaluated through NetMHCpan and pep-
tide-docking modeling to validate their binding to HLA-I molecules, demonstrating the potential of mutant peptides 
identified by the COSMIC-based database as neoantigens.

Conclusion  Utilizing the COSMIC-based mutation database is a more efficient strategy for identifying mutant pep-
tides from HLA-I immunopeptidome without significantly increasing the false positive rate. HepG2 specific WES-based 
database may exclude certain mutant peptides due to WES sequencing depth or sample heterogeneity. The COSMIC-
based database can effectively uncover potential neoantigens within the HLA-I immunopeptidomes.
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Introduction
Primary liver cancer ranks as the fifth most common 
tumor and the second leading cause of cancer-related 
deaths in China. The majority of primary liver cancer 
cases are hepatocellular carcinoma (HCC), constitutes 
the majority of primary liver cancer cases, representing 
approximately 75–85% of all liver cancer cases [1]. Over 
50% of HCC patients are diagnosed with advanced HCC, 
characterized by a poor prognosis and a 1-year survival 
rate ranging from 12 to 38% 1-year [2, 3]. Identifying 
effective treatment options for advanced HCC is crucial. 
Immune checkpoint inhibitors and antiangiogenic tar-
geted drugs have recently emerged as first-line treatment 
for advanced HCC, demonstrating promising objective 
response rate. However, due to drug resistance, nearly 
half of the patients have an unsatisfactory prognosis [3, 
4]. Thus, the development of efficient second-line thera-
pies is essential. Recent reports suggest that adoptive 
T-cell therapy achieves promising results against various 
cancers, including HCC, by improving immunosuppres-
sion in the tumor microenvironment [5–7]. To prepare 
adoptive T-cell with high specificity and cytotoxicity 
against tumor cells, antigens that specifically stimulate 
T-cell are of high priority [8]. Increasing evidence sug-
gests that neoantigens, characterized by tumor-specific 
mutant proteins or peptides with immunogenicity, are 
ideal antigens for T-cell activation, facilitating effective 
immune responses against tumors while minimizing the 
incidence of autoimmune reaction [9].

Conventional approaches for identifying neoantigen 
typically involve Next-generation sequencing or Mass 
spectrometry (MS) to detect somatic mutations in whole 
cell proteome [10–12]. These approaches, combined with 
in silico HLA-I binding affinity prediction, can identify 
neoantigen [13]. However, only a fraction of these mutant 
peptides is considered as neoantigens, limiting their 
clinical application. In comparison to previous strategies 
such as genomic or proteogenomic approaches, HLA-I 
immunopeptidome approach shows great potential in 
neoantigen identification directly detecting HLA-I pre-
sented peptides. This approach has been successfully 
used in identifying neoantigen in melanoma, non-small 
lung cancer and other cancers [12, 14–16], resulting in 
improved accuracy. Nonetheless, the identification of 
HLA-I immunopeptide is based on database generated 
from the genome, which may result in the omission of 
mutant peptides due to undetected low-frequency muta-
tions and differences sample collection [17]. For instance, 
a study involving 8 HCC patients identified 11,266 non-
synonymous single-nucleotide DNA variants, but only 
1,875 amino acid mutations at the proteomic level [18]. 
Similarly, in another study involving whole-exome and 
transcriptome sequencing of 16 HCC tumor tissues and 

normal tissue samples, 1,039 mutations and 159 potential 
tumor neoantigen peptides were identified and verified 
by proteomics, but no corresponding HLA peptides were 
found from tumor tissue [19]. HCC is considered a low 
tumor mutational burden (TMB) cancer compared to 
other types of cancer [20], resulting in fewer mutations at 
the genomic level. Moreover, previous studies have iden-
tified a long-tail phenomenon in tumor mutation genes, 
leading to a high prevalence of low-frequency muta-
tions [21]. Inadequate sequencing depth of WES poses 
challenges in the detection of low-frequency mutations. 
Due to the limitations of exome sequencing technology 
and cost, uneven sequencing depth is observed, result-
ing in insufficient coverage in SNP-intensive regions, 
which hinders the detection of existing variations. Con-
sequently, WES may fail to detect mutations, especially 
in tumors with low frequencies [22]. These findings indi-
cate that the number of mutations at the protein level is 
significantly reduced, posing challenges in identifying 
mutant protein or peptides recognized by the immune 
system [23]. This presents an increased difficulty in iden-
tifying tumor neoantigens in HCC. The Catalogue of 
Somatic Mutations in Cancer (COSMIC) is a comprehen-
sive database that collects somatic mutations identified in 
various types of cancers, including HCC. Additionally, 
COSMIC provides a wealth of information on other less 
common genetic alterations in HCC, extending mutation 
database for identification of neoantigens, apart from the 
well-established HCC-associated genes.

This study proposes a database generation strategy to 
enhance the coverage of somatic mutations in HCC. The 
approach is based on HCC mutation data from COSMIC 
somatic mutation database. To evaluate the effective-
ness of the strategy, we enriched and analyzed HLA-I 
presented peptides from HepG2 cell line using high-
resolution mass spectrometry. Both COSMIC-based and 
HepG2 WES-based database were employed to identify 
potential neoantigens. Furthermore, the identified neo-
antigens underwent validated through HLA-I binding 
affinity prediction and peptide-protein docking models.

Materials and method
HepG2 Cell line
The HepG2 hepatocellular carcinoma cell line was 
obtained from the American Type Culture Collection 
and cultured in Dulbecco’s modified Eagle’s medium sup-
plemented with 10% fetal bovine serum in 37 ℃ with 5% 
CO2.

