
Lei et al. Journal of Translational Medicine          (2023) 21:553  
https://doi.org/10.1186/s12967-023-04396-w

RESEARCH Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of 
Translational Medicine
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Abstract 

Background  Triple-negative breast cancer (TNBC) is one of the most aggressive human cancers and has poor 
prognosis. Approximately 80% of TNBC cases belong to the molecular basal-like subtype, which can be exploited 
therapeutically by inducing differentiation. However, the strategies for inducing the differentiation of TNBC remain 
underexplored.

Methods  A three-dimensional (3D) morphological screening model based on a natural compound library was used 
to identify possible candidate compounds that can induce TNBC cell differentiation. The efficacy of rutaecarpine 
was verified using assays: RT-qPCR, RNA-seq, flow cytometry, immunofluorescence, SCENITH and label-free LC–MS/
MS. The direct targets of rutaecarpine were identified through drug affinity responsive target stability (DARTS) assay. 
A xenograft mice model was also constructed to confirm the effect of rutaecarpine in vivo.

Results  We identified that rutaecarpine, an indolopyridoquinazolinone, induces luminal differentiation of basal TNBC 
cells in both 3D spheroids and in vivo mice models. Mechanistically, rutaecarpine treatment leads to global metabolic 
stress and elevated ROS in 3D cultured TNBC cells. Moreover, NAC, a scavenger of ROS, impedes rutaecarpine-induced 
differentiation of TNBC cells in 3D culture. Finally, we identified fumarate hydratase (FH) as the direct interacting target 
of rutaecarpine. The inhibition of FH and the knockdown of FH consistently induced the differentiation of TNBC cells 
in 3D culture.

Conclusions  Our results provide a platform for differentiation therapy drug discovery using 3D culture models 
and identify rutaecarpine as a potential compound for TNBC treatment.
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Background
Poor differentiation is an important hallmark of cancer. 
Acquiring phenotype plasticity to evade or escape ter-
minal differentiation is a critical component of cancer 
pathogenesis [1]. Differentiation therapy aims to reacti-
vate endogenous differentiation programs of cancer cells 
to resume the maturation process, thereby altering their 
malignant phenotype. Ultimately, this therapy aims to 
alleviate the tumor burden or cure the malignant disease 
without damaging normal cells [2, 3]. This therapeutic 
approach has been successful in the treatment of acute 
promyelocytic leukemia (APL), a disease that is now 
highly curable with a combination of tretinoin (RA) and 
arsenic [4, 5]. Over the years, the mechanisms of cellular 
differentiation have been extensively explored including 
the genetic, epigenetic, and metabolic regulations [6–10]. 
However, differentiation therapy has shown limited suc-
cess in other malignancies, particularly solid tumors [2].

Triple-negative breast cancers (TNBCs)  are tumors 
that lack expression of the estrogen receptor (ER), pro-
gesterone receptor (PR), and HER2, and account for 
approximately 15–20% of all diagnosed breast tumors 
[11]. Most TNBCs are high-grade and exhibit clinically 
aggressive behavior. Patients with TNBCs have poor 
prognosis and a high risk of metastasis and death within 
5  years after diagnosis [12]. Alarmingly, TNBCs lack 
validated therapeutic targets, and women with TNBCs 
do not benefit from endocrine therapy or trastuzumab. 
Consequently, the treatment options for TNBCs are lim-
ited, with systemic  chemotherapy the current mainstay 
of treatment. Thus novel therapies need to be explored 
and developed [13]. Although TNBCs are heterogeneous, 
approximately 80% of TNBCs are basal-like breast can-
cers, which are clinically more aggressive and poorly dif-
ferentiated [14, 15], providing a potential application for 
differentiation therapy.

Basal-like TNBCs express high levels of basal mark-
ers cytokeratin 5/14 and low levels of luminal markers 
cytokeratin 8/18. TNBCs also display a phenotype of 
epithelial-to-mesenchymal transition (EMT) and stem-
like properties [16]. Interestingly, the transcription factor 
GATA3 has been found to specify and maintain luminal 
epithelial cell differentiation in the mammary gland, sup-
pressing tumor growth and metastasis [16]. Low expres-
sion of GATA3 is associated with basal-like features and 
poor prognosis in breast cancers. The loss of the GATA3 
function coincides with the loss of differentiation and 
induces basal-like mammary tumors [17, 18]. There-
fore, the identification of drugs that can increase GATA3 
expression and promote a luminal-like state represent 
possible new therapeutic strategies.

