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Abstract 

Background  Analyzing meningioma of distinct pathological types at the single-cell level can provide new and valu-
able insights into the specific biological mechanisms of each cellular subpopulation, as well as their vital interplay 
within the tumor microenvironment.

Methods  We recruited patients diagnosed with four distinct types of meningioma and performed single-cell RNA 
sequencing on their tumor samples, concurrently analyzing a publicly available dataset for comparison. Next, we 
separated the cells into discrete clusters and identified their unique identities. Using pseudotime analysis, we demon-
strated cellular differentiation and dynamics. To investigate biological function, we employed weighted gene co-
expression network analysis, gene regulatory network, and gene set enrichment analysis. Additionally, we conducted 
cell–cell communication analyses to characterize interactions among different clusters and validated a crucial interac-
tion using multiple immunofluorescence staining.

Results  The single-cell transcriptomic profiles for five meningioma of different pathological types demonstrated 
that neoplastic cells exhibited high inter-sample heterogeneity and diverse biological functions featured by metabolic 
regulation. A small cluster of neoplastic cells (N5 cluster, < 3%) was most proliferative, indicated by high expression 
of MKI67 and TOP2A. They were primarily observed in our atypical and transitional meningioma samples and located 
at the beginning of the pseudotime differentiation branch for neoplastic cells. Macrophages, the most abundant 
immune cells present, showed two distinct developmental trajectories, one promoting and the other suppress-
ing meningioma growth, with the MIF-CD74 interaction serving as the primary signaling pathway for MIF signals 
in the tumor environment. Unexpectedly, despite its small cluster size, the N5 cluster demonstrated a significant 
contribution in this interaction. By staining pathological sections of more samples, we found that this interaction 
was widely present in different types of meningiomas.
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Conclusions  Meningioma neoplastic cells’ diverse types cause inter-sample heterogeneity and a wide range 
of functions. Some proliferative neoplastic cell may educate macrophages, which promotes tumorigenesis possibly 
through the MIF-CD74 interaction. It provides novel clues for future potential therapeutic avenues.
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Background
Meningioma, a type of neoplasm that originates from the 
meninges of the central nervous system, constitutes the 
most frequent primary intracranial tumor of the CNS 
[1]. Meningiomas present a high degree of heteroge-
neity, with an annual incidence of 7.86 per 100,000 and 
accounting for 37% of all primary intracranial tumor [2]. 
The latest 2021 WHO brain tumor classification lists 
fifteen meningioma subtypes, classifying them based 
on their histological and biological features [3]. Menin-
giomas demonstrate significant clinical heterogeneity 
regarding disease symptoms, tissue pathology, recurrence 
rates, clinical invasiveness, and outcomes. Moreover, 
meningiomas can be categorized based on their molecu-
lar properties, and different subgroups manifest distinct 
clinical outcomes and recurrence rates [4, 5].

Single-cell RNA sequencing (scRNA-seq) represents 
an effective method to unravel heterogeneity, classify cell 
subpopulations, and identify cellular origins in human 
cancers. In addition, scRNA-seq can identify shared 
features among different individuals with the same dis-
ease, thereby enhancing our comprehension of common 
mechanisms underlying the disease and potentially pro-
viding leads for discovering novel therapeutic targets. In 
previous single-cell transcriptomic analyses of meningi-
omas, cell identification indicated that most cells were 
tumor cells (69%), while 14% were immune cells (mac-
rophages and T cells), 10% were fibroblasts, and 6% were 
endothelial cells [4]. Notably, single-cell transcriptomics 
can uncover the significant heterogeneity of meningioma 
tumor cells, which tend to cluster according to patients. 
Additionally, immune cells are more abundant in menin-
giomas compared to normal dura mater tissue, and mac-
rophages present in both may have different origins [6]. 
By identifying immune-enriched meningiomas based on 
DNA methylation, single-cell transcriptome analysis has 
revealed an increased proportion of immune cells in this 
subtype. Moreover, the expression of HLA-DRB5, HLA-
DRB1, HLA-DQA1, HLA-DMA, and HLA-DPB1 was 
found to be increased [7]. Currently, scRNA-seq stud-
ies on meningiomas primarily focus on characterizing 
the cellular landscape, providing initial insights into the 
immune landscape. Nevertheless, detailed analysis of the 
differential expression patterns of distinct cell types, as 
well as exploration of the interactions between various 
cell types, remain necessary.

Additional investigations have revealed that mac-
rophages represent the predominant cell type in the 
tumor microenvironment (TME) of meningiomas and 
that the proportion of macrophages is greater in WHO 
grade 2 meningiomas than in WHO grade 1 meningi-
omas[8, 9]. Macrophages have a complex role in tumors, 
and in the presence of tumor cells, they can concurrently 
exhibit two different states: promoting and inhibiting 
tumor growth [10]. In a particular study, targeting the 
CSF-1/CSF-1R signaling pathway to reduce the immuno-
suppressive function of macrophages has been identified 
as a promising immunotherapeutic strategy for high-
grade meningiomas [11].

In this study, we recruited five meningioma patients 
with varying pathological types or WHO grades and 
analyzed their tumor samples at the single-cell level to 
generate a single-cell transcriptome profile of meningi-
omas. We conducted further functional characterization 
to better understand the gene expression differences in 
individual neoplastic cell heterogeneity. Our investiga-
tion also revealed that neoplastic cells may be capable 
of universally educating macrophages to promote tumor 
development, potentially through MIF-CD74 interaction. 
Targeting MIF-CD74 may therefore represent a promis-
ing strategy for the development of immunotherapeutic 
approaches for the treatment of meningioma.

Methods
Patients and clinical information
Five patients were recruited by Beijing Tiantan Hospi-
tal, Capital Medical University between 2017 and 2018. 
Based on imaging studies, a diagnosis of meningioma 
was suggested and subsequently confirmed by postop-
erative pathology reports. All enrolled patients provided 
written informed consent, and the study protocols were 
approved by the ethical review board of Beijing Tiantan 
Hospital, Capital Medical University (KY2017-022-01). 
Table 1 displays their comprehensive clinical information.

HE staining
Meningioma tissue samples underwent successive perfu-
sion with saline and 4% paraformaldehyde. The tissues 
were fixed for 24 h using 4% paraformaldehyde, followed 
by dehydration with 70% ethanol and paraffin embed-
ding. The resulting meningioma samples were then 
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sectioned continuously and subjected to hematoxylin–
eosin (HE) staining, following established protocols.

Sample collection and single‑cell suspension
During surgery, the specimens were promptly immersed 
in chilled RPMI1640 medium after being excised from 
the whole tumor. The samples were subsequently 
trimmed with scissors and washed thrice with Hank’s 
Balanced Salt Solution (HBSS) to eliminate blood cells 
and burnt tissues. Subsequently, the tissue was cut into 
pieces of less than 2 mm diameter and underwent tissue 
digestion in a digestive enzyme mixture containing 20 ml 
of pre-warmed RPMI1640 (ThermoFisher Scientific), 
200U/ml type IV collagenase (ThermoFisher Scientific), 
and 10% Fetal Bovine Serum (FBS, ThermoFisher Scien-
tific) for 40 min at 37 °C while being shaken. Cell suspen-
sions were filtered through a 70 μm filter and centrifuged 
at 1000 rpm for 5 min. The cells were washed twice, and 
resuspended in HBSS with 10% FBS. BD FACS lysing 
solution (BD company) was used to lyse red blood cells 
as per the manufacturer’s instructions. Subsequently, the 
cells were digested with the digestive enzyme mixture 
again for 20  min at 37  °C while being shaken to isolate 
the cell mass into single cells. Cell suspensions were fil-
tered through a 40 μm filter and centrifuged at 1000 rpm 
for 5 min. The cells were washed twice and resuspended 
in Phosphate Buffer Saline (PBS). After determining cell 
count and viability, the cells were diluted to a concentra-
tion of approximately 1000/μL.