Western blot analysis to assess HLA‑I
Samples containing HLA- I peptide complexes, including 
total cell lysate (TCL), flowthrough (FT), and elution frac-
tions, were collected and separated on a 10% SDS-PAGE 



Page 3 of 16Wang et al. Journal of Translational Medicine  (2024) 22:144	

gel subsequently, the proteins were transferred onto a 
nitrocellulose membrane. The membrane was blocked 
with 5% defatted milk in TBST for 2  h to prevent non-
specific binding. For HLA-A/B detection, the membrane 
was incubated with a primary antibody against HLA-A/B 
(ABclonal, Hubei, China) for 2  h at room temperature. 
This was followed by incubation with a secondary anti-
body for 1 h at room temperature. Finally, signal detec-
tion was performed using a chemiluminescent substrate 
(Scientific, California, United States).

HLA‑I immunopeptidome enrichment and purification
To prepare the cell lysate, three biological replicates of 
HepG2 cells were collected and washed three times with 
cold phosphate-buffered saline (PBS). The cells were 
then lysed using a cold solution of lysis buffer consisting 
of 0.25% sodium deoxycholate, 0.2  mM iodoacetamide, 
1  mM EDTA, and 1:200 Protease Inhibitors Cocktail 
(Sigma-Aldrich, Missouri, United States) in PBS. After 
30 min on ice, the lysate was centrifuged at 20,000 g for 
30 min at 4 ℃ to remove sediment. To enrich HLA-I pep-
tide complexes, a house-made pan-HLA class I antibody 
was coupled with Protein G Sehparose beads (Cytiva, 
Massachusetts, United States). The beads with antibody 
and HepG2 cell lysate were co-incubated overnight at 
4 ℃ to specifically bind the HLA-I peptide complexes. 
Subsequently, the captured HLA-I peptide complexes 
were subjected to three cold PBS washes to remove non-
specifically bound proteins or contaminants. Finally, the 
HLA-I peptide complexes were eluted from the beads 
using 0.15% Trifluoroacetic acid (TFA) in water. To purify 
the immunopeptidome, house-made C18 stage tips were 
prepared. The stage tips were activated by 100% ace-
tonitrile (ACN) and 80% ACN in 0.1% TFA. followed by 
equilibration with 0.1% TFA in water. The HLA-I peptide 
complexes were loaded onto the C18 stage tips twice, fol-
lowed by three washes 0.1% TFA in water. The purified 
HLA-presented peptides were eluted from the C18 stage 
tips using a solution of 30% ACN in 0.1% TFA, and sub-
sequently dried using freeze vacuum drying equipment. 
To prepare for LC–MS/MS analysis, the peptide sam-
ples were reconstituted in a loading buffer containing 1% 
ACN in 0.1% TFA.

LC–MS/MS analysis of HLA‑I immunopeptidome
The HLA-I immunopeptidome was analyzed using an 
EASY-nLC 1200 instrument (Thermo Fisher Scien-
tific, California, United States) equipped with a self-
packed capillary column (75  μm i.d. × 20  cm, 1.9  μm 
C18 reversed-phase fused silica) coupled to an Orbit-
rap Exploris 480 (Thermo Fisher Scientific, California, 
United States). The gradient was comprised of an increas-
ing Buffer B (Buffer A: 0.1% FA in water; Buffer B: 0.1% 

FA in 100% ACN) from 5 to 10% for 4  min, 10 to 30% 
for 56 min, 30 to 95% for 6 min and holding for 2 min. 
Full MS scans ranged from 300 to 1600 m/z with a reso-
lution of 60,000. The maximum injection time was 50 ms, 
and the normalized automatic gain control (AGC) target 
was set at 300% for the remaining settings. The MS2 scan 
was configured to collect fragmentation for charge state 
of 2 to 6, using high-energy collision dissociation (HCD) 
with normalized collision energy of 27%, the resolution 
for MS2 was set at 15,000, AGC target was set at 100%, 
and the maximum injection time was 40 ms. A dynamic 
exclusion time of 15 s was applied. Theoretical retention 
time were generated using DeepLC (https://​iomics.​ugent.​
be/​deeplc/).

Generation of database and searching of MS raw files
Initially, the UniProt Human database (42,397 entries 
including isoforms) was employed in HLA immunopep-
tidome analysis [25]. Then, we generated a HepG2 WES-
based database. The whole exome sequencing data was 
acquired from Depmap Portal (https://​depmap.​org/​por-
tal/) [26]. These acquired files were annotated by Biopy-
thon (v 1.8.1) [27], which retained only non-synonymous 
variants, including single nucleotide (SNV), insertions 
and deletions. These mutations were translated into 
protein sequences, which could be utilized in database 
search section. For the generation of COSMIC-based 
database, the liver and hepatocellular carcinoma were 
selected in the cancer browser tool in COSMIC website 
to generate a list of 3306 HCC samples. Then, somatic 
mutation information (Cosmic_GenomeScreensMu-
tant_Tsv_v98_GRCh38) was downloaded from COSMIC 
(https://​cancer.​sanger.​ac.​uk/​cosmic/) [28]. Somatic muta-
tions of the HCC samples were extracted based on the 
HCC sample list, and nucleotide sequences were subse-
quently generated using the reference sequence (Genome 
Reference Consortium Human Build 38). Synonymous 
variants were removed, and the Biopython package was 
used to translate the nucleotide sequences into amino 
acid sequences to build the COSMIC-based database. 
However, the large size of the database meant that this 
process required a significant amount of resources for 
database searching. To improve database searching effi-
ciency, new mutant sequences were created based on the 
extension of 50 amino acids (a.a) up and downstream of 
the altered position. If the mutation site resided within 50 
amino acids from either the 3’ or 5’end, the new mutant 
sequences terminated as fare as possible. This approach 
significantly reduces the size of COSMIC-based database 
and improve database searching efficiency.