The purpose of this study was to establish a screen-
ing platform for identifying potential compounds that 

can effectively induce differentiation in TNBC. Three-
dimensional (3D) cell culture systems have greater simi-
larity in morphological and functional features to their 
original tissues and represent the minimum unit of the 
differentiated tissue in vivo, and therefore, provide more 
accurate predictions for therapeutic responses [19, 20]. 
Natural products usually have lower toxicity and offer 
more translational advantages compared to other induc-
tion agents such as transcription factor regulators [21]. In 
this study, we developed a miniaturized 3D cell-culture 
system for morphological screening and identified the 
natural product rutaecarpine as a candidate. In vitro 3D 
cell culture and an in vivo xenograft mice model revealed 
that rutaecarpine potently induces luminal differentia-
tion of basal-like TNBC cells. In addition, RNA-seq and 
label-free LC–MS/MS assays showed that rutaecarpine 
induces global metabolic stress and elevated levels of 
reactive oxygen species (ROS) in 3D cultured TNBCs. 
Moreover, through a small-molecule target identification 
strategy termed DARTS [22], fumarate hydratase (FH) 
was identified as a novel binding protein of rutaecarpine. 
The inhibition of FH resulted in the induction of pheno-
copy features of rutaecarpine treatment. These data not 
only support the use of 3D morphological screening for 
differentiation therapy drug discovery but may also offer 
an innovative pharmacological treatment that promotes 
luminal differentiation in basal-like TNBCs.

Methods
Vector construction
To generate a lentiviral vector expressing the ATP/ADP 
reporter, PercevalHR was obtained from the GW1-
PercevalHR (Addgene, #49082) and inserted into the 
pLVX-IRES-Hyg backbone using homologous recombi-
nation. The SoNar biosensor was cloned into the pLVX-
IRES-Puro backbone using homologous recombination. 
H2B was fused to EGFP (H2B-EGFP) and cloned into 
the pLenti6/v5 lentiviral vector. Two pairs of shRNA for 
FH were cloned into the Tet-pLKO-puro (AgeI & EcoRI 
for sh cloning). The sequences of the shRNA pairs were: 
shFH-1, 5ʹ-CCG​GCG​CTG​AAG​TAA​ACC​AGG​ATT​ACT​
CGA​GTA​ATC​CTG​GTT​TAC​TTC​AGC​GTT​TTTG-3ʹ 
(forward) and 5ʹ-AAT​TCA​AAA​ACG​CTG​AAG​TAA​
ACC​AGG​ATT​ACT​CGA​GTA​ATC​CTG​GTT​TAC​TTC​
AGCG-3ʹ (reverse); shFH-2, 5ʹ-CCG​GGT​GGT​TAT​GTT​
CAA​CAA​GTA​ACT​CGA​GTT​ACT​TGT​TGA​ACA​TAA​
CCA​CTT​TTTG-3ʹ (forward) and 5ʹ-AAT​TCA​AAA​AGT​
GGT​TAT​GTT​CAA​CAA​GTA​ACT​CGA​GTT​ACT​TGT​
TGA​ACA​TAA​CCAC-3ʹ (reverse).

3D culture
MD-MBA-231 and BT549 were plated on the surface of 
the Matrigel and cultured in Dulbecco’s modified Eagle 
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medium (DMEM, GIBCO) supplemented with 10% (v/v) 
fetal bovine serum (GIBCO). After 6 days of culture, the 
gels were fixed in formalin, and subjected to immuno-
fluorescence staining, or the gels were dissolved by cell 
recovery buffer for further cell experiments.

