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Abstract

Background Animal models are widely used to study pathological processes and drug (side) effects in a controlled
environment. There is a wide variety of methods available for establishing animal models depending on the research
question. Commonly used methods in tumor research include xenografting cells (established/commercially avail-
able or primary patient-derived) or whole tumor pieces either orthotopically or heterotopically and the more recent
genetically engineered models—each type with their own advantages and disadvantages. The current systematic
review aimed to investigate the meningioma model types used, perform a meta-analysis on tumor take rate (TTR),
and perform critical appraisal of the included studies. The study also aimed to assess reproducibility, reliability, means
of validation and verification of models, alongside pros and cons and uses of the model types.

Methods We searched Medline, Embase, and Web of Science for all in vivo meningioma models. The primary
outcome was tumor take rate. Meta-analysis was performed on tumor take rate followed by subgroup analyses

on the number of cells and duration of incubation. The validity of the tumor models was assessed qualitatively. We
performed critical appraisal of the methodological quality and quality of reporting for all included studies.

Results We included 114 unique records (78 using established cell line models (ECLM), 21 using primary patient-
derived tumor models (PTM), 10 using genetically engineered models (GEM), and 11 using uncategorized mod-

els). TTRs for ECLM were 94% (95% Cl 92-96) for orthotopic and 95% (93-96) for heterotopic. PTM showed lower
TTRs [orthotopic 53% (33-72) and heterotopic 82% (73-89)] and finally GEM revealed a TTR of 34% (26-43).
Conclusion This systematic review shows high consistent TTRs in established cell line models and varying TTRs

in primary patient-derived models and genetically engineered models. However, we identified several issues regard-
ing the quality of reporting and the methodological approach that reduce the validity, transparency, and repro-
ducibility of studies and suggest a high risk of publication bias. Finally, each tumor model type has specific roles

in research based on their advantages (and disadvantages).

Systematic review registration: PROSPERO-ID CRD42022308833.
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Introduction

Meningiomas account for 40% of all primary intracranial
tumors [1] and are primarily benign (90-95%). They dis-
play as a group a heterogenous epigenetic/genetic pro-
files [2-7]. The preferred treatment for a symptomatic
and/or growing meningioma is surgery [8, 9]. Pharma-
ceutical therapies are primarily used pre-clinically or in
protocolled trials and have so far had limited success in
humans [2]. In vivo research is thus paramount.

While a perfectly designed tumor animal model is a
utopian thought, we can strive towards a model that
resembles the actual tumor as closely as possible. Scien-
tific advances over the last 70 years have led to huge pro-
gress in the field of animal models, including models for
meningioma. The first successes in establishing a men-
ingioma model via xenotransplantation occurred in the
1940s and 50 s [10, 11], and studies over the next 30 years
have used a variety of approaches [12-19].

The availability of immunodeficient animals and estab-
lished immortalized cell-lines (i.e. IOMM-Lee, CH-157,
and BEN-MEN-1) has revolutionized the field in terms of
tumor take rate (TTR) (which is close to 100% in many
cases) and has led to stable models for testing new treat-
ment options [20-22]. The use of immortalized cells
provides a needed weapon against senescence, but at the
same time it limits conclusions as to treatment effects,
and many pharmaceutical successes from animal studies
have proven ineffective in human clinical trials [23]. The
use of primary cell models without the use of immor-
talization provides a patient-specific model for more tar-
geted therapies. However, these approaches lack immune
system interaction and show varying TTRs, especially
for benign primary tumors [24-26]. The first geneti-
cally engineered (meningioma) model (GEM) emerged
twenty years ago using a conditional knockout Nf2f%ox%
Flox2 yia recombinant high-titer adenovirus expressing
Cre recombinase (AdCre) to ensure growth [27], with a
few papers (primarily from the same group) replicating
the results [28—31]. Although GEM provides a solution
to the significant problem of adaptive immune system
involvement, its low TTRs and long tumor induction
time limit the model’s use in treatment studies.

So far, a few narrative reviews [32—34] and a systematic
review have been conducted on the topic [35]. However,
the systematic review did not entail a search through
multiple literature platforms and did not assess meth-
odological quality/risk of bias. In the current paper, we
present the first systematic review and meta-analysis of
meningioma animal models that includes an assessment
of the quality of reporting and the methodological quality
of the included studies.

The overall aim of the review was to investigate which
method of tumor development/growth—established
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patient-derived cell lines (orthotopic and heterotopic),
primary patient-derived tumor cells/material (orthotopic
and heterotopic), or genetically modified animals—pro-
vides the best tumor take rate and at what duration of
incubation. The specific objectives were firstly, to search
the literature for all available research regarding the dif-
ferent models and to assess their reproducibility and
reliability, advantages, and disadvantages. Secondly, to
determine how the models should be verified and which
modalities are necessary to compare xenograft or geneti-
cally modified tumors to the parent tumor. Thirdly, to
present possible future aspects of meningioma animal
models in relation to optimal tests of future therapeutics
in human meningiomas. Fourthly, to identify and analyze
knowledge gaps that could help identify future research
initiatives.

Methods

Protocol and registration

This systematic review was performed in accordance
with the updated 2020 Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses (PRISMA) guide-
lines [36]. The PRISMA checklist and PRISMA abstract
checklists are provided in the Additional files 1 and 2).
The review was prospectively registered with PROSPERO
at https://www.crd.york.ac.uk/PROSPERO/ as an animal
study (CRD42022308833) prior to first full-text screening
on February 14, 2022. The full original protocol that was
uploaded to PROSPERO is available in the Additional
file 3. The minor changes to the original uploaded proto-
col are reported in the Additional file 4.

Eligibility criteria

We sought to include all original records published in
peer-reviewed journals with full texts that had the Popu-
lation and Outcome (PO) of in vivo experiments with the
intention of meningioma growth (population) and the
corresponding meningioma growth rate and induction
duration (outcome).

We excluded review records, systematic reviews,
human studies, and conference abstracts as well as
records describing spontaneous meningiomas in ani-
mals without the use of genetic modification specifically
aimed at meningiomas. Models that were not meningi-
oma models were excluded. No restrictions were applied
to study design as long as the record described an in vivo
experiment aiming for meningioma growth. We included
records in any language if an English title or abstract was
available.

Information sources and search strategy
We searched the following electronic databases on June
18, 2021, and again on August 8, 2022, (the latter with
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the limitations set to 2021-2022): Medline, Embase, and
Web of Science. The search strategy was reviewed by a
research librarian at the University of Southern Den-
mark. Search terms were sourced from already published
papers that we were familiar with, e.g. meningioma ani-
mal model, xenograft, and genetically engineered model.
The full original search strategy is available in the Addi-
tional file 5.