The scRNA‑seq and data processing
The scRNA-seq experiment was conducted at Capital-
Bio Technology Co., Ltd. In brief, the single-cell suspen-
sion was loaded onto the 10X Genomics single-cell chip 
with the goal of capturing 3000 cells/chip. The library 
was prepared according to the recommended protocol 
of the 10X Genomics Single Cell 3ʹ Kit. The sequencing 
library was constructed using single-cell 3ʹ v2 chemistry 
(10 × Genomics) and sequenced on Illumina HiSeq X-10, 
generating 90 G data for each sample.

The raw sequencing data underwent processing by 
Cell Ranger (version 3.02), which is the official bundled 

software of 10X Genomics. We aligned the data to the 
human reference genome (GRCh38) using the default 
pipeline. Following this, we imported the Gene-Bar-
code matrics, which contain barcode information and 
expression counts, into the R package Seurat (version 
4.2.0) [12]. In Seurat, we excluded certain cells based 
on their feature number, percentage of the mitochon-
drial transcript, and the counts of RNA. Specifically, we 
excluded cells that expressed fewer than 200 or more 
than 7500 genes, cells with mitochondrial transcript 
percentages greater than 25, and cells with RNA counts 
less than 200 or more than 20,000.

After data pre-processing, we employed the 
“SCTransform” method to normalize and identify the 
most variable features for each sample. “SCTransform” 
avoids some of the drawbacks associated with the 
standard normalization workflow, including the addi-
tion of pseudo-counts and logarithmic transformations. 
To more effectively mitigate batch effects across multi-
ple samples, we employed the anchor-based integration 
approach implemented in Seurat 3. Specifically, we uti-
lized the “FindIntegrationAnchors” and “IntegrateData” 
functions to integrate gene expression matrices from 
five distinct samples. To achieve linear conversion, the 
“ScaleData” function was applied to scale the data.

Cell type identification
The top 3000 genes with high variability were extracted 
for principal component analysis (PCA), and the 30 
most significant principal components were utilized 
for cluster analysis. The “FindClusters” function (reso-
lution = 0.8) was employed to identify the clusters, 
which were then visualized using the Uniform Manifold 
Approximation and Projection (UMAP). The character-
ization of cell types was based on gene function and the 
expression of known markers in the CellMarker data-
base [13]. Furthermore, the sub-clustering of neoplastic 
cells and macrophages was carried out by utilizing the 
aforementioned approach. The marker genes for each 
cluster were identified by the “FindClusters” function 
with a resolution of 0.1.

Table 1  Clinical characteristics of meningiomas patients

Sample ID Sex Pathology WHO Radiotherapy Surgery time/years Recurrence

M.p.fib F Fibrous 1 N 1 Y

M.r.tra1 F Transitional 1 Y 3 N

M.r.tra2 F Transitional 2 Y 4 Y

M.r.aty M Atypical 2 Y 2 N

M.r.cle F Clear cell 2 N 2 N
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Weighted gene co‑expression network analysis (WGCNA)
In order to investigate the neoplastic cells, we con-
ducted WGCNA using the ‘‘hdWGCNA’’ package in R. 
The analysis object was created using SetForWGCNA, 
with the gene selection parameter set to ‘‘variable’’. In 
the construction of ‘‘metaccells,’’ we employed a nearest 
neighbor parameter set to the default value of 25 and a 
soft threshold set to 12. By utilizing the "ConstructNet-
work" functionality, a soft threshold of 12 was chosen, 
which represents the minimum value satisfying a scale-
free topology fit of 0.8. When the specified criteria are 
met, this results in an elevation of connectivity strength 
among network edges, consequently leading to the for-
mation of more densely interconnected gene modules. 
Taking into account the dataset’s size, we employed the 
“ModuleExprScore” function and the “Ucell” method to 
compute scores for the top 50 genes in each module.

Gene regulatory network analysis
We applied SCENIC with the pySCENIC package 
(0.12.1) to investigate the dominant transcription factors 
in distinct neoplastic clusters in Python (version 3.9.16). 
pySCENIC consists of three major processes. First, coex-
pression modules are inferred using a regression per-tar-
get approach (GRNBoost2). Next, the indirect targets are 
pruned from these modules using cis-regulatory motif 
discovery (cisTarget). The gene-motif ranking (10  kb 
around the transcription start site) was used as a guide to 
determine the search space around the transcription start 
site for transcription factor regulatory networks. Human 
gene-motif rankings are collected from https://​resou​rces.​
aerts​lab.​org/​cista​rget/. Lastly, the activity of these regu-
lons is quantified via an enrichment score for the regu-
lon’s target genes (AUCell). we aimed to establish specific 
associations between regulons and individual tumor cell 
clusters based on the regulon specificity score (RSS) cri-
teria of RSS > 0.1 and RSS standard deviation > 3. Through 
this approach, we filtered and selected regulons showing 
significant specificity to each neoplastic cell cluster. Visu-
alization was performed using the R packages “pheat-
map” and “ggplot2”.

Pseudotime trajectory analysis
All neoplastic and macrophage cells were chosen for 
analysis of the pseudotime trajectory. The R package 
‘‘Monocle’’ was utilized for differentiation trajectory and 
pseudotime analysis. A ‘‘CellDataSet’’ was formed based 
on the Seurat objects for neoplastic and macrophage cells. 
The “newCellDataSet” function was applied to create an 
object with the parameter expressionFamily = negbino-
mial.size. Highly variable genes were chosen for analysis 
based on the “dispersionTable” using the monocle2 pack-
age. Genes with greater dispersion levels were selected 

using the "dispersionTable" function in Monocle. In the 
trajectory analysis, we used genes meeting the thresholds 
that mean_expression ≥ 0.1 and dispersion_empirical ≥ 1 
* dispersion_fit identified by Monocle2 to sort cells in 
pseudo-time order. The reduceDimension() function 
using the parameters reduction_method = “DDRTree” 
and max_components = 2 was applied to reduce dimen-
sions and the visualization functions ‘plot_cell_trajectory’ 
were used to plot the minimum spanning tree on cells. 
Genes that changed along with the pseudotime were cal-
culated (q-val < 0.05) by the “differentialGeneTest” func-
tion and visualized with the plot_pseudotime_heatmap 
and the genes were clustered into subgroups according to 
the gene expression patterns. To identify the genes that 
separate cells into branches, the branch expression analy-
sis modeling (BEAM) analysis were performed and genes 
resulting from the BEAM analysis with a  q-value =  = 0 
were separated into groups and visualized with the plot_
genes_branched_heatmap function.