Cell culture, transfection, and transduction
MD-MBA-231, BT549, 4T1, and HEK293 cell lines were 
cultured in DMEM (GIBCO) supplemented with 10% 
(v/v) fetal bovine serum (GIBCO). All cell lines used in 
this study were validated as mycoplasma free. Transfec-
tion was performed using a Lipofectamine 2000 (Inv-
itrogen) according to the manufacturer’s instructions. 
To establish stable gene expression cell lines, lentivirus 
production was performed following our previously 
established procedure [23]. Cells were transduced with 
viral suspensions in the presence of 8  mg/ml Polybrene 
(Sigma-Aldrich, sc-134220) in 12-well plates. After 12 h, 
the lentivirus solution was replaced with fresh DMEM 
plus 10% FBS and seeded into 6 cm dishes and allowed 
to reach confluency over 48 h. Western-blotting was used 
to measure the shRNA interference efficiency [24]. Cells 
stably expressing PercevalHR, SoNar or H2B-EGFP were 
confirmed by confocal microscopy and purified by fluo-
rescent cell sorting. Cells stably expressing Tet-pLKO-
shFH were selected using puromycin.

Natural product library 3D morphological screening
MD-MBA-231 cells were plated on the surface of the 
Matrigel and cultured for 2 days and treated with a nat-
ural drug library (Selleckchem; L1400, 10  mM DMSO 
stock) for 4 days in 96 well plates. DMSO was used as a 
vehicle control. The circularity and diameter of 3D sphe-
roids were analyzed and quantitated using ImageJ Fiji 
plugins and features.

Quantitative real‑time PCR (RT‑qPCR)
Total RNA was extracted using HiPure Total RNA Kits 
(Magen), which was used to generate cDNA by using 
One-Step RT-PCR SuperMix (TransScript). Quantita-
tive RT-PCR was performed using ChamQ SYBR qPCR 
Master Mix (Vazyme) according to the manufacturer’s 
instructions. The primers used are listed in Additional 
file 2: Table S1. ACTB was used as the internal control.

RNA sequencing
RNA was extracted with a HiPure Total RNA Plus Mini 
Kit (Magen). Library construction and RNA sequenc-
ing were constructed by Novogene with an Illumina 
HiSeq2000 (150  bp, paired-end). The sequencing data 
were qualified by fastqc (https://​www.​bioin​forma​tics.​
babra​ham.​ac.​uk/​proje​cts/​fastqc/) and the differentially 

expressed genes (DEG) called using the RNA Cocktail 
framework [25].

Proteomic analysis by LC–MS
The MS/MS data were analyzed for protein identification 
and quantification using Proteome Discoverer. The false 
discovery rate (FDR) was 1.0% after searching against 
the Homo sapiens protein database, with a maximum of 
two missed cleavages and one missed termini cleavage 
(semitryptic digest). The following settings were selected: 
Oxidation (M), Acetylation (Protein N-term), and Deam-
idation (NQ), for variable modifications as well as fixed 
carbamidomethylation of cysteine. Precursor and frag-
ment mass tolerance were set to 10  ppm and 0.05  Da, 
respectively.

Metabolic profiling by LC–MS
The samples were thawed on ice and then 500 uL of pre-
cooled extractant (80% methanol aqueous solution) was 
added and the mixture whirled for 2  min. Next, the ice 
was removed, the mixture was frozen in liquid nitrogen 
for five minutes and whirled again for a further two min-
utes. This process was carried out three times. Following 
that, the mixture was then centrifuged at 15,000 r/min at 
4 °C for 20 min. Finally, the supernatant was poured into 
the sample bottle for LC–MS/MS analysis.

The sample extracts were analyzed using an LC–ESI–
MS/MS system (UPLC, Shim-pack UFLC SHIMADZU 
CBM30A system, https://​www.​shima​dzu.​com/; MS, 
QTRAP® System, https://​sciex.​com/).

DARTS
Lysates from MDA-MB-231 cells in 2D and 3D cultures 
were incubated with DMSO or rutaecarpine for 1.5 h at 
room temperature. Lysates were then divided into certain 
portions and subjected to digestion with different con-
centrations of pronase (1074330001, Sigma Aldrich) for 
20 min at room temperature. After that, the samples were 
boiled immediately after adding a loading buffer to stop 
the digestion process. The samples were then tested using 
SDS-PAGE and western-blotting.