Study selection

All papers extracted via the search string were screened
by title and abstract by two reviewers (MSA and MSK)
in a blinded fashion. During the first round of screening
(title and abstract), all papers that were deemed eligible
by either of the authors were included for the second
round (full-text screening). Cohen’s Kappa index [37] was
performed to assess initial screening agreement. The first
200 papers were rated un-blinded to adjust the screening
method. Full-text screening was performed in a blinded
fashion by two reviewers (MSA and MSK), with disagree-
ments being settled by discussion with a senior author
(ERD).

Papers were divided into four categories: established
cell line models (ECLM), primary patient-derived tumor
models (PTM), genetically engineered models (GEM),
and other models not fitting into the previous three cat-
egories (uncategorized). Papers eligible for inclusion but
older than 40 years were ultimately excluded due lack
of relevance. Records containing more than one animal
model type were included in all relevant categories.

Data extraction fields

A pre-defined data extraction sheet was developed for
each model type. Data were extracted independently by
two reviewers (MSA and MSK) in a blinded fashion. Data
were extracted on record meta-data, animal data, and
tumor model characteristics. The data extraction sheet
(including a description of the fields) is available in the
Additional file 6.

Synthesis of results and summary measures

All analyses were conducted using the freely available
software R (https://www.r-project.org/). We performed
random-effect meta-analyses on the proportion of ani-
mals that developed tumors (TTR) for five model types:
ECLM (orthotopic and heterotopic separately), PTM
(orthotopic and heterotopic separately), and GEM. Meta-
analyses used the metaprop function from the meta
package.

Heterogeneity was assessed by visual inspection of for-
est plots and by using the I*> measure as recommended
in the Cochrane Handbook [38]. If heterogeneity was
identified, it was examined through subgroup analyses.
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The following characteristics were examined as potential
sources of heterogeneity in xenografted models: num-
ber of cells, cell concentration, established cell line used,
parent tumor grade (WHO grade 1-3), and duration of
incubation. For GEMs, the following characteristics were
examined in subgroup analyses: genomic lesion type,
method of gaining lesion, incubation time.

Due to the risk of confounding, all subgroup analyses
were considered exploratory and were interpreted cau-
tiously. Survival studies on duration of incubation were
excluded from the meta-analyses (apart from GEMs,
which were mainly survival studies) and commented
on narratively. The validity of different tumor models
and their relation to human tumors were discussed nar-
ratively, including a discussion of the methodological
quality of relevant trials. The results of the mixed cat-
egory ‘uncategorized, which contains various tumor
models, were presented narratively due to significant
heterogeneity.

Critical appraisal of quality of reporting, methodological
quality, and risk of bias

As no validated tool exists for the critical assessment of
the types of records included in this review, we developed
a critical appraisal tool (Critical appraisal of methodolog-
ical quality and quality of reporting—CRIME-Q) [39] for
use in this review and other animal reviews in the future.
CRIME-Q is inspired primarily by Macleod et al. [40] and
the ARRIVE 2.0 guidelines for Animal Research: Report-
ing of In Vivo experiments [41], but it also includes items
from the recommended and validated SYRCLE’s Risk of
Bias tool [42].

Two reviewers (MSA and MSK) individually used
CRIME-Q to assess all included studies. Any discrepan-
cies were solved via a third reviewer (FRP). The domains
included in CRIME-Q are described in Table 1. We sum-
marized the overall quality of included studies narratively
and included this in the interpretation of our results. A
full table of all assessed studies are available in the Addi-
tional file 7. A predetermined list of information needed
to obtain the various grades of Yes/No/Partly/Unclear/
Not applicable (NA) is available in the Additional file 8.

Results

Study selection

The search strategy yielded 2175 unique studies, of which
151 were potentially eligible. The kappa index for the two
reviewers at the screening stage of the first round was 0.9.
One record was initially screened negative but was added
through other literature alongside two other studies. Of
the 117 studies that met the inclusion criteria, three were
discarded due to retraction from the journal. The top-up
search conducted in August 2022 led to the inclusion of
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11 additional studies. We identified 78 studies on ECLM
[6,20-22, 24, 43—-115], 21 studies on PTM [20, 24-26, 73,
106, 116—129], 10 studies on GEM [27-31, 130-134], and
11 studies categorized as “uncategorized” [30, 132, 135—
143]. We decided to exclude studies older than 40 years
due to lack of relevance. The PRISMA flow diagram for
the study selection process is presented in Fig. 1. The
original data extraction sheets for ECLM, PTM, GEM,
and uncategorized studies are available in the Additional
files 9, 10, 11, 12).

Primary analysis

We conducted meta-analyses on the tumor take rate
(TTR) for the five model groups. The overall TTR was
95% (95% CI 93-96%) for ECLM heterotopic models
and 94% (92-96%) for ECLM orthotopic models, 82%
(73-89%) for PTM heterotopic models and 53% (33—
72%) for PTM orthotopic models, and 34% (26—43%) for
GEM. While no statistical heterogeneity was found for
the ECLM (I>=0%), the other meta-analyses showed sub-
stantial heterogeneity with I? over 50%. Forest plots for
these meta-analyses are available in the Additional file 13.

Subgroup analyses

Table 2 shows the results of subgroup analyses of TTR
against duration of incubation, number of cells, injec-
tion volume, cell line and WHO grade, where signifi-
cant subgroup interactions were found for at least one
of the model types. The full results of subgroup analyses,
including forest plots, can be found in the Additional
file 13.

Meningioma animal models

There is a plethora of methods available for creating a
meningioma animal model depending on the research
question. Commonly used methods include xenograft-
ing cells (established/commercially available or primary
patient-derived) or whole tumor pieces either orthotopi-
cally or heterotopically and the more recent genetically
engineered models (Fig. 2).

Patient-derived xenotransplantation and xenografts

Patient-derived xenotransplantation is the transplanta-
tion of tissue foreign to the host e.g., where meningioma
tissue or cells derived from patients are transplanted
into small animals such as immunocompromised mice.
As a minimum, the animals need to have absent mature
T-cells such as the BALB/c nude, Athymic nude, CD-1
nude, NMRI nude, NU/NU, and Swiss nude mice or
the severe combined immune-deficient animals such as
NSG, NRG and NOD SCID, and SCID mice that lack
T cells and B-cells and an innate immune system [144].
Most studies use animals up to 10 weeks old, with some
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exceptions (12-15 [62], 10-22 [53], 7-11 [62], and 12-16
[25] weeks old).

The two main types of models used are the orthotopic
models and the heterotopic models. An overview of these
models is provided in Table 4 (for ECLM) and Table 5
(for PTM). Further details are available in the Additional
files 9, 10, 11).

The orthotopic model requires implantation of mate-
rial intracranially, most commonly through a burr hole
in the frontal region of the skull (typically 1-3 mm ante-
rior and 1-3 mm right of bregma) either superficially
or at the skull base. All the reviewed orthotopic models
inject between 0.5-10 pl of volume, with 2—10 ul being
most common without noteworthy issues. Heterotopic
models have a higher injection volume (commonly
100-500 pl), and a larger number of cells are needed to
obtain a large tumor. Thus, while orthotopic models typi-
cally use 10°-10° cells, most of the heterotopic models
inject > 10°~10” depending on the type of cells used. Since
there are potential big differences in TTR between the
immortalized cell line models and the primary patient-
derived cell/tissue models, we have chosen to distinguish
between the two in the sections below.