Enrichment analyses
We conducted gene ontology (GO) and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) enrichment anal-
yses using the “clusterProfiler” package in R [13]. Both 
GO (adjusted P < 0.05) and KEGG (adjusted P < 0.05) 
enrichment analyses were performed on all genes. We 
then grouped the significantly enriched GO items in 
each dataset into the functional network within ClueGO 
v. 2.5.9 in Cytoscape v. 3.9.1, utilizing the default param-
eters of edge-weighted, force-directed, and BioLayout 
for CluePedia. We constructed a network of pathways 
by conducting GO enrichment analysis of genes using 
Cytoscape.

Cell communication analysis
Intercellular communication was evaluated using Cell-
Chat 0.0.2, an R package, by assessing the expression 
of ligand-receptor pairs within cell clusters. For further 
analysis, the "Secreted Signaling" section in the data-
base was selected, while cell types with fewer than 50 
cells, such as oligodendrocytes, were filtered out. Addi-
tional interactions between different cell types were also 
investigated.

Statistical analysis
Downstream data analysis of scRNA-seq was performed 
using Seurat, CellChat, Monocle, and pySCENIC pack-
ages, along with clusterProfiler for statistical analysis. 
Marker genes for each cluster were calculated using the 
two-sided Wilcoxon rank-sum test implemented in the 
Seurat R package to assess differential gene expression. 
Bonferroni correction was applied to adjust p-values 
based on the total number of features in the dataset. 

https://resources.aertslab.org/cistarget/
https://resources.aertslab.org/cistarget/
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WGCNA involved calculating pairwise correlations of 
input features, determining topological overlap using 
soft-thresholded weighted correlations, and perform-
ing unsupervised clustering with the dynamic tree cut 
algorithm. Gene enrichment analysis utilized the Hyper-
geometric Test as the hypothesis test, with the Benja-
mini–Hochberg method (also known as FDR correction) 
applied for multiple testing correction of p-values. All 
statistical analyses, except for pySCENIC, were con-
ducted using R (version 4.2.2). q-values or adjusted p-val-
ues less than 0.05 were considered statistically significant 
in this study.

Multiplex immunofluorescence staining
Multiplex immunofluorescence staining was carried 
out by implementing the Opal Manual IHC Kit (Akoya 
Biosciences, MA, USA). The tissue samples of paraffin-
embedded meningioma were sliced into thin sections 
with a thickness of 5  μm. These sections underwent a 
deparaffinization process in xylene, lasting for 15 min on 
two occasions, followed by a hydration process using eth-
anol with varying concentrations (100%, 95%, 85%, and 
75%) with each lasting for 10 min. Subsequently, the sec-
tions were washed with TBST for 5 min.

After undergoing antigen retrieval via microwave heat-
ing in citrate buffer for a duration of 15 min, the sections 
were allowed to cool down at ambient temperature for 
15–30  min. The sections were then washed twice with 
TBST for 5 min each. Next, the sections were exposed to 
primary antibody (anti-MIF: 1:200, abcam, ab55445; anti- 
CD74: 1:200, abcam, ab10839; anti- VIMENTIN: 1:400, 
CST, #5741) at room temperature for a period of 60 min 
and washed with TBST for 5 min thrice. Following this, 
the sections were incubated with the secondary antibody 
at room temperature for 15 min, and washed again with 
TBST for 5 min thrice. Opal 540/640/570 fluorescent dye 
staining was carried out for a duration of 10 min at room 
temperature, and the sections were washed with TBST 
for 5 min thrice.

The sections were subjected to antigen retrieval using 
citrate buffer and microwaved for 15  min. Bound anti-
bodies were subsequently detached and the sections 
cooled at room temperature for 15–30  min. Follow-
ing this, the sections were washed twice with TBST for 
5  min each. Subsequently, the slices were incubated in 
DAPI staining solution at room temperature for 5  min 
to stain the nuclei. After incubation, the sections were 
washed with TBST for 5  min followed by washing with 
ultrapure water for 5 min. The slices were then mounted 
with anti-fade mounting medium and stored in the dark. 
Finally, the stained slices were imaged by scanning with 
the Akoya PhenoImager.

Data availability
Five single-cell transcriptome datasets of meningioma 
have been deposited in the Genome Sequence Archive of 
Beijing Institute of Genomics, Chinese Academy of Sci-
ences, with the accession number PRJCA017724 [14], 
These datasets are publicly available for access at https://​
bigd.​big.​ac.​cn/​gsa-​human/​browse/​HRA00​4857.

Additionally, there is a publicly available dataset, 
GSE183655, which was published in 2022 and generated 
using the 10X Genomics platform for single-cell data 
(https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​
GSE18​3655). This dataset comprises eight meningioma 
samples obtained from six patients, two of which had two 
samples analyzed respectively. One sample was collected 
from the tumor bulk, while the other was obtained from 
the brain-tumor interface (BTI).

Results
Cell composition in distinct subtypes of meningioma.
As shown in Fig.  1A, our research encompassed five 
meningioma specimens for subsequent scRNA-seq anal-
ysis, with clinical details elucidated in Table 1 (see Meth-
ods). According to the primary/recurrent meningioma 
and pathological type (the same pathological type was 
further graded according to WHO), the five samples were 
respectively named as “M.p.fib”, “M.r.tra1”, “M.r.tra2”, 
“M.r.aty”, “M.r.cle”. The HE staining results of these five 
meningioma samples were congruent with their respec-
tive pathological diagnoses (Fig.  1A). HE staining typi-
cally revealed variations in cellular morphology and size, 
with neoplastic cells exhibiting features such as nuclear 
division and heterogeneity that differ significantly from 
those of normal cells. In total, 23,695 cells were obtained 
after data filtering and quality control. We resolved 21 
cell clusters using cell clustering analysis (Methods, 
Fig.  1B-left). Among these clusters, six cell types were 
identified based on known marker genes: neoplastic cells 
(16,901), including CLU, PTN, LEPR, and SSTR2; mac-
rophages (4795), including HLA-DRB5, CD74, MS4A6A, 
and LYZ; T cells (1430), including CD3D, CD3E, CD3G, 
and CD52; endothelial cells (351), including CD34, 
VWF, CCL14, and PLVAP; fibroblasts (181), including 
ACTA2 and RGS5; and oligodendrocytes (37), including 
CNP, MAG, KLK6, and OLIG2 (Fig.  1B-middle, Addi-
tional file 1: Figure S1A–C, Additional file 11: Table S1). 
In our dataset, we observed high expression of the well-
established meningioma marker genes LEPR and SSTR2 
in meningioma neoplastic cells[15–18]. Furthermore, 
the genes CLU and PTN, which are known to be highly 
expressed in other neoplastic cells, were also found to 
be commonly expressed in meningioma neoplastic cells 
[19, 20]. Here, neoplastic cells had the highest proportion 