Cell cycle analysis
The cell cycle stages of cells in the 3D culture were deter-
mined by PI staining and flow cytometry. Harvested cells 
were adjusted to 1 × 106  cells/mL and washed in cold 
PBS. Cells were then re-suspended and fixed in 70% cold 
ethanol at 4 °C overnight. One uL PI of stock solution in 
1 mL of cell suspension was placed on ice for 30 min for 
staining. The PC5.5 channel of the CytoFLEX Platform 
(Beckman Coulter) was used to detect DNA content.

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.shimadzu.com/
https://sciex.com/
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Colony formation assay
For MD-MBA-231, 500 cells were plated in each well 
of six-well plates and treated with DMSO or rutaecar-
pine. The medium was renewed every third day. After 
1 week, the cells were fixed using 4% paraformaldehyde 
for 15 min and stained with 1% crystal violet for 20 min 
at room temperature. After that, the crystal violet was 
removed and the plates washed with water several times. 
The plates were photographed using the ChemiDoc MP 
Imaging System (Bio-Rad).

Cell migration assay
For MDA-MB-231, 1 × 106 cells were plated in each well 
of six-well plates to create a confluent monolayer. The cell 
monolayer was then scraped in a straight line to create 
a “scratch” and capture the images for time 0. The cells 
were incubated with DMSO or rutaecarpine for 24  h. 
Following incubation, the images were captured for time 
24 h. By comparing the images from time 0 to time 24 h, 
the distance of each scratch closure was obtained based 
on measurements taken by software.

PercevalHR‑based living cell ATP/ADP measurement
The PercevalHR ATP/ADP level detection was performed 
using flow cytometry. Three dimensional cultured cells 
were harvested and re-suspended in HBSS. The ratios 
of the FITC and KO525 channels on the CytoFLEX Plat-
form (Beckman Coulter) were used to detect ATP/ADP 
levels. PH-correction was performed using a BCECF-AM 
pH probe (DOJINDO, B262) according to the protocol 
provided by the manufacturer.

SoNar‑based living cell NAD+/NADH measurement
The detection of NAD+/NADH levels was performed 
using flow cytometry. In brief, 3D cultured cells were 
harvested and re-suspended in HBSS. Ratios of F488/
F405 on the CytoFLEX Platform (Beckman Coulter) were 
used to detect the NAD+/NADH level. The detailed pro-
cedures were performed as previously described [26].

Flow cytometry analysis of ROS production
To measure the relative levels of mitochondrial superox-
ide, cells were re-suspended in HBSS and stained with 
10  uM AM (Nanjing KeyGen Biotech., KGAF018) for 
10 min at 37 °C. Cells were then washed three times with 

HBSS. A flow cytometer (CytoFLEX, Beckman) was used 
to measure ROS levels using the FITC channel.

Extracellular acidification rate (ECAR) and oxygen 
consumption rate (OCR) measurements
The ECAR was measured using an Extracellular Acidi-
fication Assay kit (Abcam, ab197244) according to the 
manufacturer’s instructions. Briefly, the cells in the 
3D culture were replaced with a 150  uL of pre-warmed 
culture medium per well. Then, 10  uL of reconstituted 
Glycolysis Assay Reagent was added. The plate was 
immediately read in a fluorescence plate reader over 
30 min (Tecan Spark TM10M).

The extracellular OCR was measured using an Extra-
cellular O2 Consumption Assay kit (Abcam, ab197243) 
according to the manufacturer’s instructions. Briefly, cells 
in the 3D culture were replaced with fresh medium con-
taining O2 consumption reagent, and pre-warmed high 
sensitivity mineral oil was applied for air isolation. The 
plate was immediately read in a fluorescence plate reader 
over 30 min (Tecan Spark TM10M).