Established/commercially available cell line models (ECLM)
Meningioma established patient-derived cell lines have
been used for decades for in vitro and in vivo research.
Most commonly used is the Nf2+, malignant, IOMM-
Lee, which was established from an intraosseous malig-
nant meningioma from 1990 [22]. Other noteworthy
cell lines include the Nf27, benign BEN-MEN-1, which
was KWTERT- immortalized [21], the malignant K721
[100] with heterozygous loss of Nf2, and the malignant
CH-157, whose origin remains a mystery [20, 145, 146].
Other cell lines have been produced for various pur-
poses. Some of these have complex karyotypes such as
KCI-MENGT1 [105] and SF3061 [109], which is also Nf2t,
or the MeTSC, which is Nf2~ [69]. Others have a simple
karyotype such as SF4433 [147], and BEN-MEN-1 [20].
Table 3 shows all established/commercially available
meningioma cell lines used in vivo including both the
origin paper and papers in which the cell lines have been
used.

Over the last 40 years of research, about 70% of men-
ingioma studies have used ECLM (Table 4). The most
commonly used, IOMM-Lee, shows a high tumor take
rate in subgroup analysis for both orthotopic mod-
els 87% (95% CI 95-98%) and heterotopic models 94%
(90-96%), and it shows median survival of 10-27 days
in orthotopic models, depending on the number of cells.
In general, 10*~2.5% 10° cells are needed for orthotopic
and heterotopic ECLM (Table 4). CH-157 has a TTR of
89% (81-94%) in orthotopic models and 97% (90-96%)
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Medline
(1266)

Embase
(1127)

Web of Science
(488)

v v 1

Total number of records identified

Duplicates excluded

(2881)

(706)

Record title and abstracts screened

Records excluded based on title/abstract:

(2175)

v

review article, conference abstracts,
human studies, non-English texts without
abstract relevance, non-in vivo studies,
additional duplicates
(2024)

Full-text records assessed for eligibility

Additional conference abstracts (19)

(151) Cell study (3)
Not meningioma model/not focused (13)
Not original article (1)
Total number of articles which fail to meet
Extra added inclusion criteria
records* 3) — (37)
Records( 1r$;;sessed Retracted manuscripts (3)

Search strings repeated for updated literature prior to

submission

Total (259), duplicates (65), excluded during title/abstract screening
(136), new articles/full text screening (13), excluded full-text

screening (2)

|

Records included for data extraction (114)
Records including more than one method (6)

Records included for data extraction (11)
Records including more than one method (0)

Excluded due to relevance -

Historical perspective (11)

Total number of unique records included in systematic review (114)
ECLM (69+9), PTM (21+0), GEM (9+1), Uncategorized (10+1)

Fig. 1 Flow chart. Established cell line models (ECLM), primary tumor models (PTM), genetically engineered models (GEM). *One record was initially
screened negative on the abstract, and the other two studies were found through other literature (one as a historical perspective and the other

as an ECLM)
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Table 2 Subgroup analyses of tumor take rate against duration of incubation, number of cells, injection volume, cell line and WHO

grade for the five model groups

Subgroups ECLM orthotopic ECLM heterotopic PTM orthotopic PTM heterotopic GEM
TTR (95% CI) TTR (95% ClI) TTR (95% CI) TTR (95% Cl) TTR (95% CI)
Duration of incubation
0-14 days 97% (92-99%) 97% (93-99%) NA NA NA
14-30 days 93% (85-97%) 94% (90-97%) 98% (89-100%) 94% (88-97%) NA
31-99 days 100% (91-100%) 96% (93-98%) 87% (65-96%) 91% (80-96%) 46% (5-93%)
100-199 days 92% (70-98%) 100% (54-100%) NA 75% (45-92%) 36% (20-56%)
200-499 days NA NA 8% (3%-21%) 65% (37-86%) 27% (20-35%)
Unknown 95% (92-97%) 97% (89-99%) 67% (29-91%) 34% (13-63%) 38% (20-60%)

Number of cells

0-100 NA NA 0% (0-46%) NA NA
101-1.000 NA NA 86% (42-100%) NA NA
1.001-10.000 NA NA 67% (22-96%) 50% (12-88%) NA
10.001-100.000 97% (93-99%) 98% (91-100%) 15% (5-37%) 32% (3-88%) NA
100.001-500.000 97% (94-99%) 97% (92-99%) NA NA NA
500.001-1.000.000 96% (91-99%) 94% (85-97%) 91% (77-97%) 93% (49-99%) NA
1.000.001-10.000.000 100% (48-100%) 97% (95-99%) NA 94% (81-98%) NA
>10.000.000 NA 100% (66-100%) NA 96% (86-99%) NA
Unknown 89% (82-94%) 93% (83-97%) NA 83% (73-90%) NA
Injection volume (ul)
0-1 91% (56-99%) NA NA NA NA
2-5 95% (93-97%) NA 16% (5-40%) NA NA
6-10 98% (94-99%) NA 86% (69-94%) NA NA
0-99 NA 100% (96-100%) NA 97% (87-99%) NA
100-250 NA 96% (93-98%) NA 94% (69-99%) NA
251-500 NA 95% (79-99%) NA 88% (40-99%) NA
501-1000 NA NA NA 76% (52-90%) NA
Unknown 92% (82-97%) 96% (92-98%) NA 83% (73-90%) NA
Cell line
IOMM-Lee 97% (95-98%) 94% (90-96%) NA NA NA
CH-157 89% (81-94%) 97% (89-99%) NA NA NA
BEN-MEN-1 97% (81-100%) NA NA NA NA
HBL52 NA 99% (93-100%) NA NA NA
HKBMM 100% (86-100%) 93% (77-98%) NA NA NA
SF4433 NA 98% (85—100%) NA NA NA
SF3061 NA 100% (88-100%) NA NA NA
F5 95% (79-99%) 100% (88-100%) NA NA NA
KT21 95% (80-99%) 100% (29-100%) NA NA NA
NCH93 NA 97% (80—100%) NA NA NA
Me10T 100% (54-100%) NA NA NA NA
Me3TSC 100% (54-100%) NA NA NA NA
MN3 96% (79-99%) NA NA NA NA
WHO grade/grade
Grade 1/benign NA NA 47% (17-79%) 88% (78-94%) NA
Grade 2/atypical NA NA 36% (7-81%) 59% (9-95%) NA
Grade 3/malignant NA NA 50% (18-82%) 75% (51-89%) NA
Unknown NA NA 90% (68-99%) 93% (82-97%) NA

NA: Not applicable. ECLM: Established cell line models. PTM: Primary patient-derived tumor models. GEM: Genetically engineered models