https://bigd.big.ac.cn/gsa-human/browse/HRA004857
https://bigd.big.ac.cn/gsa-human/browse/HRA004857
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE183655
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE183655
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Fig. 1  Study design and meningioma landscape. A The Meningioma specimens were collected during surgical resection of brain tumors 
and histologically classified into five distinct pathological types or WHO grades using HE staining. The samples were subjected to scRNA-seq 
analysis, and after data integration, clustering, and cell type identification, we identified six distinct cell types. We further explored the biological 
significance and communication relationships of important cell populations during meningioma tumorigenesis using cell type-specific clustering, 
WGCNA, pseudotime analysis, and cell communication analysis. Additionally, we performed the same analyses on publicly available datasets. B 
Uniform manifold approximation and projection (UMAP) plot of 23,695 cells (left), color-coded by associated cluster. Each point depicts a single 
cell. All cells were identified as six different cell types, and corresponding marker genes were determined for each cell type (middle): neoplastic 
cells (CLU, PTN, LEPR, and SSTR2); macrophages (HLA-DRB5, CD74, MS4A6A, and LYZ); T cells (CD3D, CD3E, CD3G, and CD52); endothelial cells (CD34, 
VWF, CCL14, and PLVAP); fibroblasts (ACTA2 and RGS5); and oligodendrocytes (CNP, MAG, KLK6, and OLIG2). Scaled color bar = average expression, Size 
of the point = percent expressed. Proportions of the six cell types in the sample are shown on the right
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(71.3%) of cells in samples, followed by macrophages 
(20.2%). T cells accounted for only 6.2%, and their counts 
showed great individual variability. More than 77.3% of 
all T cells originated from M.r.cle, subtype “clear cell” 
(Fig. 1B-right, Additional file 11: Table S1).

We conducted the analysis with the same procedure 
on a total of eight tissue samples from six patients in the 
public GSE183655 dataset, albeit lacking clinical infor-
mation for subtype comparison. It had 45,238 cells being 
partitioned into 23 distinct cell clusters, which were fur-
ther categorized into six distinct cell types with their 
marker genes identified, as illustrated in Additional file 2: 
Figure S2A–C, 2E–F. Consistent with our results, the 
public dataset exhibited a higher prevalence of neoplastic 
cells, followed by macrophages, while T-cell counts var-
ied significantly among samples (Additional file 2: Figure 
S2D, Additional file 11: Table S1).

Neoplastic cell heterogeneity: neoplastic cell re‑clustering 
and WGCNA
We performed further subclustering of our neoplastic 
cells (n = 16,901, Methods), resolving 8 cell clusters (N0-
N7, Fig. 2A). Each cluster was featured by distinct marker 
genes (Fig. 2B). After batch effect correction (Methods), 
neoplastic cells from different samples still formed dis-
tinct clusters (Fig.  2D, Fig.  3A), suggesting significant 
heterogeneity among meningioma neoplastic cells in our 
samples.

Nevetheless, N5-neoplastic cells were present in vari-
ous subtypes, among which M.r.aty and M.r.tra1(atypical 
and transitional) have the highest proportion. Particu-
larly, They show high expression of cell proliferation-
related genes MKI67 and TOP2A, but tumor stem 
cell marker genes CD44 and CD133 were not highly 
expressed (Fig.  2C). GO enrichment analysis of all the 
marker genes in N5-neoplastic cells demonstrated that 
(Methods), the most significant biological processes 
were related to cell proliferation and division, such as 
‘‘triphosphate nucleotide biosynthetic process’’ (adjusted 
P = 0.001758, Hypergeometric Test), ‘‘centrosome separa-
tion’’ (adjusted P = 0.001758, Hypergeometric Test), and 
‘‘attachment of spindle microtubules to kinetochores’’ 

(adjusted P = 0.001758, Hypergeometric Test, Fig.  2E). 
Meanwhile, their KEGG enrichment analysis found the 
most significant pathway was the “p53 signaling pathway” 
(adjusted P = 0.002221, Hypergeometric Test, Fig.  2E). 
Therefore, N5-neoplastic cells could represent a small 
fraction of highly proliferative cells within the tumor. 
Pseudotime analysis of neoplastic cells in M.r.aty and 
M.r.tra1 revealed that N5-neoplastic cells are primarily 
located at the beginning of the pseudotime differentia-
tion branch and in an early differentiation stage (Fig. 2F).

Similarly, neoplastic cells from the public database 
were also clustered into 13 clusters (S1-S13, as shown 
in Fig.  2G). Neoplastic cells from different sites of the 
same patient cluster together, while those from different 
patients form distinct clusters, providing evidence for the 
significant inter-individual heterogeneity observed in our 
meningioma tumor cells (Fig. 2K). Similar to the N5 -neo-
plastic cells we discovered, this public dataset also con-
tains a cluster of cells with high expression of MKI67 and 
TOP2A (MSC6-S12, Fig. 2I and Additional file 3: Figure 
S3B). The difference lies in the tumor stem cell marker 
genes, where CD133 was not highly expressed, but CD44 
showed high transcription. This finding warrants fur-
ther exploration of the inter-sample differences in the 
expression of these two markers with additional samples. 
Enrichment analysis revealed that highly expressed genes 
in MSC6-S12 were significantly associated with "chro-
mosome segregation" (adjusted P = 1.87E-30, Hyper-
geometric Test) and ‘‘cell cycle’’ (adjusted P = 3.88E-15, 
Hypergeometric Test, Additional file 3: Figure S3C). Fur-
thermore, pseudotime analysis indicated that MSC6-S12 
was located at the branch end of the pseudotime trajec-
tory and in the early stage of differentiation (Additional 
file 3: Figure S3D).

To show the biological features of the neoplastic cell 
cluster, we performed WGCNA to identify their 13 
gene co-expression modules (Fig.  3B, Additional file  12: 
Table S2). The gene scores of each module demonstrated 
differential expression among the neoplastic cell sub-
clusters (adjusted P < 0.05, two-sided Wilcoxon rank-
sum test, Fig.  3C–D). Furthermore, the enrichment 
outcomes pertaining to genes in each module exhibited 

Fig. 2  Neoplastic cells subclustering and pseudotime analysis. A UMAP plot of 16,901 neoplastic cells, color-coded by associated cluster. Neoplastic 
cells were re-clustered into eight subclusters (N0-N7). Each point depicts a single cell. B Marker genes for neoplastic cells in subclusters N0-N7. 
Scaled color bar = average expression, size of the point = percent expressed. C Expression of MKI67, TOP2A, CD44, and CD133 in neoplastic cells. 
D Separation of neoplastic cell subclusters in each sample. E GO and KEGG enrichment analysis of marker genes in N5 neoplastic cells (Top 5, p 
adjusted < 0.05). F Pseudotime analysis of M.r.aty and M.r.tra1 neoplastic cells. The pseudotime evolution time relationship is shown. Scaled color 
bar = pseudotime (left). Distribution of neoplastic cell on the pseudotime map (right). Each cell in the branched pseudotime trajectory was colored 
by its pseudotime value and its Seurat clusters. G In a public dataset, neoplastic cells were re-clustered into 13 subclusters. H Expression of MKI67 
and TOP2A in neoplastic cells from the public dataset. I Separation of tumor cell subclusters in each sample from the public dataset. Tumor cell 
distribution showed similarity in tissues from the same sample (e.g., MSC6 and MSC6_BTI). Of these samples, MSC5 (tumor bulk) and MSC5_BTI 
(brain-tumor interface) were obtained from one patient, while MSC6 (tumor bulk) and MSC6_BTI (brain-tumor interface) from another patient. Each 
of the remaining samples was from distinct patients

(See figure on next page.)
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a broad spectrum of diversity, encompassing immune-
related signaling pathways, Wnt signaling pathways, 
metabolic-related pathways, and response to decreased 
oxygen levels, among others (Table 2, Additional file 13: 
Table S3). The variety of enrichment outcomes between 

modules exhibits the heterogeneity of neoplastic cells 
(Table 2). The public dataset also revealed extensive bio-
logical processes enriched in module genes, including 
central nervous system development and differentiation, 
immune-related signaling pathways, ion and substance 

Fig. 2  (See legend on previous page.)
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transport and regulation, response to low oxygen levels, 
and metabolism-related pathways (Additional file 3: Fig-
ure S3E–G, Additional file 15: Table S5). These findings 
exhibited strong concordance with our own data results. 
In addition, we further identified 99 activated regulons in 
meningioma neoplastic cells demonstrating sample spec-
ificity (Additional file 4: Figure S4B).