SCENITH assay
The MDA-MB-231 cells in the spheroids were incubated 
with fresh medium for 2 h at 37 °C, 5% CO2 followed by 
treatment for 30 min with DMSO, 2-DG (40 mM; Sigma-
Aldrich), oligomycin (10 uM; MCE), or a combination of 
both drugs. OPP reagent (20 uM; Click Chemistry Tools) 
was added for 20 min at 37 °C. After being washed with 
pre-cold PBS and collected with cell recovery buffer, cells 
were then fixed and permeabilized using fixation/per-
meabilization kit (BD Biosciences). Intracellular staining 
of OPP was performed with Click-&-Go® Plus 555 OPP 
Protein Synthesis Assay Kit (Click Chemistry Tools, Cat-
alog#1494). The intensity of intracellular OPP was quan-
tified using the PE channel. This protocol was adapted 
from the original SCENITH kit (http://​www.​sceni​th.​com) 
and the protocols developed by R. Argüello (CIML).

FH enzyme activity assay
The MDA-MB-231 cells in the 3D culture were treated 
with Fumarase Assay Buffer from a Fumarase Activ-
ity Colorimetric Assay Kit (Abcam, ab196992). The 
cells were treated with either DMSO or rutaecarpine 
for 4  days in 3D culture, and Fumarate hydratase-IN-1 

Fig. 1  Morphological screening of TNBC spheroids identifies that rutaecarpine promotes differentiation in 3D culture. A. Heat map for the basal-like 
and luminal genes of breast cancer cell lines based on CCLE database. B. Spheroid formation from MDA-MB-231, BT549, MCF7 and T47D cells. C. 
Quantification of circularity for spheroids formed by MDA-MB-231, BT549, MCF7 and T47D cells. One-way ANOVA; **** p < 0.0001. D. A cutoff value 
that best discriminated between groups with high or low circularity with respect to differentiation status was determined using the maximal 
Youden’s index. Chi-square test. E. Schematic for morphological screening to identify natural products that promote differentiation of MDA-MB-231 
cells in 3D culture. F. Plot showing the efficiency of natural products in regulating the circularity of MDA-MB-231 spheroids in 3D culture. The top 
three natural products and DMSO are highlighted

(See figure on next page.)

http://www.scenith.com
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(MCE, HY-100004) was used as a positive control. The 
Fumarase Positive Control and the NADH Standard 
were then added to a 96-well clear-bottom plate accord-
ing to the provided protocols. The absorbance at 450 nm 
was measured immediately in kinetic mode for 60  min 
at 37  °C. The FH activity was normalized to the protein 
concentration.

Apoptosis analysis
The H2B-EGFP expressing cells were treated with can-
didate chemicals for 4 days. One uL PI of stock solution 
in 1 mL of PBS was used to cover the 3D spheroids and 
protected from light for 30 min for staining. Afterwards, 
all the spheroids were washed with PBS twice, and the 
images were taken using a Zeiss LSM 880 laser-scanning 
microscope.

Mouse experiments
One × 105 murine mammary carcinoma 4T1 cells in 
100  uL of PBS were injected into the fourth mammary 
fat pad of 4- to 8-week-old BALB/c female mice. Six 
days after the injection, the rutaecarpine group received 
rutaecarpine (10 uM, 50 uL/d) via intratumoral injection, 
while the control group received an equal volume of PBS. 
The tumor volumes were calculated using the equation: 
V = 4π/3 × [(length + width)/4]3.

Immunofluorescence and HE staining
The 3D spheroids were fixed with 4% paraformaldehyde 
for 1  h and blocked with 3% BSA at room temperature 
for 1 h and then incubated with Anti-KRT8 (Epitomics, 
2032-1) at 1/500 dilution at 4 °C overnight. The spheroids 
were then incubated with Alexa Fluor 488 (Thermofisher 
scientific, A-11034) at a 1/300 dilution. The images were 
taken using a Zeiss LSM 880 laser-scanning microscope.