The database search was carried out using MSFrag-
ger (V20.0) [29] with MS raw files and UniProt Human 
database. MSFragger settings utilized the “non-specific 

https://iomics.ugent.be/deeplc/
https://iomics.ugent.be/deeplc/
https://depmap.org/portal/
https://depmap.org/portal/
https://cancer.sanger.ac.uk/cosmic/
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HLA” workflow for HLA immunopeptidome analysis. 
Since the HLA-I immunopeptidome consists of proteo-
lytically degraded proteins synthesized by the cell, no 
enzyme digestion was selected. A tolerance of 20  ppm 
was allowed in both the MS and MS2 search modes. A 
false discovery rate (FDR) of < 1% was set for peptide-
spectrum match, and no protein FDR filter was applied. 
The workflow assumed that cysteines were not alkylated, 
and cysteinylation was specified as a variable modifica-
tion. The HepG2 WES-based and COSMIC-based data-
base were also used for the database search in MSFragger, 
utilizing the same settings.

HLA‑I typing and HLA binding prediction
HLA typing of HepG2 was obtained from a previous 
study [30]. Additionally, HLA typing was performed 
using arcasHLA with the HepG2 transcriptome sequence 
from our previous work [31, 32]. The confirmed HLA 
typing results for HepG2 cell line were used in the sub-
sequent analysis. Only peptides consisting of 8–14 a.a 
were selected for HLA binding prediction. The peptides 
were clustered into groups based on sequence similari-
ties using Gibbscluster-2.0 with default parameters [33]. 
Briefly, Kullback–Leibler Divergence in each group was 
calculated in Gibbscluster, and group with the high-
est Kullback–Leibler Divergence was selected for the 
most obvious difference between peptide segments. 
HLA-I binding prediction was performed using Net-
MHCpan-4.1 (https://​servi​ces.​healt​htech.​dtu.​dk/​servi​
ces/​NetMH​Cpan-4.​1/) with HLA subtype HLA-A0201, 
HLA-A2402, HLA-B3514, HLA-B5101, HLA-C0401, 
HLA-C1602. The threshold was 0.5 and 2 for strong 

and weak binder respectively, and NetMHCpan built-in 
evaluation data sets were used for binding prediction. 
Binding prediction results were visualized using R studio 
(build 524) with ggplot2 package, and the artwork is cre-
ated with BioRender.com.

Peptides‑protein docking modeling
Mutant peptides identified from the HepG2 WES-based 
and COSMIC-based database searches underwent sev-
eral filtering steps based on spectrum, length, and HLA 
binding results. Only mutant peptides with a length of 
8–14 a.a and strong HLA-I binding were selected for 
peptides-protein docking modeling. The structure model 
of HLA-A0201 (1DUZ) and HLA-A2402 (5HGA) were 
downloaded from RCSB Protein Data Bank [34]. HPep-
Dock 2.0 (http://​huang​lab.​phys.​hust.​edu.​cn/​hpepd​ock/), 
a computationally efficient protein-peptide prediction 
model, was used for docking modeling [35]. The predic-
tion results were automatically evaluated by HPepDock 
according to the interface Root Mean Square Deviation 
from the native structure. The peptide-protein docking 
model and molecular surface hydrophobicity were subse-
quently analyzed and visualized using ChimeraX (v 1.6.1) 
[36].

Results
Identification and characteristics of HLA‑I 
immunopeptidome in HepG2 cell line
The process of identifying neoantigens is illustrated 
(Fig.  1). Immunoprecipitation successfully enriched 
HLA-I peptide complexes from HepG2 cell lysate. To 
evaluate the enrichment efficiency, we compared the 

Fig. 1  Workflow of neoantigens identification from HepG2 HLA-I immunopeptidome. The HepG2 cell HLA-I immunopeptide complex 
was enriched using the W6/32 antibody. The immunopeptides were then separated from the HLA-I immunopeptide complex using a C18 
column and identified through LC-MS/MS analysis. A HepG2 WES-based and COSMIC-based mutation database were utilized to identify potential 
neoantigens from the immunopeptidomes. Finally, these neoantigen candidates were assessed using bioinformatics tools to confirm their affinity 
to the HLA-I molecule.

https://services.healthtech.dtu.dk/services/NetMHCpan-4.1/
https://services.healthtech.dtu.dk/services/NetMHCpan-4.1/
http://huanglab.phys.hust.edu.cn/hpepdock/
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HLA A/B signals in TCL, FT and elution by western blot-
ting, quantifying them using grayscale (Fig.  2a,  Addi-
tional file  1: Fig. S1a). Western blot analysis revealed 
that the HLA A/B signal in the FT was significantly 
lower compared to the TCL, while a strong signal was 

observed in the elution. Greyscale quantification demon-
strated successfully enrichment and elution of nearly 50% 
of HLA A/B and eluted from the TCL (Fig.  2b). Subse-
quently, a total of 8549 peptides were identified through 
LC–MS/MS analysis. Of these, approximately 74.6% of 