Andersen et al. Journal of Translational Medicine (2023) 21:764

Heterotopic Models
» Subcutanous/flank/subrenal
« ECLM/PTM

Orthotopic Models
+ Superficial/skull base
+ ECLM/PTM/Syngeneic
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Genetically Engineered Models
» Adenovirus Cre-recombinase
RCAS/TVA

Fig. 2 Overview of the most common model types. Both ECLM (established cell line models) and PTM (primary patient-derived tumor models)
require immunocompromised hosts. PTM include cell injection models and whole tumor ‘PDX models. Syngeneic modelling is achievable
in immunocompetent hosts. RCAS/TVA: Replication-competent avian leukosis virus splice-acceptor/tumor virus A. lllustrator: Mikkel Schou Andersen

in heterotopic models and a similar median survival of
12-24 days in orthotopic models with cell concentrations
of 10*-10° cells. The most used benign cell type is the
BEN-MEN-1, which has only been studied in orthotopic
models (TTR of 97% (81-100%); using 0.5—1.0x 10° cells,
researchers have created a long-term model (Ki67 <1%)
up to 180 days [21]. (For further details, see Additional
file 9).

Primary patient-derived tumor models (PTM)

The non-immortalized patient-derived models are com-
prised of all studies describing implantation either straight
from surgery as cells or whole tumor pieces [25, 106, 122,
125, 127] or after fewer than 10 passages (usually after 3—6
passages) [24, 26, 67, 72, 118-121, 123, 124]. For ortho-
topic models, subgroup analyses (Table 2) showed vary-
ing TTRs < 50% with a benign model TTR of 47% (95%
CI 17-79%), atypical tumor model TTR of 36% (7-81%),
and malignant tumor model TTR of 50% (18-82%) (see
Table 5 for individual TTR). McCutcheon et al. [24]
tested various durations for different WHO tumor grades
and showed succesful tumor take time of 21-56 days
for benign, 14—28 days for atypical, and 4—12 for malig-
nant. Zhang et al. [25] performed survival studies on

atypical tumors up to 240 days and malignant tumors up
to 160 days. In general, successful benign models required
10° cells, atypical models 10°-10° cells, and malignant
down to 103 cells.

For heterotopic models, subgroup analyses showed
TTRs for benign tumor models of 88% (95% CI 78-94%),
atypical tumor models 59% (9-95%), and malignant
tumor models 75% (51-89%) (Table 2). Benign models
have been more often used and show more consistent
results with 10°~5x 107 cells and duration of incubation
ranging from one month to almost one year. Duration
of incubation for atypical tumors is up to 180 days [122]
while that for malignant tumors is significantly shorter
ranging from 30 to 56 days [106, 118, 124, 129].

Some studies in both the orthotopic and heterotopic
groups do not describe WHO grade or tumor subtype,
and thus valuable information is difficult to obtain [116,
117, 125, 127] (for further details, see Additional file 10).

Strengths and weaknesses of xenografting to immune-incom-
petent/compromised animals The advantages of xeno-
grafting material or cells into immunocompromised ani-
mals are the lower cost and higher availability compared to
for instance GEM. The strength of the orthotopic models
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is that tumors grow in the appropriate microenvironment
(without taking alterations of the immune system into
account), making them suitable for drug testing. The het-
erotopic models are performed outside of the central nerv-
ous tissue most commonly via a flank/subcutaneous injec-
tion model and are the easiest model to set up and perform.
Subcutaneous injections of meningioma cells have been
successful both with and without the use of Matrigel (which
forms a solid gel at 37 °C to keep cells close together dur-
ing tumor development [170]) or fibrin clots (for further
details, see Additional file 9, 10, 11, 12). There are concerns,
however, that Matrigel enhances tumorigenicity or even
modulates characteristics of the original tumor. It may even
increase drug resistance in vivo [171] and might transform
pre-malignant to malignant cells [172]. The translatability
of heterotopic models is debatable [32].

Meningioma established cell lines have been used
for decades for in vitro and in vivo research. Some cell
lines (such as IOMM-Lee, BEN-MEN-1, and CH-157)
have the advantage of being thoroughly characterized
on every level from histology to genetic profiles [20,
149]. The use of established cell lines produces consist-
ent and homogeneous results across studies. Using estab-
lished (immortalized) cell lines also negates the great
issue of senescence that is often experienced in patient-
derived primary cells (non-immortalized). A drawback
of immortalized cell lines is that they are very far away
from human meningioma conditions, e.g. IOMM-Lee’s
complex karyotype probably due to long-term culturing
[114]. ECLMs do not display normal meningioma pathol-
ogy, disease nature, or heterogeneity, which in general
makes them unsuitable for pharmaceutical studies.

In contrast to established cell lines, the primary
patient-derived non-immortalized models show varying
degree of tumor take within and between studies. Zhang
et al. [25] reported TTRs ranging from 0% for most of the
tumors to 90% (for a malignant tumor), and none of their
xenografted benign cell lines could be detected even after
a full year. Other studies also show inconsistency both
inter-and intratumorally [24, 67]. Our own group has
experienced similar issues with verified benign menin-
giomas (unpublished data). Despite these obstacles, pri-
mary patient-derived non-immortalized models display
inter-patient tumor variability more accurately for possi-
ble targeted personalized treatment.

The major limitation to xenotransplant models is that
they must be performed in immunocompromised ani-
mals, thereby circumventing natural response by the
adaptive immune system (whether this is anti- or pro-
tumorigenic) [173, 174]. In addition, the heterotopic
animal models do not provide the correct microenvi-
ronment for the meningioma cells and can alter the way
they grow and express cell markers. Finally, the tumor

Page 19 of 38

development is not de novo, meaning that xenograft
studies are not useful for studying tumor origins.

Genetically engineered models (GEM)

GEM are based on mice that have undergone genome
alterations through various genetic engineering tech-
niques. There are multiple ways of achieving the desired
genetic lesions. The following approaches have been
used in meningioma research: The Cre-loxP system,
which utilizes Cre-Lox recombination that can produce
deletions and insertions at specific sites in the DNA.
The DNA modification can be triggered by an external
stimulus (e.g. recombinant adenovirus—AdCre) or be
cell-type specific (i.e. is ‘conditional’). The alteration is
performed by the splicing of previously inserted LoxP
DNA sites using the enzyme Cre recombinase [151]. And
the RCAS/TVA system, which utilizes retroviral infec-
tion via vectors that can only infect cells expressing the
corresponding receptor TVA. The possibility of cloning
the TVA receptor gene in mammalian cells has led to the
creation of TVA-expressing transgenic mice [152]. RCAS
is the vector and derives from the Rous sarcoma virus A
[153]. The technology utilizes transfection of embryonic
chicken fibroblast cell line DF-1 with the RCAS vectors,
which then target ectopic TVA on pre-specified cells. The
RCAS/TVA system is another example of a ‘conditional
knockout’ system. In contrast to the Cre-loxP system, the
RCAS/TVA system allows for simultaneous introduction
of several genes of interest in the same cell [152].