Notably, the N5 subgroup exhibited higher gene scores 
in the NEO4 and NEO9 modules (Methods), which were 

significantly enriched in biological processes related 
to cell cycle and DNA replication (Table  2, Additional 
file  13: Table  S3). On the other hand, the GSE-NEO9 
module, which is associated with cell division processes 
such as ‘‘mitotic nuclear division’’ (adjusted P = 1.55E-50, 
Hypergeometric Test, Additional file 14: Table S4, Addi-
tional file  15: Table  S5), exhibited higher gene scores in 
the MSC6-S12 subgroup. Within each neoplastic cell 
cluster, we observed elevated regulon specificity scores 

Fig. 3  WGCNA analysis of neoplastic cells. A Proportions of different subclusters of neoplastic cells in the samples. B Gene co-expression modules 
identified by WGCNA analysis of neoplastic cells. Thirteen modules (NEO1-NEO13) were identified, with each module represented by a different 
color except for the gray module. C Expression profiles of the top 50 genes in each of the 13 modules in the neoplastic cell UMAP. D Expression 
of the genes in the 13 modules across different subpopulations of neoplastic cells. Scaled color bar = average expression, size of the point = percent 
expressed
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for E2F1 and E2F7 in N5-neoplastic cells, indicating 
enhanced transcriptional activity (Additional file  4: Fig-
ure S4A). The E2F family of transcription factors plays a 
crucial role in cell cycle regulation and DNA replication 
[21, 22].

Two divergent cell fates of macrophages
Within the tumor microenvironment (TME) of men-
ingiomas, macrophages are ubiquitous and account for 
the majority of immune cells (n = 4759). These cells were 
subsequently classified into five distinct clusters based 
on their respective marker genes (Fig.  4A, C). Notably, 
clear heterogeneity among macrophages from differ-
ent pathological types was observed, with macrophages 
from transitional meningiomas (M.r.tra1 and M.r.tra2) 
predominantly grouping into Cluster 2, while mac-
rophages from other histological types clustered differ-
ently (Fig. 4B).

We conducted pseudotime trajectory analysis on mac-
rophages in the TME of meningiomas (n = 4759) and cat-
egorized them into one node and three states (Fig. 4D). 
State 1 constituted the largest proportion (66.9%), fol-
lowed by State 3 (20.2%) and State 2 (12.9%) (Additional 
file  16: Table  S6). A heatmap of differential pseudotime 
analysis depicted genes that were highly expressed in the 
two distinct cell fates: State 2 corresponding to Cell fate 
1 and State 3 corresponding to Cell fate 2 (Fig. 3G, Addi-
tional file 17: Table S7). Notably, macrophages in WHO 
grade 1 meningioma were more likely to cluster in State 
3/Cell fate 2, while macrophages in WHO grade 2 men-
ingiomas were more likely to cluster in State 2/Cell fate 
1 (Fig.  4E, I). The two distinct functional roles of mac-
rophages in meningiomas were further emphasized by 
GO enrichment analysis, where highly expressed genes 

in State 2/Cell fate 1 were associated with "glucose cata-
bolic process," (adjusted P = 3.13E-05, Hypergeometric 
Test), "cellular zinc ion homeostasis" (adjusted P = 3.45E-
05, Hypergeometric Test), and "response to hypoxia" 
(adjusted P = 3.86E-07, Hypergeometric Test) (Fig.  4F). 
In contrast, highly expressed genes in State 3/Cell fate 2 
were associated with ‘‘neutrophil chemotaxis’’ (adjusted 
P = 5.01E−12, Hypergeometric Test), ‘‘response to mol-
ecule of bacterial origin’’ (adjusted P = 4.41E−15, Hyper-
geometric Test), and ‘‘positive regulation of cytokine 
production’’ (adjusted P = 2.68E−12, Hypergeometric 
Test) (Fig. 4H). Although the classical M1 and M2 mac-
rophage marker genes failed to clearly classify subclusters 
of macrophages into two categories (Additional file  5: 
Figure S5A–B), macrophages in State 2/Cell fate 1 were 
more abundant in WHO grade II meningiomas and likely 
promote tumor development, similar to M2-type anti-
inflammatory macrophages. Macrophages in State 3/
Cell fate 2, on the other hand, preferentially occurred in 
WHO grade I meningiomas and played a pro-inflamma-
tory role that benefited cancer cell clearance, similar to 
M1-type pro-inflammatory macrophages.

In the publicly available dataset, a cohort of mac-
rophages (n = 6448) was further partitioned into 10 
distinctive clusters, each evincing unique marker gene 
expression (Additional file 6: Figure S6A, C). Consistent 
with our own data, macrophages exhibited notable het-
erogeneity and could not be definitively classified into 
M1 or M2 subtypes solely based on their marker gene 
profiles (Additional file 6: Figure S6B, Additional file 7: 
Figure S7A, B). We ascertained that the biological pro-
cess of "response to decreased oxygen levels’’ (adjusted 
P = 1.13E-3, Hypergeometric Test) was enriched solely 
in early-stage genes within the pseudotime trajectory 

Table 2  Seurat clusters and WGCNA module-sample list for neoplastic cells, with GO enrichment summary

WGCNA NEO Seurat Cluster Sample ID Enrichment analysis features

NEO 1 Cluster 3 M.r.cle Regulation of metabolism and neuronal development

NEO 2 Cluster 4 M.p.fib Cell development and glucocorticoid response

NEO 3 Cluster 6 and 7 M.r.cle Immune-related signaling pathways

NEO 4 Cluster 5 M.r.aty and M.r.tra1 Mitosis and DNA replication

NEO 5 Cluster 2 M.r.aty Immune-related signaling pathways

NEO 6 Cluster 3 M.r.cle Regulation of Wnt signaling pathway

NEO 7 Cluster 4 M.p.fib Cell development and metabolic regulation

NEO 8 Cluster 2 M.r.aty Regulation of cell adhesion and response to reduced 
blood oxygen levels

NEO 9 Cluster 5 M.r.aty and M.r.tra1 Mitosis and DNA replication

NEO 10 Cluster 0 M.r.tra2 Extracellular structures and epithelial cell migration

NEO 11 Cluster 6 and 7 M.r.cle Immune-related signaling pathways

NEO 12 Cluster 6 and 7 M.r.cle Immune-related signaling pathways

NEO 13 Cluster 1 M.r.tra1 Metabolic related pathways
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analysis, while immune-related processes, such as 
‘‘leukocyte cell–cell adhesion’’ (adjusted P = 4.92E-13, 
Hypergeometric Test), were predominantly present in 
the late-stage genes (Additional file 6: Fig. S6F–J).