Fig. 2  HLA-I immunopeptides identified from HepG2 by IP-MS. A. Immunoblot showing HLA A/B protein levels in total cell lysate (TCL), 
flowthrough (FT) and elution. Table shows volumes used in western blotting analysis and corresponding grayscale value. B. HLA-A/B protein 
enrichment efficiency based on immunoblot result. C. Comparison of the matched MS spectra and identified peptides as well as proteins. D. 
Overlap of identified peptides for 3 biological replicates from HepG2 samples using Uniprot Human database. E. Distribution of Hyperscore 
of immunopeptides identified from 3 repeated HepG2 samples. F. Length distribution of with 8-14 a.a peptides identified from 3 repeated HepG2 
samples. G. Overlap of 8-14 a.a identified peptides for three biological replicates from HepG2 cells using Uniprot Human database.
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them (n = 6,376) being 8–14 a.a in length, which cor-
responds to the length characteristics of HLA-I immu-
nopeptidome (  Additional file  1: Table  S1). In three 
biological replicates, we identified 4537, 3900 and 3481 
8–14 a.a peptide sequences, respectively (Fig.  2c). Venn 
diagrams demonstrated commonly identified peptides 
comprised the highest portion, demonstrating consist-
ency in the enrichment and identification of HLA-I 
immunopeptidome (Fig. 2d). Furthermore, Hyperscores, 
used for evaluating the quality of spectra by compar-
ing observed spectra to theoretical ones generated by 
MSFragger [29], were compared between HLA-I immun-
opeptidome from three replicates, indicating consistency 
in the mass spectrum quality (Fig. 2e, Additional file 1). 
The theoretical reaction time (RT) exhibits a strong cor-
relation with the observed RT (Additional file 1 Fig. S1b; 
Additional file 2). Peptides with lengths ranging from 8 to 
14 a.a exhibited a distribution pattern, with the majority 
consisting of 9 a.a peptides (Fig.  2f, g and    Additional 
file 1: Fig. S1c).

Discover HepG2 specific mutant peptide using HepG2 
WES‑based database
Based on the satisfied data quality of the HepG2 HLA-I 
immunopeptidome, we utilized HepG2 WES-based 
database to identify potential neoantigens from HLA-I 
immunopeptidome (Additional file 3). The Gibbs cluster-
ing approach was used to analyze the anchor residues of 
the eluted peptides. The results revealed primary bind-
ing motifs that primarily clustered in two groups (Fig. 3a, 
b, Additional file 4). Subsequent analysis was performed 
using NetMHCpan 4.1 with default settings. Peptides 
were categorized as having strong binding when the per-
centage rank was less than 0.5%, and weak binding was 
assigned to those within the percentage rank range of 0.5 
to 2.0%. The results indicated that 66.8% of 8–14 a.a pep-
tides were predicted to bind to HLA-I molecules. A pref-
erence for binding was observed across different HLA 
alleles, with HLA-A0201 (n = 2014) and HLA-A2402 
(n = 1918) exhibiting particularly strong preference 
(Fig. 3c). The distribution of amino acid species at the P2 
(Second amino acid) and PΩ (Last amino acid) positions 
in the Gibbs clustered peptides corresponds with the dis-
tribution observed in the NetMHCpan reference data-
base (Additional file 1: Fig. S2d, e).

These findings are consistent with the results obtained 
from Gibbs clustering, and indicating that the bind-
ing motif clusters within HLA-A0201 and HLA-A2402. 
Additionally, there was a length distribution among 
strong binders, and it was found that 9 a.a peptides 
were the most frequently observed (Fig.  3d), which is 
consistent with the length distribution of HLA-I immu-
nopeptides reported in previous studies[12, 14, 37]. 

Furthermore, 9 a.a peptides were predicted to have a 
lower elution percentage rank, indicating a stronger bind-
ing ability to the HLA-I molecules (Fig.  3e). However, 
there was no significant difference in peptide intensity 
observed among peptides of different lengths (Additional 
file 1: Fig. S2a). Our study identified only 1 mutant pep-
tide, derived from mutation of thymine to cytosine at 
position 242 in AMT, using the HepG2 WES-based data-
base (Table 1, Fig. 3f ), indicating the limited effectiveness 
of personalized-specific databases in identifying mutant 
immunopeptidomes. Similar findings were reported in 
a previous study [16]. Notably, the HLA-I immunopep-
tidomes of HepG2 contained both the wild type peptide 
“SLFDVSHML” and the mutant peptide “SLFDASHML”. 
Although the mutant peptide and wild-type peptide had 
low intensities, their predicted HLA-I affinity was higher 
compared to other peptides (Fig. 3g, h).

Generation of COSMIC‑based database
The construction workflow for the mutation database 
was summarized into four parts (Fig.  4a). The genes 
sequences of mutations were extracted from COMSIC 
genomic database, which consisted of 1,233,831 muta-
tions, and HepG2 WES database, which contained 388 
mutations. Non-synonymous mutations lead to changes 
in the amino acid sequence. Therefore, further filtering 
was conducted to remove synonymous and redundant 
mutations. As a result, 279 mutations were identified in 
the HepG2 WES-based database, and 81,137 mutations 
were identified in the COSMIC-based database  (Addi-
tional file  5). Among the 957 samples in the COSMIC-
based database, TP53 was the most frequently mutated 
gene, followed by TTN and CTNNB1 (Fig.  4b). Nota-
bly, most of the samples exhibited a low TMB, although 
a few individuals displayed exceptionally high TMB. 
These results are consistent with previous findings that 
HCC has a relatively lower TMB compared to other 
types of tumors [19, 20]. The distribution of mutant 
classes in the HepG2 WES-based and COSMIC-based 
database was similar, with missense mutations being 
the most common, followed by nonsense mutations 
(Fig.  4c and Table  2). The proportions of other muta-
tion types, including nonstop mutations, insertions, and 
deletions, were similar in the COSMIC-based database. 
Only 1 mutation was found in both databases, while 222 
mutated genes were commonly identified (Fig. 4d, e). To 
conduct subsequent MS data searches, a COSMIC-based 
database was constructed by incorporating these filtered 
somatic mutations from both COSMIC and HepG2 WES 
into the UniProt Human database.
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Evaluation of HepG2 WES‑based and COSMIC‑based 
database
To evaluate the impact of HepG2 WES-based and 

COSMIC-based database on database search result, 
a comparison was made between the outcomes of the 
two mutation databases. Venn diagrams showed that a 

Fig. 3  Mutant peptides identified from HepG2 HLA-I immunopeptidome using HepG2 WES-based database. A. Kulbach leibier distance of different 
cluster numbers calculated by Gibbs cluster tool. B. MS-identified clustered to reveal the main binding motifs. C. NetMHCpan prediction of each 
MS-identified peptides assigned to different HLA alleles using HepG2 WES-based database. D. Distribution of NetMHCpan prediction strong, weak 
and non-binders according to the length of peptides. E. Lowest NetMHCpan predicted for binding which were rank and normalized to percentage 
value. F. MS2 spectra of a mutant HLA-I immunopeptide “SLFDASHML”. G. Elution rank distribution of mutant peptide and corresponding 
wild-type peptide in HLA-I immunopeptidome. H. Intensities distribution of mutant peptide and corresponding wild-type peptide in HLA-I 
immunopeptidome.