As a group, meningiomas contain a plethora of DNA
mutations depending on WHO grade and tumor loca-
tion. Mutations in Nf2 [154], TRAF7, KLF4, AKT1I, and
SMO are present in approximately 80% of sporadic men-
ingiomas [3, 155]. Especially the rare genetic disorder
neurofibromatosis type 2 (Nf2) at q22 predisposes to
meningiomas of which approximately 50% display altera-
tion of the tumor suppressor [155—157]. Table 6 displays
all lesions and outcomes of studies involving GEM (for
further details, see Additional file 11). Only a few genes
have been studied, mostly the Nf2 gene [27, 28, 30, 31,
130].

The TTR for Nf20"*?/1052) yas 29% (95% CI 19-41) via
AdCre injection orthotopically at PN1-3 to only target the
Nf2 gene on both alleles over a duration of 117-450 days.
The tumors were benign histologically, with transitional,
meningothelial, and fibroblastic subtypes. However, a
variety of other pathologies arose such as osteomas at the
burr hole (51%), liver tumors (17%), and hydrocephalus
(34%). Nf2f* transgenic mice have been crossed with
various other genes to assess the interactions. Waldt et al.
[130] tested loss of the potential meningioma tumor sup-
pressor receptor-like density-enhanced phosphatase-1
(DEP-1) [99], encoded by PTPR]. They showed no TTR in
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PTPRJ~~ transgenic mice alone but raised TTRs ranging
from 6% (0—27%) in their Nf2P*2/F0x2 to 25% (13-40%)
in Nf21ox2/10x2), pryypi(~/=), all over the same time period of
one year for typical meningiomas with whorls and psam-
moma bodies, thus suggesting an interaction between the
two genes in meningioma development.

It is well known that loss of the tumor suppressor p53
can cause tumor development through various path-
ways[158], as tested in congruency with Nf2 by Kal-
amarides et al’s first GEM paper from 2002 [27]. They
showed a 30% TTR in the Nf2 lesion alone and only 13%
(6-28%) in Nf2o*/fox,p53* (heterozygous p53), however
with a 91% rate of sarcomas/osteosarcomas over the
course of a mere 165 days (median survival). A condi-
tional homozygous lesion of p537*~ with Nf2"*~ was
also tested by the same group using the cell-specific
prostaglandin D2 synthase (PDGS;Cre), which affects
the fetus during intrauterine development. The authors
found a higher TTR for Nf2(lox2/ex2)y,53(10x2/=) of 45%
(23-68%), but it was still lower than the TTR of 50%
(29-71%) for the corresponding Nf2"*¥~ alone. There
was again a high number of malignant tumors, 79% oste-
osarcomas, and an even shorter survival of 135 days. The
authors identify PGDS +arachnoid cells as a cell of origin
for meningiomas [29].

Also of great interest are the tumor suppressor genes
CDKNZ2A/B (located at 9p21 in humans). In meningi-
omas, alterations of CDKN2A/B are more common in
higher grade tumors and are associated with high clinical
recurrence [159, 160]. CDKN2A encodes the p16™¥4 and
p14arf (pl9arf at chromosome 4 in mice [161]). p16™NK4
regulates G,/S-phase via inhibition of cyclin-dependent
kinases Cdk4 and Cdké6 [162], and p14*f regulates activity
of p53 [163]. Adjacent to CDKN2A lies CDKN2B, which
encodes the p15™%* that also inhibits Cdk4 and 6 [164].
A TTR of 37% (95% CI 23—-55%) was obtained by explor-
ing only CDKN2A alteration (INK4a) using the AdCre
method [28] and a TTR of 82% (95% CI 60-95%) from
exploring the PDGS;Cre method [29]; these were primar-
ily in benign tumors with few tumors showing atypical
features and with other pathologies such as osteomas
(78% and 88%, respectively) and hydrocephalus (56% and
31%, respectively). Further exploration of full CDKN2A/B
hetero- and homozygous deletion led to creation of a
Nf2(ox2/f10x2): i1 kdgh'~'=/+) AdCre model. This showed
a higher TTR of 76% (95% CI 61-86%) in homozygous
[30, 132] compared to heterozygous 50% (36—64%) [30],
with a higher take in sarcomas (34% vs 9%) and liver
tumors (79% vs 59%). The homozygous deletion found
66% grade 1, 32% grade 2, and 3% grade 3, whereas the
heterozygous deletion found 75% grade 1, 14% grade 2,
and 11% grade 3 [30]. However, all homozygous tumors
would be classified as malignant in accordance with the
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newly implemented WHO classification 2021 [165] due
to CDKN2A/B homozygous deletion as an independent
criterion of WHO grade 3 meningiomas.

Lastly, Morrison et al. [131] induced tumors using
transgenic mice models of pI6 and p19 wildtype, het-
ero- and homozygous and the carcinogenic compound
N-ethyl-N-nitrosourea (ENU) as intraperitoneal injec-
tion at E14. They showed a TTR of 6% (95% CI 2—19%)
and survival of 98-133 days for homozygous vs TTR of
31% (95% CI 7-75%) and survival of 210-273 days for
heterozygous. Concomitant alveola-bronchiolar adeno-
mas were present in almost all tumor-bearing mice. Wild
type showed no meningioma tumors.

It has long been suggested that platelet-derived growth
factor (PDGF) exhibits tumorigenic properties in men-
ingiomas [166, 167]. Using the RCAS/TVA system, a
PDGE-B model was created that showed a TTR of 27%
(95% CI 12-48), all benign. However, the model also
yielded 88% gliomas and 65% with hydrocephalus with
a survival median of 240 days [31]. Furthermore, PDGF
in combination with AdCre;Nf2 gave a higher TTR of
52% (33-71%) with 66% being grade 1, 40% grade 2, and
20% grade 3; however, there was still a high number of
gliomas (48%) and a shorter median survival of 189 days.
Lastly, they combined PDGF-B;Nf2;CDKN2AB lesions
and found an even higher tumor take rate of 79% (54—
94%) with 33% grade 1, 47% grade 2, and 20% grade 3
(but the same applies here as with the above CDKN2A/
B~~ in relation to the malignancy grade). Median sur-
vival was greatly decreased to 54 days, and glioma inci-
dent remained high (79%).

SMO is a member of the Hedgehog (Hh) signaling path-
way and is present in a small percentage of meningiomas
(5%), specifically the meningothelial subtype [168]. It is a
suggested oncogenic driver and is frequently associated
with PI3K/AKT/mTOR pathway in driving tumor forma-
tion in meningiomas [168]. Boetto et al. explored this
utilizing both PDGSCre; SMO and AdCre; SMO GEMs
(133]. They found a TTR of 21% (95% CI 10-37%) in
PDGSCre vs 2% (0—-10%) in AdCre; all were meningothe-
lial subtype with median survival of 426 days vs 84 days.
The AdCre model besides having a shorter survival also
produced medulloblastomas in 8%. The results suggest
that SMO activation is restricted to a prenatal window
E12.5 as is the case with PDGSCre.