Cell communication: macrophage migration inhibitory 
factor (MIF) and CD74 interaction in meningiomas
We extracted N5-neoplastic cells from the entire neo-
plastic cell population and introduced the three distinct 

Fig. 4  Subclustering and pseudotime analysis of macrophages in meningiomas. A UMAP plot of 4795 macrophages, color-coded according 
to their associated clusters. Macrophages were re-clustered into five subclusters. Each point represents a single cell. B Macrophage subclusters 
were separated across different pathological types of meningiomas and showed similar distribution in samples with the same pathological type 
(M.r.tra1 and M.r.tra2). C Marker genes for each macrophage subcluster. Scaled color bar = average expression, size of the point = percent expressed. 
D Pseudotime analysis of macrophages. Scaled color bar represents the pseudotime (left). Distribution of macrophage pseudotime states (right). 
Each cell in the branched pseudotime trajectory was colored by its pseudotime value and its Seurat clusters. E Distribution of WHO grade II 
meningioma macrophages in pseudotime analysis, mainly in state1 and state3. F Grouped network of enriched GO terms for high-expression genes 
in cell fate 1. G Heatmap of high-expression genes for different cell fates in pseudotime analysis. Scaled color bar indicates the average expression. 
The high-expression gene set for cell fate 1 is predominantly located on the left side of the heatmap, while that for cell fate 2 is concentrated 
on the right side. H Distribution of WHO grade I meningioma macrophages in pseudotime analysis, mainly in state1 and state2. I Grouped network 
of enriched GO terms for high-expression genes in cell fate 2
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states of macrophages to further elucidate the intricate 
communication relationships between cells. We quan-
tified and depicted the total number and strength of 
intercellular communication (Fig. 5A, B). In our dataset, 
we identified a total of 33 significant signaling, includ-
ing MIF, SPP1, MK, PTN, VISFATIN, GALECTIN, CCL, 
COMPLEMENT, ANNEXIN, VEGF, CXCL, TNF, GAS, 
ANGPT, GRN, PDGF, PARs, TWEAK, PROS, TGFb, 
EDN, CSF, EGF, CALCR, OSM, SEMA3, BMP, FGF, 
CX3C, ANGPTL, IL6, WNT, and APELIN. We further 
summarized the interactions between ligands and recep-
tors among all cell types (P < 0.01, Permutation Test, 
Additional file  8: Figure S8A). The functions of these 
signals are diverse and complex, mostly associated with 
tumor growth, metastasis, recurrence, anti-apoptosis, 
tumor angiogenesis, and immunity, and the specific func-
tions of each signal can be found in Additional file  18: 
Table  S8. The most potent signaling identified in our 
analysis was the MIF signaling (P < 0.01, Permutation 
Test, Fig.  5C, D), with the receptor-ligand pairs MIF-
(CD74 + CXCR4) and MIF-(CD74 + CD44) (Fig. 5F).
MIF expression was nearly ubiquitous across all cell 

types, while CD74, CD44, and CXCR4 were expressed 
in macrophages, T cells, and endothelial cells (Fig.  5E, 
G). Consistent with our cell communication analysis, all 
cells in the MIF signaling emitted secretion signals, but 
only macrophages, T cells, and endothelial cells received 
secretion signals. N5-neoplastic cells exhibited a more 
profound impact on macrophages compared to other 
neoplastic cells. Our findings are in agreement with the 
detection of MIF-CD74 interaction in cell communica-
tion within public datasets. The majority of receptor cells 
remained macrophages, and high-growth neoplastic cells 
had a more significant influence on macrophages com-
pared to other neoplastic cells (Additional file  9: Figure 
S9). In the three macrophage states, we observed that 
macrophages in state 1/pre-branch and state 3/cell fate 2 
were in a similar state, and they received relatively higher 
signal intensity than state 2/cell fate 1.

In order to investigate the extensive MIF-CD74 inter-
actions in meningiomas, immunofluorescence staining 
was performed on five distinct types of meningiomas, 
including DAPI, MIF, CD74, and the meningioma marker 
Vimentin. Each meningioma subtype exhibited distinc-
tive pathological characteristics. Immunofluorescence 

staining results revealed the presence of MIF (green 
fluorescence) and CD74 (red fluorescence) in atypical, 
transitional, fibrous, clear cell, and endothelial subtypes 
of meningiomas (Figs.  5H, 6). MIF demonstrated broad 
expression both in the cytoplasm and nucleus, whereas 
CD74 was predominantly expressed in the nucleus of 
immune cells. In order to ensure the robustness of the 
broad expression of MIF and CD74 observed within 
meningiomas, a subsequent investigation was conducted 
involving an additional cohort of ten meningioma cases. 
This extended cohort comprised four non-typical menin-
giomas, two transitional meningiomas, two variant men-
ingiomas, and two endothelial meningiomas (Additional 
file  10: Figure S10). The evidence for the widespread 
expression of MIF and CD74 within meningiomas was 
further fortified through immunofluorescence staining of 
the aforementioned ten meningioma samples with MIF 
(green fluorescence) and CD74 (red fluorescence).

Discussion
We conducted single-cell transcriptomic analysis on five 
distinct meningioma specimens with varying patho-
logical subtypes or WHO grades. The neoplastic cells 
constitute the preponderant cellular population in men-
ingiomas. Analogous to other types of tumors, menin-
giomas exhibit pronounced heterogeneity [23, 24]. Our 
dataset demonstrated distinct neoplastic cell populations 
from different samples that occupied separate clusters, 
which were well-separated in UMAP analysis. Tumor 
stem cells (TSCs) constitute only a minute fraction, rang-
ing from approximately 0.05% to 3%, of the heterogene-
ous tumor masses [25]. As one of the determinants of 
tumor heterogeneity [26, 27], TSCs are of great signifi-
cance. Notably, the N5 cluster of neoplastic cells in our 
dataset exhibited a lower cell count (< 3%) but displayed 
elevated expression levels of the specific markers MKI67 
and TOP2A. Evaluation of MKI67 expression has been 
suggested to facilitate prognostic prediction and to aid 
in assessing the potential for increased growth in men-
ingiomas [28]. Our results of the enrichment analysis of 
N5-neoplastic cell marker genes and pseudotime analy-
sis of the cluster support its highly proliferative features. 
In N5-neoplastic cells, we also observed specificity in the 
E2F family of transcription factors, which are involved in 
cell cycle regulation and associated with enhanced DNA 

(See figure on next page.)
Fig. 5  Intercellular communication analysis in meningiomas. A Number of interactions network among cells. The thickness of the lines represents 
the number of interactions. B Interaction weight network among cells. The thickness of the lines represents the interaction weight. C Chord plot 
showing the inferred intercellular communication network of MIF signaling. D Heatmap of communication probability in MIF signaling, scaled color 
bar = Communication Probability. E Violin plots of ligand and receptor genes (MIF, CD74, CXCR4, and CD44) expression in cells in the MIF signaling. 
F Ligand-receptor pairs included in the MIF signaling and their relative contribution. G UMAP plot showing cells expressing MIF, CD74, CXCR4, 
and CD44 colored. H Multiplex immunofluorescence staining of atypical meningioma, MIF (red fluorescence), CD74 (green fluorescence), Vimentin 
(yellow fluorescence), and DAPI (blue fluorescence). Scale bar, 50 μm
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Fig. 5  (See legend on previous page.)
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replication and cell proliferation activity [21, 22, 29, 30]. 
However, traditional TSC markers such as CD44 and 
CD133 are insignificantly expressed in N5-neoplastic 
cells. Intriguingly, the negligible expression of CD133 
in our dataset and publicly available datasets is in con-
trast to some previous findings in meningiomas research 
[31–33].