Table 1  List of mutant peptides identified by HepG2 WES-based database

No Peptide Hyperscore Peptide 
length

Nucleic variant Amino variant Protein Binding level HLA allele Elution
rank %

1 SLFDASHML 11.98 9 c.242 T > C p.V81A AMT Strong HLA-A*02:01 0.003
2 SLFDVSHML 15.81 9 WT WT AMT Strong HLA-A*02:01 0.005
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majority of immunopeptides (n = 6245) were commonly 
identified by both databases, resulting in a total of 2565 
shared proteins (Fig.  5a, Additional file  6). The quality 
of unique identified peptides by each mutation database 
was initially evaluated (Fig.  5b). Comparative analysis 
revealed that, in comparison to the commonly identified 
peptides, the majority of unique identified peptides from 
either mutation database exhibited lower hyperscores, 
indicating lower spectrum quality. Nonetheless, a subset 
of spectra exhibited hyperscores higher than the average 

hyperscore of the commonly identified counterparts, 
suggesting that the use of mutation databases enables 
the discovery of unique peptides with high quality. Fur-
ther investigation was conducted on the unique peptides 
identified by both databases. Incomplete product ion 
coverage was observed as a prevalent scenario, resulting 
in spectra matching to different peptides. manual inspec-
tion of the MS2 spectra revealed that 41 peptides, com-
prising 11.71% of all unique peptides, had equal-weight 
amino acids or combinations (Additional file 1: Fig. S3a). 

Fig. 4  Generation COSMIC-based database. A. Workflow for the generation of COSMIC-based proteogenomic mutation database. B. The 
genomic landscape and mutational signatures in COSMIC hepatocellular carcinoma somatic mutation database; C. Comparison of mutated 
proteins distributed in different types of mutation in HepG2 (n = 279) and COSMIC-based database (n = 81,137). D. Venn diagram of mutation site 
from HepG2 and COSMIC-based database. E. Venn diagram of mutated genes from HepG2 and COSMIC-based database
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Furthermore, a quantitative evaluation demonstrated 
a strong correlation between the peptide intensities 
obtained from the two search results (Fig. 5c).

We observed that unique identified peptides from both 
mutations databases had statistically lower intensities 
compared to their commonly identified counterparts. 
However, there was no significant difference between 
in the intensities of unique identified peptides (Fig. 5d). 
Furthermore, a comparison of the length distribution 
patterns for commonly and uniquely identified peptides 
revealed that both groups exhibited a similar distribu-
tion, with the majority of peptides having a length of 9 
a.a (Fig. 5e). These results imply that the unique identi-
fied peptides are highly likely to be immunopeptides. To 
evaluate the their immunoaffinity, we utilized NetMHC-
pan to predict their binding affinity. The analysis revealed 
that the proportion of strong binding peptides was lower 
in the unique identified peptides compared to their coun-
terparts, although strong binders still accounted for 
nearly 50% (Fig.  5f ). Additionally, the elution percent-
age rank distribution based on peptide length supported 
this conclusion, as both commonly and uniquely identi-
fied peptides demonstrated similar trends. Specifically, 9 
a.a peptides showed the highest elution percentage rank 
among strong binders (Fig.  5g). This pattern was also 
evident in the immunopeptides identified using UniProt 
database, providing further evidence that the majority of 
the unique identified peptides were immunopeptides.

Discover HepG2 specific mutant peptide using 
COSMIC‑based database
During the evaluation of the HepG2 WES-based and 
COSMIC-based database for the identification of HLA-I 
immunopeptidome, we excluded peptides with "isoleu-
cine" to "leucine" mutations, as these cannot be distin-
guished by mass spectrometry. As a result, we identified 
16 mutant peptides (Table  3). Although both mutation 

databases include other mutant classes of mutations, 
such as nonsense mutations, insertions, and deletions, all 
of the mutant peptides identified in our study harbored 
SNVs instead of other mutation class. In contrast, the 
COSMIC-based identified 16 mutant peptides, includ-
ing the one discovered using the HepG2 WES-based 
database. These results indicate that the COSMIC-based 
database is more efficient for the identification of the 
HLA-I immunopeptidome.