Finally, Szulzewsky et al. [134] recently explored Yes-
associated protein 1 (YAPI), which is involved in func-
tional inactivation of Nf2 in heterozygous cases. YAPI is a
transcriptional coactivator of cell growth that is regulated
by the Hippo signaling pathway and is especially associ-
ated with pediatric Nf2 wild-type meningiomas [169].
YAPI-MAML?2 exerts oncogenic YAP activity that is
resistant to inhibitory Hippo pathway signaling and relies
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on the interaction with TEAD transcription factors. Uti-
lizing RCAS/TVA system and a Nestin/TVA CDKN2AB
null mouse strain, it was found that the TTR for YAPI-
MALM?2(v1 and v2)’s was 42% (95% CI 15-72%) to 60%
(95% CI 36—80%) of cases over the course of 67—164 days.
A nuclear localization sequence (NLS)-2SA-YAPI
lesion—which constitutively activated YAPI to inacti-
vate Nf2—was explored to determine whether it would
suffice to produce meningioma-like tumors. The authors
showed a very high TTR in 97% (95% CI 83—100%) of the
animals and verified their results with RNA sequencing.
The study did not describe other pathologies present in
the animals.

Strengths and weaknesses/limitations of GEM

in meningiomas

In contrast to xenotransplantation in immunodeficient
animals, GEM develop de novo tumors in immunocom-
petent animals [175]. GEM can thus be used to inves-
tigate candidate cancer genes (e.g. driver mutations),
determine cancer cells-of-origin by altering specific tar-
geted cells, and study the contribution of tumor microen-
vironment due to the intact immune system. GEM could
thus be helpful in validating drug targets [175].

Although GEM have been of great value in cancer
research, they have several disadvantages. The major
weakness of Cre-loxP is that it does not allow for sequen-
tial and time-specific stepwise activation or inactiva-
tion of specific genes in vivo. This means that although
Cre-loxP can assess single gene lesions, the model does
not accurately reflect all aspects of sporadic multistep
carcinogenesis [176]. The major weakness of RCAS/
TVA is the limited insert capacity of the virus (2.8 kb),
which limits the genes that can be evaluated [177]. Fur-
thermore, producing a germline GEM is labor-intensive,
time-consuming, and expensive [175]. Despite the clear
advantages of a de novo tumor in an immunocompetent
environment, the tumor remains a mouse tumor and not
a human tumor—and these may act/react differently, e.g.
CDKNZ2A/B is present at chromosome 9 in humans but
chromosome 4 in mice [161, 162].

Uncategorized models

These studies were deemed too heterogenous and too few
to be included in the meta-analysis and subgroup analy-
ses. A narrative approach was chosen to describe the
studies of most interest, in addition to a table (Table 7)
(for further details Additional file 12).

Syngeneic models were first tried in 1994 by Yamate
et al. [142], who excised a highly malignant cerebel-
lar tumor from an F344 rat; this was consecutively pas-
saged and transplanted with great success (100% TTR)
into new animals. Furthermore, the models showed
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similar histological traits to the parent tumor. Peyre and
Kalamarides in collaboration with Yeung et al. [30, 132,
135] have performed 100% TTR fast-growing syngeneic
malignant models (both orthotopic and heterotopic)
using cell lines derived from Peyre et al. GEM (MGS1-3)
[30]. This model type provides a stable method of assess-
ing WHO grade 3 meningiomas and their interaction
with the immune system as the animals are immunocom-
petent. Thus, it is a genetically modifiable alternative to
the spontaneous animal-derived tumor studies from the
1990s [142, 143].

Developing meningiomas in an animal model has also
been successful from patient-derived tumor stem-like
cells [140, 141]. These studies show tumors reflecting the
histological features and immunohistochemistry of the
parent tumors. This model type could be used for assess-
ing tumorigenesis of various progenitor cells. Baia et al.
[139] transfected non-neoplastic arachnoidal cells with
Yes-Associated Protein-1 and found 100% tumor in com-
parison to no tumor in controls. Tumorigenic studies on
specific proteins or other factors could be performed in a
similar fashion.

Designing a model: type and validation of growth

and verification of tumor

The preferred model depends on multiple factors such as
the type of research and availability of resources (special-
ized equipment, scans, laboratory analyses). This section
gives an overview via Table 8 of the advantages and dis-
advantages of the different model types, and we present a
separate section on validation of growth and verification
of tumor.

Validation of growth and verification of tumor

During any experiment, it is important to follow growth
at various time-points, e.g. before, during, and after
treatment to assess the efficacy of the intervention. Due
to the associated skin and fatty tissue, the size of a tumor
xenografted subcutaneously is more difficult to estimate
via caliper. A subrenal capsule approach can give more
precise measurements but requires surgery for each
measurement at the cost of animal strain [106, 127, 129].
A single study reports peritoneal injection [58], but this
approach has the same disadvantages as orthotopic mod-
els without any benefits. It is difficult to assess tumor
growth in orthotopic models without sacrificing the ani-
mals and without specialized non-invasive methods such
as bioluminescence, MRI, and PET (Tables 4, 5 and 6).
Bioluminescence is widely used for real-time imaging
in vivo. Once cells have been transduced with luciferase
(Fluc) prior to implantation, it is relatively easy and inex-
pensive [178]. MRI scans are also widely used but usu-
ally require special high-field MRI scanners for optimal
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resolution on a small scale (3.0T [67], 4.7T [28, 30, 53,
61, 62], 9.4T [25, 83]), but can be achieved to a certain
degree with a clinical 1.5Tesla MRI [81].

Meningioma verification in the clinic depends pri-
marily on HE histology and perhaps the immunohisto-
chemical markers vimentin, epithelial membrane antigen
(EMA), somatostatin receptor 2 (SSTR2), and Ki67/MIB-
1. However, newer guidelines include genome sequenc-
ing on special cases [165]. Particularly when implanting
primary patient-derived cells or tissue, researchers
should perform a panel of HE and immunohistochemi-
cal markers and compare to the parent tumor at the
very least, however it is recommended to compare at a
genomic [179] or epigenomic level. During inoculation
of cancer cells in mice, the stroma is replaced by mouse
cells, resulting in a mix of DNA [180]. It was shown in
pancreas cancer that xenografts in immunocompromised
animals were contaminated with 47% (17-73%) mouse
DNA [181]. To our knowledge, no such experiments have
been conducted in meningioma research, but it is impor-
tant to take this into account when discussing results
of a treatment. In regard to verifying and classifying
GEM-derived tumors, Kalamarides and colleagues have
suggested a specific classification based on histological
analysis, which reflects tumor composition more accu-
rately than the human classification [35], which should be
used in case of GEM.