Within TME, macrophages exceed the number of 
tumor-infiltrating lymphocytes (T cells), as is consistent 
with our publicly available data and some other menin-
gioma studies [8, 34]. The composition of infiltrating 
immune cell populations, however, varies not only across 
different tumor types but also within the same tumor or 
at different time points (e.g., at diagnosis versus relapse) 
[35]. Our samples indicated that macrophages of the 
same pathological type are clustered together, suggest-
ing that macrophages may exhibit similar features in 
the same type of meningioma. While the expression of 
marker genes associated with M1 and M2 macrophages 
did not clearly categorize the macrophages in our data 
into two distinct subtypes, pseudotime trajectory analysis 
revealed two opposing macrophage fate states in menin-
giomas, which are distributed differently in WHO grade 
I and II meningiomas. These two macrophage fate states 

have opposing effects on tumors, with one promoting 
and the other inhibiting, similar to the functions of M2 
and M1 macrophages. The emergence of a biological pro-
cess indicating “response to decreased oxygen levels” in 
the context of pseudotime analysis of public datasets of 
macrophages suggests that macrophages are undergoing 
a potential process that promotes tumor development.

Except for meningiomas, MIF exhibits significantly 
elevated expression across various cancer types, indi-
cating its potential as a diagnostic biomarker for tumor 
invasion and recurrence [36, 37]. Previous studies have 
demonstrated that MIF regulates multiple signaling path-
ways, such as nuclear factor-kappa B (NF-κB), ERK1/2, 
and activator protein-1 (AP-1), or modulates cellular 
responses through binding to the CD74/CD44 recep-
tor complex. Meanwhile, CD74 plays a role in tumor 
occurrence. In skin cancer models of WT, P1G-MIF, and 
MIF knockout mice revealed that the P1G-MIF group 
(lacking tautomerase activity and binding to CD74) 
displayed intermediate tumor incidence between the 
WT and knockout groups [38]. Knockdown of CD74 
in gastric cancer cells significantly reduced cell pro-
liferation [39]. Similar results were observed in hepa-
tocellular carcinoma, where CD74 deficiency led to 

Fig. 6  Multiple immunofluorescence staining of different pathological types of meningioma tissues. A Multiple immunofluorescence staining 
of transitional meningioma. B Multiple immunofluorescence staining of fibrous meningioma. C Multiple immunofluorescence staining of clear 
cell meningioma. D Multiple immunofluorescence staining of endothelial meningioma. The staining includes MIF (green fluorescence), CD74 (red 
fluorescence), Vimentin (yellow fluorescence) and DAPI (blue fluorescence). Scale bar, 50 μm
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reduced proliferation and a decreased tumor number 
in CD74 − / − mice compared to the wild-type controls 
[40]. Directly blocking CD74 represents one approach to 
inhibit all MIF-CD74 signal transduction.

Here, our intercellular communication analysis 
revealed the possible critical role of the MIF-CD74 inter-
action in meningiomas. In other tumors, MIF-CD74 
exerts effects that promote tumor growth, inhibit apop-
tosis, induce tumor angiogenesis, and facilitate immune 
evasion [36, 40–43]. Therefore, the MIF-CD74 signaling 
pathway may impact tumor cell proliferation and sur-
vival in meningioma. Particularly, our data indicated that 
MIF may mediate the activation of CD74-positive cells, 
primarily macrophages. State 1/pre-branch and state 3/
cell fate 2 macrophages appear to be similar, exhibiting 
stronger signal intensity compared to state 2/cell fate 1. 
These results suggest that MIF-CD74 may potentially 
modulate macrophage state, leading them towards a state 
that favors the promotion of tumor development [44]. 
Additionally, compared to other tumor cells, N5-neo-
plastic cells with high proliferative characteristics have 
stronger effects on state 1/pre-branch and state 3/cell 
fate 2 macrophages. Simultaneously, research has also 
revealed that TSCs demonstrate a more intricate and 
potent modulation of macrophages compared to their 
ordinary tumor cell counterparts. TSC-derived factors 
have the ability to stimulate macrophage activation and 
polarization towards a pro-tumor phenotype, funda-
mentally altering the functional state of macrophages 
[45–49]. These are also consistent with a stronger effect 
of N5-neoplastic cells on macrophages. We have identi-
fied a common mechanism in different pathological sub-
types (including atypical, transitional, fibrous, and clear 
cell) of meningiomas, namely the ubiquitous presence of 
MIF and CD74-positive macrophage interactions. This 
result has been confirmed through both public datasets 
and immunofluorescence staining.

Currently, experimental evidence has demonstrated 
the beneficial effects of blocking MIF-CD74 in tumor 
therapy, suggesting the potential importance of target-
ing this signaling pathway in meningioma treatment. 
In the future, further investigations should explore the 
specific molecular mechanisms of the MIF-CD74 signal-
ing in meningioma tumor growth, proliferation, and the 
formation of tumor-promoting tumor microenviron-
ments. Considering the potential clinical significance of 
our research results, we propose conducting large-scale 
animal experiments to verify the feasibility and efficacy of 
blocking MIF-CD74 as a therapeutic approach for men-
ingioma treatment.

Our study emphasizes common manifestations of five 
pathological types of meningiomas and analyzed a public 
dataset to support our observations. However, it requires 

further efforts to verify these findings in other subtypes 
of meningiomas. Furthermore, we underscored the het-
erogeneity of neoplastic cells and macrophages in men-
ingiomas which should be further validated in a larger 
sample size. We must emphasize that although pathway 
enrichment and cell fate analysis suggest two states of 
macrophages, further analysis with more samples will be 
required in the future to exclude the influence of patient 
age, individual immune status, environmental factors, 
and other contributions to these two states. Validation 
of the activation status of relevant pathways and the true 
existence of these two states will be carried out through 
experiments at the protein and cellular levels. As our cur-
rent research findings have only been validated in a lim-
ited number of single-cell samples from meningiomas, 
we emphasize the necessity for future validation in larger 
cohorts to enhance the reliability and generalizability of 
the results. Subsequent investigations may also consider 
employing spatial transcriptomics techniques to exclude 
false positive cell communication results that may arise 
due to distant cell proximity, thereby providing a more 
accurate assessment of heterogeneity [50].