NetMHCpan predicted binding of at least one HLA 
allele for 5 of the mutant peptides (Table  4). Further 
investigation of the mutation peptides exclusively found 
in HCC revealed the presence of aminomethyltrans-
ferase (AMT) p.V81A, integrin alpha-L (ITGAL) p.I525T, 
and interleukin-2 receptor subunit beta (IL2RB) p.R9H. 
Interestingly, myotubularin-related protein 6 (MTMR6) 
p.A599T was also identified in large intestine cancer, while 
cellular tumor antigen p53 (TP53) p.P72R was confirmed 
in multiple cancers affecting the bone, skin, meninges, 
and large intestine (Additional file  1: Fig. S3b). These 
findings suggests that peptides derived from mutations 
occurring in multiple cancers could potentially serve as 
neoantigens, stimulating tumor cytotoxic T-cells against 
a variety of cancers. Next, we compared the spectral 
quality and intensities of mutant peptides to those of 
wild-type peptides in immunopeptidomes. The inten-
sities of mutant peptides showed no significant differ-
ence compared to those of normal peptides (Fig.  6a, 
Additional file  7). Specifically, the intensities of mutant 
peptides were evenly distributed across the overall pep-
tide (Fig. 6c), with the majority of mutant peptides fall-
ing within a linear range. However, the hyperscores of 
mutant peptides were significantly lower than those of 
normal peptides, indicating poorer spectrum quality for 
the mutant peptides (Fig. 6b). The distribution of hyper-
scores revealed that mutant peptides were mainly con-
centrated in the sub-average region (Fig.  6d). A similar 
distribution pattern was observed in HLA-I affinity of 
mutant peptides (Fig. 6e).To assess the spectrum quality 
of mutant peptides, a manual inspection was performed, 
which revealed a high product ion coverage, particularly 
at the mutant amino acid, in spectra with high hyper-
scores. This finding increased our confidence in the accu-
racy of the mutant peptides (Fig. 6f ). Conversely, it was 
also observed that some spectra with high quality were 
ranked with low hyperscores (Additional file 1: Fig. S4a, 
b). However, the majority of mutant peptides had lower 
spectrum quality than wild-type peptides. Common 
observations in spectra of low-quality peptides included 
incomplete product ion coverage and low relative inten-
sity of product ions, which can result in low hyperscores. 
Furthermore, incomplete product ion coverage may 
lead to single or multiple amino acid mismatches, thus 

Table 2  Statistic of mutant classification in HepG2-based and 
COSMIC-based database

Mutant classification HepG2-based 
database

COSMIC-
based 
database

Translation start site 0 21
Nonstop mutation 0 415
Nonsense mutation 12 6640
Missense mutation 240 75,883
In frame insertion 3 100
In frame deletion 0 497
Frameshift insertion 3 1052
Frameshift deletion 4 1278
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resulting in wild-type peptides being mistaken as mutant 
peptides. This discrepancy also explains the lower pro-
portion of binders among mutant peptides compared 
to wild-type peptides. For further analysis, 3 mutant 

peptides were selected based on their affinity and satis-
factory spectrum quality.

We performed molecular structure prediction and 
peptide-protein docking modeling to confirm the binding 

Fig. 5  Comparison of HLA-I immunopeptides identification using HepG2 WES-based and COSMIC-based database. A. Venn diagram of identified 
HLA-I immunopeptides (upper panel) or proteins (lower panel) against either HepG2 WES-based or COSMIC-based database. B. Hyperscore 
distribution of commonly identified and uniquely identified HLA-I immunopeptides. C. Scatter plot intensity for the commonly identified peptides. 
D. Intensity comparison of commonly identified and uniquely identified HLA-I immunopeptides. E. Length distribution of commonly identified 
and uniquely identified HLA-I immunopeptides. F. Number of binders of identified HLA-I immunopeptides predicted by netMHCpan. G. Lowest 
netMHCpan predicted and ranked for the identified HLA-I strong-binding peptides
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affinity of mutant peptides. The results indicated no sig-
nificant difference in the structure and hydrophobicity 
of the molecular surface between the mutant peptide 
"SLFDASHML" and the wild-type peptide “SLFDVS-
HML” (Fig.  6g). Similarly, the amino acid substitution 
resulting from the MTMR6 p.A599T mutation did not 
significantly modify the structure or surface hydropho-
bicity in “RYSEYTEEF” (Fig.  6h). The predictions from 
NetMHCpan indicated that these mutant peptides, 

which exhibited strong binding, had minimal difference 
in binding affinity compared to the wild-type peptides 
(Table  3). This could be explained by the fact that the 
mutation site does not align with the canonical anchor 
motif, which is typically involves amino acid at the P2 or 
PΩ position in peptides. To further examine the bind-
ing ability of mutant peptides to HLA-I molecules, we 
employed peptide-protein docking using HPepDock. The 
mutant peptide “SLFDASHML” and wild-type peptide 

Table 3  List of mutant peptides identified by COSMIC-based database

No Peptide Origin Hyperscore Length Nucleic variant Amino variant Protein Binding level HLA allele Elution
rank %

1 RYSEYTEEF COSMIC 22.11 9 c.1795G > A p.A599T MTMR6 Strong HLA-A*24:02 0.003
2 RMPEAAPRV COSMIC 11.81 9 c.215C > G p.P72R TP53 Strong HLA-A*02:01 0.084
3 SLFDASHML HepG2

COSMIC
11.98 9 c.242 T > C p.V81A AMT Strong HLA-A*02:01 0.007

4 TVLSSRPVV COSMIC 13.06 9 c.1574 T > C p.I525T ITGAL Weak HLA-B*51:08 1.487
5 LSWHLPLLI COSMIC 18.14 9 c.26G > A p.R9H IL2RB Weak HLA-C*16:02 1.029
6 LNDLIVALS COSMIC 12.87 9 c.1668C > A p.F556L NVL None – –

7 KAYGSYEELAKDPN COSMIC 11.19 14 c.197G > A p.S66N DHDH None – –

8 DEAQNLTRD COSMIC 12.61 9 c.2177G > A p.G726D DDX54 None – –

9 HGELLEVNL COSMIC 14.11 9 c.219C > A p.D73E PCDHA13 None – –

10 LFLDAIHLT COSMIC 14.69 9 c.2255C > T p.P752L BBX None – –

11 DLLLVPTAGL COSMIC 18.93 10 c.346 T > G p.Y116D PROM2 None – –

12 GTLLSGAVGSLLL COSMIC 19.86 13 c.508A > T p.T170S SLC17A9 None – –

13 HMLIDLHFR COSMIC 12.86 9 c.559A > T p.M187L FMR1 None – –

14 QVQLLQQQ COSMIC 12.12 8 c.593A > T p.Q198L TFAP4 None – –

15 DSNRNLDLDSIIA COSMIC 23.42 13 c.914A > G p.N305S KRT79 None – –

16 QVQIGTHSPP COSMIC 12.92 10 c.2125G > A p.A709T PHEX None – –

Table 4  Summaries of HLA affinity, molecular docking energy score

No Peptide Type HLA affinity (nM) HLA Allele HLA template Docking energy score

1 SLFDASHML Mutant 4.93 HLA-A0201 1DUZ − 232.927
2 SLFDVSHML Wild type 4.63 HLA-A0201 1DUZ − 256.297
3 RYSEYTEEF Mutant 9.98 HLA-A2402 5HGA − 260.960
4 RYSEYAEEF Wild type 13.32 HLA-A2402 5HGA − 213.461