Critical appraisal of methodological quality and quality
of reporting (CRIME-Q)
All studies included in this meta-analysis were peer-
reviewed, assuring a certain quality. We considered 67% of
all studies to sufficiently describe the bench-top part of the
experiments, but only 46% described the animals properly.
Almost all studies did not calculate sample size, and no
studies provided a full description of the sample size cal-
culation. A full description of the in vivo experiment ele-
ments was present in 59% of the studies, and 27% had
such deficient descriptions that the experiment could not
be replicated. Around two-thirds of the studies described
compliance with animal welfare, and almost no papers
(6%) were blinded in any way. It is not standard practice
in animal research to discuss model limitations, which was
reflected in three-quarters of the studies not mentioning
this. In general, we found a higher percentage of studies
with good methodological approach (2Y, 3Y, 5Y) than with
good quality of reporting (2X, 3X, 5X), see Fig. 3A.
SYRCLE’s risk of bias items were included in the
CRIME-Q tool. Items 3Z, 5Z [1-3], and 7 [1-3] were
mostly unclear in 67-89% of the included studies. A few
studies were non-interventional, so some items were not
applicable. We found that 79% of studies had a low risk of
excluding outcome data (Attrition bias, 8Z [1]). Although
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no study protocols were apparently available, it was clear
in 79% of studies that the published reports included all
expected outcomes (i.e., comparing the Methods and
Result sections) and reported key elements, which would
have been expected from such studies (i.e. tumor-take
rate) (Selection bias 8Z [2]). No risk of influence from
third party was found in 56% of studies (Publication bias
10Z) Fig. 3B.

Discussion
This meta-analysis showed that the tumor take rate
(TTR) for established cell line models (ECLMs) was
near 100% for both orthotopic models [94% (95% CI
92-96)] and heterotopic models [95% (95% CI 93-96)].
These results proved consistent regardless of subgroup
category, time frame (duration of incubation), number
of cells, injection volume, cell concentration, and cell
line (Additional file 13). TTR was more variable for pri-
mary patient-derived tumor models (PTMs), with 53%
(95% CI 33-72) for orthotopic models and 82% (95% CI
73-89) for heterotopic models. Subgroup analyses for
PTM showed varying TTRs, e.g. high (98%; 89-100%)
for orthotopic duration of incubation between 14 and
30 days, but low [8% (95% CI 3-21%)] for 200-499 days
of incubation. We could not identify any pattern in take
rate according to the number of cells, e.g. 100—1000 cells
had high TTR [86% (95% CI 42-100%)], 10.000—100.000
had very low TTR [15% (95% CI 5-37%)], and 500.000—
1.000.000 cells had higher again [91% (95% CI 77-97%)].
Two aspects should be considered before applying these
results in models. First, we found few published papers on
PTM section and secondly, only a few studies have pub-
lished negative tumor takes (0%) in some samples, namely
Ragel et al. [67], Malham et al. [122], Hu et al. [121], and
most importantly, Zhang et al. [25] who published several
individual tumors unable to obtain growth in vivo. To our
knowledge there has been no investigation into why some
tumors simply fail to take in animals, and no papers have
focused on extensive genomic/epigenomic alterations in
meningioma xenografts. One explanation could be lack
of certain driver mutations in tumors that help develop
tumors in the animals. Our own experiences regarding
inter-tumor heterogeneity of take-rate and knowledge
within the field lead us to believe, there is a high risk of pub-
lication bias in the current analysis as not all eligible studies
may have been published. If unpublished studies are more
likely to show negative results, this may have skewed our
results. There is a larger focus on publishing negative results
today [183], but it remains an issue overall as suggested in
this paper. Although submission of animal study protocols
is recommended and feasible through open access journals
without peer-review, it is still not common practice.
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Fig. 3 CRIME-Q—Quiality of Reporting, Methodological Quality and SYRCLE's Risk of Bias. Graphical display of all categories 1-10 including all
included studies A Quality of Reporting items (X) and Methodological Quality (Y) Green=Yes, Yellow = Partly, Red =No. B Results of ltems

from SYRCLE's Risk of Bias tool. Green =Yes, Yellow = Unclear, Red =No, Blue=Not applicable. 1X Peer-review, 2X Bench-top/laboratory work related
to establishing model, 2Y Methodological quality of 2X, 3X Animals, 3Y Methodological quality of 3X, 3Z: Selection bias (baseline characteristics),
4Y Sample size, 5X in vivo design and performance, 5Y: Methodological quality of 5X, 5Z(1): Selection bias (Sequence generation), 5Z(2):
Performance bias (Random housing), 5Z(3): Detection bias (Random outcome assessment), 6X: Compliance with animal welfare regulations,

7X Blinding, 7Z(1) Performance bias (Blinding), 7Z(2) Allocation bias (allocation concealment), 7Z(3) Detection bias (blinding), 8X Congruency
between methods and results, 8Z(1) Attrition bias (incomplete outcome data), 8Z(2) Reporting bias (Selective outcome reporting), 9X Presentation
of limitations, 10X Statement of potential conflict of interest, 10Z Other bias (Publication bias). See Table 1 for further descriptions

Most (70%) of the studies presented here were based on
immortalized cell lines, which by far mimic proper tumor
qualities. The ability of these cell lines to provide a steady,
fast, and homogeneous growth makes them especially suit-
able to quickly test experimental treatment strategies as an
‘add on’ in often times very well performed in vitro studies
with (often) very few animals ie. [57, 64, 74, 75, 78, 80, 88,
93, 102, 103]. This may explain the low quality of reporting,
which is problematic for the research community. These
studies sometimes use a heterotopic model and a very early
treatment start day (1-2 weeks) [52], thus not mimicking
normal tumor pathology or treatment in any way. Despite
this, ECLMs have a role to play in exploring, for example,
scan modalities, cognitive function studies, and tumor load
studies, where the specific tumor characteristics are less
important.

The TTR of 34% across all GEM studies indicate a prob-
lem of finding a strong oncogenic driver that can be used
to model meningioma with its typical benign nature and
slow growth, which presents challenges in preclinical
research [134]. The only study that reported solid growth
in almost 100% of the cases was based on constitutively
activated YAPI [134], but meningiomas initiated by YAPI
fusion are a rare subset of childhood and young adulthood
meningiomas [184]. Given sufficient time, sample size, and
appropriate design to avoid an underpowered study [185],
the lower take rates of GEM would not be problematic in
pre-clinical pharmaceutical tests. Otherwise, the synge-
neic model could be used for faster growth at higher take.
Translatability from GEM (mouse tumor) to human in

preclinical treatment studies in meningioma still remains
to be seen.

The average rate of successful translation from animal
models to clinical cancer trials is generally around 8% [23],
and meningiomas are no exception. As there are currently
no known pharmaceuticals with sufficient clinical benefits
[186—188], in vitro and in vivo research in this field is para-
mount. Possible issues in relation to this loss in translation
are meningioma heterogeneity as a group in terms of genet-
ics/epigenetics and histology, microenvironmental chal-
lenges and design/use of model. Gene expression, epigenetic
profiling, molecular markers, and DNA-technologies have
over the past decade especially helped uncover the hetero-
geneity. And in line with this, the continuing search for the
perfect model, which has not been discovered and might
not exist. However, we can strive towards model improve-
ment and development. Furthermore, we ought to use
the ‘right' type of model, which mimics the condition
researched/reflects research question as close as possible to
decrease the gap in translation.