Conclusions
In summary, through single-cell transcriptomic analy-
sis of meningioma samples, we identified heterogeneity 
among tumor cells of different pathological subtypes of 
meningioma, a ’pro-tumorigenic’ state of macrophages, 
and the ubiquitous presence of MIF-CD74 interaction. 
We propose that blocking CD74-positive macrophages 
from receiving MIF signals and inhibiting their progres-
sion to a pro-tumorigenic state may be a key therapeutic 
strategy for treating different types of meningiomas.
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Additional file 1: Figure S1. Marker genes for cell type identification. A 
Heatmap of top 10 marker genes for 6 cell types.B Umap plot showing 
expression of CLU, CD74, CD3D, CD34, ACTA2, and MAG in all cells. C Violin 
plots showing expression of CLU, CD74, CD3D, CD34, ACTA2, and MAG in 
all cells.
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Additional file 2: Figure S2. Integration of public dataset samples and 
cell type identification. A UMAP plot of single cells after integration 
of samples from public datasets, clustered into 23 clusters. Each point 
depicts a single cell. B and C Expression of marker genes for the 6 identi-
fied cell types and for each individual cell type in our dataset: neoplastic 
cells (CLU, PTN, LEPR, and SSTR2); macrophages (HLA-DRB5, CD74, MS4A6A, 
and LYZ); T cells (CD3D, CD3E, CD3G, and CD52); endothelial cells (CD34, 
VWF, CCL14, and PLVAP); fibroblasts (ACTA2 and RGS5); and oligodendro-
cytes (CNP, MAG, KLK6, and OLIG2). Scaled color bar represents average 
expression, size of the point represents percent expressed. D Proportions 
of the 6 identified cell types in each tissue. E Umap plot showing expres-
sion of CLU, CD74, CD3D, CD34, ACTA2, and MAG in all cells from the public 
dataset. F Violin plots showing expression of CLU, CD74, CD3D, CD34, 
ACTA2, and MAG in the 6 identified cell types from the public dataset.

Additional file 3: Figure S3. Neoplastic cell subclustering, pseudotime 
analysis, and WGCNA in a public dataset. A Marker genes of different 
subclusters of neoplastic cells in a public dataset. Scaled color bar = 
average expression, Size of the point = percent expressed.B Violin plots of 
CD44 and CD133 expression in neoplastic cells of a public dataset. C GO 
and KEGG enrichment analysis results (Top 5, p adjusted <0.05) of marker 
genes in cluster 12 of neoplastic cells in a public dataset. D Pseudotime 
analysis results of MSC6 neoplastic cells. The evolution of pseudotime 
relationship is shown on the left (scaled color bar = pseudotime). The 
distribution of neoplastic cell subclusters on the pseudotime trajectory is 
shown in the middle. The distribution of cluster 12 neoplastic cells on the 
pseudotime trajectory is shown on the right. Each cell in the branched 
pseudotime trajectory was colored by its pseudotime value and its Seurat 
clusters. E Expression of genes in 10 modules in different subclusters of 
neoplastic cells. Scaled color bar = average expression, Size of the point = 
percent expressed. F WGCNA analysis of neoplastic cells in a public data-
set, resulting in 10 modules (GSE-NEO1-GSE-NEO10) of genes represented 
by different colors, except for the gray module. G Expression of top 50 
genes in each module in the UMAP of neoplastic cells in a public dataset.

Additional file 4: Figure S4. Neoplastic cell gene regulatory network. 
A. Heatmap of the average regulon activity score for each neoplastic cell 
subpopulation. B. The regulon specificity score heat map of 99 regulon in 
each cell.

Additional file 5: Figure S5.Expression of classical marker genes for M1 
and M2 macrophages in the macrophage UMAP plot.A Expression of clas-
sical marker genes for M1 macrophages B Expression of classical marker 
genes for M2 macrophages.

Additional file 6 Figure S6. Subclustering and pseudotime analysis of 
macrophages in a public dataset. A The subclustering of macrophages 
in a public dataset into 10 subclusters. Each point represents a cell, color-
coded by their associated cluster. B The separation of macrophage cluster-
ing in the public dataset, showing similarity in macrophage distribution 
between tissues from the same sample (e.g. MSC5 and MSC5_BTI; MSC6 
and MSC6_BTI). C The marker gene expression of macrophage subclusters 
in the public dataset. Scaled color bar represents the average expression, 
and size of the point represents the percentage expressed. D Pseudotime 
analysis of macrophages in the public dataset. The pseudotime trajectory 
is shown on the left with color-coded pseudotime values, and the distri-
bution of macrophages in pseudotime states is shown on the right. Each 
cell in the branched pseudotime trajectory was colored by its pseudotime 
value and its states. E. Distribution of early pseudotime macrophages in 
the public dataset, mainly located in state1 and state5.F GO enrichment 
analysis results of highly expressed genes in early pseudotime mac-
rophages, showing a grouping network.G Heatmap of highly expressed 
genes in different cell fates during pseudotime analysis. Scaled color bar 
represents the average expression. Highly expressed genes in the early 
pseudotime period are concentrated on the left, while highly expressed 
genes in the late pseudotime period are concentrated on the right. H Dis-
tribution of late pseudotime macrophages in the public dataset, mainly 
located in state3 and state4. I GO enrichment analysis results of highly 
expressed genes in late pseudotime macrophages, showing a grouping 
network.

Additional file 7: Figure S7. Expression of marker genes for M1 and M2 
macrophages in the public dataset. A Expression of classical marker genes 
for M1 macrophages in macrophages from the public dataset. B Expres-
sion of classical marker genes for M2 macrophages in macrophages from 
the public dataset.

Additional file 8: Figure S8. Communication probabilities of all ligand-
receptor pairs in cell communication results. p-value <0.01, Scaled color 
bar = communication probability.

Additional file 9:  Figure S9. Intercellular communication analysis in 
meningiomas in the public dataset. A Number of interactions network 
among cells in the public dataset. The thickness of the lines represents 
the number of interactions. B Interaction weight network among cells in 
the public dataset. The thickness of the lines represents the interaction 
weight. C Chord plot showing the inferred intercellular communication 
network of MIF signaling in the public dataset. D Heatmap of communica-
tion probability in MIF signaling in the public dataset, scaled color bar = 
Communication Probability. E Violin plots of ligand and receptor genes 
(MIF, CD74, CXCR4, and CD44) expression in cells in the MIF signaling in 
the public dataset. F Ligand-receptor pairs included in the MIF signaling 
and their relative contribution in the public dataset. G UMAP plot showing 
cells expressing MIF, CD74, CXCR4, and CD44 colored in the public dataset.

Additional file 10: Figure S10. Multiple immunofluorescence staining of 
different pathological types of meningioma tissues. A Multiple immu-
nofluorescence staining of atypical, transitional,anaplastic and clear cell 
meningioma. The staining includes MIF (green fluorescence), CD74 (red 
fluorescence), and DAPI (blue fluorescence). Scale bar, 50 μm

Additional file 11 Table S1. The quantity of six distinct cellular types 
present in the specimen.

Additional file 12: Table S2. Gene list of WGCNA modules in neoplastic 
cells.

Additional file 13: Table S3. GO enrichment analysis results for WGCNA 
modules in neoplastic cells.

Additional file 14: Table S4. Gene lists for WGCNA Modules in neoplastic 
cells from public dataset gse183655.

Additional file 15: Table S5. GO enrichment analysis results for wgcna 
modules in neoplastic cells from public dataset GSE183655.

Additional file 16: Table S6. State of each macrophage in pseudotime 
analysis.

Additional file 17: Table S7. Highly expressed genes in macrophages 
across different cell fates.

Additional file 18: Table S8. Function of 33 Cell Communication Signals.
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