Fig. 6  Evaluation of mutant peptides identified from HLA-I immunopeptides using COSMIC-based database. A. Intensity comparison of total 
peptides and mutant peptides identified HLA-I immunopeptides. B. Hyperscore comparison of total peptides and mutant peptides identified HLA-I 
immunopeptides. C. Intensity distribution of all of the identified HLA-I immunopeptides as well as mutant peptides. D. Hyperscore distribution of all 
of the identified HLA immunopeptides as well as mutant peptides. E. HLA-I affinity distribution of all of the identified HLA immunopeptides as well 
as mutant peptides. F. MS2 spectra of a mutant peptide “RYSEYTEEF”. G. Simulated structures of mutant peptide “SLFDASHML” and wild type peptide 
“SLFDVSHML” predicted by Kyte-Doolittle method. Color represents the hydrophobicity of the molecular surface. H. Simulated structures of mutant 
peptide “RYSEYTEEF” and wild type peptide “RYSEYTAEF”. Colour represents hydrophobicity of the molecular surface. I. Structures of mutant peptides 
“SLFDASHML” and “SLFDVSHML” binding groove of HLA*A02:01 predicted by HPEPDOCK. Hydrogen bond link and atomic distance between peptide 
and HLA. J. Structures of mutant peptides “RYSEYTEEF” and “RYSEYTAEF” binding groove of HLA*A24:02 predicted by HPEPDOCK. Hydrogen bond 
link and atomic distance between peptide and HLA-I molecule

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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“SLFDVSHML” were examined in complex with HLA-
A0201, while the mutant peptide “RYSEYTEEF” and 
wild-type peptide “RYSEYAEEF” were investigated in 
complex with HLA-A2402(Fig. 6i, j). The results revealed 
that the binding energy of HLA-I molecule for the mutant 
peptide was comparable to that of the wild-type peptide, 
supporting the predicted HLA-I affinity. The mutant pep-
tide and wild-type peptide exhibit slight differences in 
their position and conformation within the protein. Fur-
thermore, the hydrogen bond between the peptide and 
protein has undergone alterations. This finding suggests 
that amino acid alterations resulting from mutations can 
impact the peptide’s ability to bind to HLA-I molecules, 
indicating that mutations, even if not situated at the P2 
or PΩ position, can still influence the affinity of peptides 
for the HLA-I molecule.

Discussion
Neoantigen-based immunotherapy, comprised of adop-
tive cell therapy, tumor vaccines, and bi-specific antibody 
therapy, holds significant potential for the treatment of 
cancers [5–7]. The successful identification of tumor-spe-
cific mutant peptides is essential for uncovering potential 
neoantigens. Immune cells have the ability to recognize 
tumor cells that present immunogenic mutant peptides 
on cell surface, resulting in engagement with cytotoxic 
T cells [38, 39]. However, the identification of neoan-
tigens remains a challenge. Regardless of whether it is 
based on genomics or whole cell genomic-proteomics, 
there are several limitations and shortcomings [12, 17]. 
The low identification efficiency and uncertain immuno-
genicity significantly restrict the clinical application of 
neoantigen-based therapy. The discovery of mutant pep-
tides from the HLA immunopeptidome holds significant 
importance. Recent studies have begun to investigate the 
HLA immunopeptidome, and emerging evidence has 
shown successful identification of neoantigens in mela-
noma, lung cancer, glioblastoma and breast cancer [12, 
40–42]. However, this method is still relying on genomic-
proteomic identification and the utilization of genomic 
databases for the discovery of mutant peptides.

Previous studies have suggested that neoantigens are 
more likely to be discovered in tumors with high TMB 
[19, 43, 44]. Moreover, low TMB cancers typically exhibit 
decreased responsiveness to current first-line therapies, 
such as immune checkpoint therapy and targeted therapy 
[20]. This further emphasizes the importance of neoan-
tigens. HCC is characterized by a low-to-medium TMB, 
indicating a relatively low mutation frequency (less than 
5 mutations per Mb gene). However, the combination of 
low mutation frequency, inadequate sequencing depth in 
WES, and high level of heterogeneity poses challenges in 
identifying neoantigens in HCC. In a study involving 16 

HCC patients, only 11 neoantigens were identified from 
a total of 1,039 non-synonymous mutations. Notably, 
no neoantigens were detected in HLA immunopeptides 
[19], highlighting the infrequent presentation of mutant 
peptides by HLA complexes in HCC. This finding under-
scores the difficulties associated with neoantigens iden-
tification in HCC. Due to the challenges in obtaining 
clinical samples from patients with advanced HCC, we 
initially described the HLA-I immunopeptidome of the 
HepG2 cell line. This dataset serves as a valuable refer-
ence for future studies involving other cell lines and tis-
sue samples from HCC.