Poor study reporting leads to irreproducible and uncer-
tain findings [189, 190]. In this study, we present a new
tool (CRIME-Q) to assess all kinds of animal studies
quickly and thoroughly on multiple parameters. CRIME-Q
identified issues in reporting, which influences methodo-
logical quality and risk of bias greatly, further emphasizing
the need for research to report their methods and findings
more thoroughly to ensure transparency, replicability and
ultimately usability of models. CRIME-Q unifies multiple
aspects of quality of reporting, methodological quality, and



Andersen et al. Journal of Translational Medicine (2023) 21:764

risk of bias from bench-top to in vivo design and perfor-
mance and related items in between including risk of bias
and presents a clearer overall assessment of included stud-
ies in systematic reviews on animal research. Used along-
side the ARRIVE 2.0 guidelines for animal studies [41],
CRIME-Q can help improve study transparency and repli-
cability. We found it necessary to develop our own broader
method, which also includes bench-top assessment, since
we found no suitable options available [191]. Our tool is
not yet externally validated, but we present all the results
here in a transparent manner for further inspection.

It is important to note that this review intended to assess
animal models only. Many of the included papers used ani-
mal studies to underpin the in vitro findings or as proof of
concept, which will have influenced the quality of reporting,
methodological quality, and risk of bias. The focus of these
papers simply is not animal studies and thus our judgements
should not be regarded as overall judgements of quality of
the studies, but rather as judgements of the reporting and
methodological quality in relation to our objectives. Indi-
vidual study scores can be assessed in the Additional file 13,
where a short description and grade is given for each cate-
gory. Furthermore, many of the studies were published over
15 years ago, when there was less focus on full reporting.

Study strengths and limitations

A strength of this study is the systematic approach in
accordance with the PRISMA guidelines, where we
made individual assessments of study eligibility and data
extraction. The structured critical appraisal of methodo-
logical quality and quality of reporting of all included
studies allowed us to judge the overall reliability of the
studied body of evidence. A further strength is the meta-
analysis on TTRs for the various model types, allowing us
to assess the effectiveness of different models.

The study also has several limitations. First, there is a
high risk of publication bias, as noted above. If studies with
high success rates are more likely to be published, meta-
analyses might overestimate the overall success rate. Like-
wise, if studies using specific methods are more likely to be
published, this might limit the ability to compare success
rates for different methods. Secondly, while we critically
appraised all included studies, we used a non-validated tool.
We believe we have included the most important methodo-
logical aspects, but some could have been overlooked, and
we welcome feedback and criticism of the tool from the
scientific community. Lastly, the methodological quality
and the quality of reporting of included studies varied. Our
results (including from the meta-analyses and subgroup
analyses) should thus be interpreted with caution.
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Future perspectives for meningioma models

and knowledge gaps

We describe here some selected points of interest in our
search to identify and analyze knowledge gaps in the use
of meningioma animal models for optimal preclinical
tests.

First, previous successful in vivo pharmaceutical tri-
als in xenograft models in meningiomas have failed to
translate to human conditions. This is probably due
to microenvironmental challenges from the lack of a
proper immune response in immune-incompetent ani-
mals. Use of humanized animals [192] could help this,
i.e., by engrafting CD34+human hematopoietic stem
and precursor cells to encourage development of a nor-
mal immune system [193]. The use of humanized animals
with co-engrafted stromal and immune components is
not yet a perfect science [192], but the technology has
great potential for both tumor growth and drug response
studies. Its uses remain to be seen in meningiomas.

Second, 68 Ga-DOTA(TOC/NOC/TATE) PET-CT
provides high-contrast images of meningiomas due to the
abundance of somatostatin receptor 2 in meningiomas
but not in brain (except the pituitary gland) and bone.
PET-CT has shown to be more sensitive than MRI to
detect meningiomas [194, 195] and is widely used in the
clinic [196]. Only two preclinical studies have assessed
PET in heterotopic models, both of which showed easy
distinction between healthy tissue and tumor [95, 96].
These findings need to be verified in an orthotopic model
that could be used in both GEM and xenograft models.

Third, previous comparisons between primary patient-
derived tumor and corresponding xenograft in men-
ingioma research have primarily used histology and
immunohistochemistry. Only Zhang et al. [25] assessed
two tumors (WHO grade II and III) and corresponding
xenograft gene expression profiles using RNA sequence
to assess DNA copy number variations and genes. The
xenograft tumors retained all of the copy number vari-
ations seen in the original tumors. When comparing
original tumor to xenograft and normal brain tissue, the
authors found high correlation between original tumor
and xenograft genes. Moreover, a large study involving
several hundred xenograft cancer models of many types
showed no enrichment of cancer-related genes in xeno-
grafts and concluded a lack of systematic copy number
evolution driven by the PDX mouse host [197]. Despite
these findings, we lack epigenetic knowledge of men-
ingioma xenograft using DNA-methylation (especially
in the benign tumors, which have not yet been tested).
We should explore this approach further to identify the
model type that best mimics human conditions.
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Finally, we have limited knowledge of GEMs and onco-
genic drivers, as well as the impact of different genes e.g.,
TRAF7, AKT1. The observed TTR of 34% for GEMs indi-
cates challenges in finding a strong oncogenic driver that
can be used to model this disease with the Cre-recom-
binase and RCAS/TVA systems. Conditional or ‘time-
and site-specific’ DNA alteration is important in various
diseases as some gene alterations are not compatible
with intrauterine development [151], e.g. homozygous
Nf2-deleted mouse embryos fail in development [198].
The CRISPR/Cas9 technology can target any genomic
point through single-guide RNAs [199] and can be used
to introduce defined mutations or loxP-sites [175]. It
is especially useful in non-germline models based on
direct gene editing in vivo. This could be used to quickly
identify oncogenic genes without the need for extensive
breeding to obtain the proper transgenic model [200].

Conclusion

This systematic review shows high consistent tumor take
rates in established cells lines and varying tumor take
rates in primary-patient derived material and genetically
engineered models. However, we identified various issues
across the studies regarding the quality of reporting, the
methodological approach, and a high risk of publication
bias. Each tumor model type has specific roles. ECLMs
are useful for modality testing and other tumor burden
studies, while PTMs (orthotopic) mimic tumor hetero-
geneity and have low cost and technical skill require-
ments, making them useful in initial pharmaceutical
testing if appropriate examinations are performed (e.g.
DNA sequencing, DNA methylation). Finally, GEMs are
useful in assessing and validating driver mutations and
determining cells-of-origin, making them relevant in pre-
clinical testing due to an intact immune system; they may
also be beneficial in validating drug targets.
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