In this study, we initially characterized the HLA-I 
immunopeptidomes of HepG2 cell line using immu-
noprecipitation. Although the western blot analysis 
revealed an enrichment efficiency of approximately 50% 
compared to TCL. Previous research has demonstrated 
that HLA-I immunopeptides can be completely eluted 
from HLA-I molecules at a pH of 3.3 [45, 46]. In this 
manuscript, the elution buffer, primarily consisting of 
0.15% TFA, was adjusted to a pH of approximately 2.0 to 
ensure the elution of the majority of peptides for subse-
quent MS analysis. Surprisingly, one mutant peptide was 
identified, indicating a relatively low efficiency in discov-
ering neoantigens using the HepG2 WES-based database. 
Comparable outcomes have been observed in previ-
ous studies as well. For instance, lung adenocarcinoma 
cell lines H1975 and PC9 detected only 3 and 4 mutant 
peptides, respectively; Moreover, 5 patient-derived orga-
noids from colorectal cancers revealed the presence of 3 
potential neoantigens; and even in high TMB cancers like 
melanoma, 5 potential neoantigens were identified using 
a criterion of FDR = 1% [16, 47]. These studies imply that 
personal WES or genomic-based database can be used 
for identifying neoantigens, despite their relatively low 
efficiency. Efforts have been made to address this issue. 
For example, immune peptide databases that compile 
immunopeptidome information from global research 
have been established, such as the Immune Epitope Data-
base (IEDB), TSNAdb, and databasePepNeo [48–50]. 
These databases provide sequences of mutant peptides, 
information about HLA-I affinity, and experimental evi-
dence of immunogenicity. However, neoantigen data-
bases primarily serve to verify identified peptides rather 
than discover mutant peptides from MS data files.

We generated a COSMIC based HCC somatic muta-
tion, which includes the most comprehensive collec-
tion. This database was constructed using mutation 
genes obtained from COSMIC, widely acknowledged 
as a detailed resource for cancer somatic mutations and 
extensively utilized in various cancer research studies. 
A similar strategy was employed to enhance the identi-
fication of non-canonical peptides. This was achieved by 
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generating an ENSEMBL-based proteogenomics data-
base, which unveiled that non-canonical peptide consti-
tuted over 5% of the total number of identified peptides 
in 65 cell line datasets [51]. However, databases gener-
ated from filtered non-synonymous mutations tend to 
be large, significantly impacting search efficiency and 
compatibility with certain software. To address this, we 
compressed the database by retaining only the upstream 
and downstream amino acid sequences surrounding the 
mutation site. By employing this strategy, we successfully 
generated a COSMIC-based database that is less than 
50 Mb in size. This compressed database can be utilized 
with the majority of proteomics analysis software. The 
main advantage of the COSMIC-based database is its 
ability to encompass a wide range of mutations, including 
low frequency mutations, which potentially uncovers a 
greater number of mutant peptides compared to HepG2 
WES-based database. This study presents high-quality 
HepG2 HLA-I immunopeptidomes for the evaluation 
of COSMIC-based database. Our results demonstrate 
that the COSMIC-based database successfully identifies 
a higher number of mutant peptides without the reli-
ance on prior WES sequence data. Further exploration 
revealed its ability to discover immunopeptides with high 
spectral quality using COSMIC-based database. How-
ever, it is important to note that some peptides identi-
fied in the COSMIC-based database exhibited relatively 
low quality, potentially leading to the misidentification of 
wild-type peptides as mutant peptides. To mitigate this 
issue, manual inspection is necessary to remove peptides 
with poor spectral quality. Overall, adopting this strat-
egy improves the identification of mutant peptides from 
HLA-I immunopeptidomes without a significant increase 
in the false positive rate.

To confirm the potential of the COSMIC-based 
database as a resource for mutant peptides, we evalu-
ated the immunoaffinity of these peptides to assess the 
feasibility of employing the COSMIC-based database 
for neoantigen identification. These mutant peptides, 
characterized by high spectral quality, also demon-
strated strong HLA-I affinity according to in silico pre-
diction. Within the COSMIC-based database, MTMR6 
p.A599T and TP53 p.P72R were also found in other cancers, 
indicating the occurrence tumorigenic signaling path-
ways shared among various cancers. TP53 p.P72R was 
observed at a frequency ranging from 0.4 to 0.7 in all 
ethnic groups, and its association with an increased 
risk of cancer remains controversial [52]. Additionally, 
two mutant peptides were validated in the IEDB, con-
firming their presentation by tumors and their affinity 
for HLA-I molecules. Through peptide-protein docking 
modeling, it was revealed that these peptides exhibited 

lower binding energy to HLA-I molecules, indicating 
a higher likelihood of binding. HLA-I molecules bind 
antigen peptide through a groove structure, with a typi-
cal binding to the second and last amino acid of anti-
gen peptides [53, 54]. The anchor residues Leu/Met 
and Leu/Val are commonly observed in immunopep-
tides binding to HLA-A0201. Both the mutant peptide 
"SLFDASHML" and the corresponding wild-type pep-
tide "SLFDVSHML" fulfill this requirement. Moreover, 
the mutant peptides "RYSEYTEEF" meet the binding 
criteria for HLA-A2402. It is important to noted that 
substitutions of amino acids resulting from mutations 
at positions other than P2 or PΩ might have a limited 
impact on the binding process. Indeed, previous stud-
ies have confirmed that neoantigens can arise not only 
from coding genes, but also from non-coding region or 
even microorganism [55, 56]. Mutant peptides originat-
ing from these sources identified from HLA immun-
opeptidome are still undergoing investigation.

In summary, we present an analysis of the character-
istics of HepG2 HLA-I immunopeptidome. To enhance 
the efficiency of neoantigen identification from the 
HLA-I immunopeptidome, we developed an HCC 
COSMIC-based mutation database. Our results suggest 
that the COSMIC-based database demonstrates supe-
rior effectiveness in identifying tumor-specific mutant 
peptides and neoantigens compared to the HepG2 
WES-based database. This strategy allows us with a 
broader range of potential neoantigen targets for preci-
sion immunotherapy.
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