The tumors removed from mice were fixed with 4% 
paraformaldehyde overnight and embedded in OCT over 
liquid nitrogen. The tumors were sectioned at a thickness 
of 7 um, blocked with 3% BSA, and labeled with Anti-
KRT18 (Abcam, ab181597) at a 1/500 dilution or Anti-
Vimentin (Abcam, ab92547) at 1/500 dilution at 4  °C 
overnight. Primary antibodies were washed off the fol-
lowing day, and the cells were then incubated with anti-
CD44-FITC to label cell membrane at a 1/300 dilution 

and Alexa Fluor 488 (Thermofisher scientific, A-11034) 
or Alexa Fluor 594 (Thermofisher scientific, A-11037) 
at a 1/300 dilution. The images were taken using a Zeiss 
LSM 880 laser-scanning microscope.

For Hematoxylin and Eosin (HE) Staining, tumor sec-
tions were washed with PBS for 10  min. Hematoxylin 
staining was performed for 3  min, followed by eosin 
staining for 1  min. The sections were then dehydrated 
with alcohol, made hyaline with xylene, and sealed. 
The images were taken using a NIKON ECLIPSE Ni 
microscope.

Statistical analysis
Data were expressed as mean ± SD unless stated oth-
erwise. Statistical analysis was performed using Prism 
GraphPad or SPSS software. Two-tailed Student’s t-test 
were used to compare two groups, and One-way ANOVA 
analysis was used to compare three or more groups. The 
correlation between differentiation status and spheroid 
circularity were analyzed by the chi-square test. For sur-
vival analysis, the Log-rank (Mantel-Cox) test was used. 
All p < 0.05 indicated a statistically significant difference. 
The probability values were noted as follows: * p < 0.05; ** 
p < 0.01; *** p < 0.001; **** p < 0.0001.

Results
Morphological screening of TNBC spheroids identifies 
that rutaecarpine promotes differentiation in 3D culture
Previous studies have found a correlation between gene 
pattern and morphology in 3D cultured breast cancer 
cells [27, 28]. In contrast to luminal cell lines, TNBC 
basal cell lines such as MDA-MB-231, BT549, HS578T, 
and MDA-MB-436 form stellate spheroids with high 
aggressivity in 3D culture. Upon induction of luminal 
differentiation, these spheroids switch to a round mor-
phology [16]. To confirm the correlation between dif-
ferentiation status and morphology, we analyzed the 
differentiation genes of human breast cancer cell lines 
using TPM values from the Cancer Cell Line Encyclope-
dia (CCLE). Consistently, basal-like breast cancer cells 
form stellate spheroids, while luminal breast cancer cells 
form round spheroids in 3D culture (Fig. 1A and B). The 
circularities of luminal spheroids are significantly higher 

(See figure on next page.)
Fig. 2  Rutaecarpine induces luminal differentiation of TNBC cells in 3D culture. A. Spheroid formation from MDA-MB-231 and BT549 cells 
with DMSO or rutaecarpine treatment. B. Quantification of circularity and Feret’s diameter for spheroids formed by MDA-MB-231 and BT549 
cells. Unpaired Student’s t-test; **** p < 0.0001. C. IF staining of KRT8 in DMSO or rutaecarpine-treated MDA-MB-231 and BT549 spheroids. D. 
Quantification of KRT8 MFI of the DMSO or rutaecarpine-treated MDA-MB-231 and BT549 spheroids. Unpaired Student’s t-test; ** p < 0.01; **** 
p < 0.0001. E. qPCR of luminal marker genes in DMSO or rutaecarpine-treated MDA-MB-231 spheroids. Unpaired Student’s t-test; *** p < 0.001. F. 
qPCR of luminal marker genes in DMSO or rutaecarpine-treated BT549 spheroids. Unpaired Student’s t-test; ** p < 0.01; *** p < 0.001; **** p < 0.0001. 
G. GSEA analysis showing significant enrichment of apoptosis genes in rutaecarpine-treated MDA-MB-231 cells in 3D spheroids. H. Apoptosis 
analysis for the matured MCF-10A spheroids with PI staining. I. Apoptosis analysis for DMSO or rutaecarpine-treated MDA-MB-231 cells stably 
expressing H2B-EGFP with PI staining
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than those of basal-like spheroids (Fig. 1C). An analysis 
using the Chi-square test showed a positive correlation 
between spheroid circularity and luminal differentiation 
status (p < 0.0001, Fig. 1D). Thus, a round morphology is 
an indicator of luminal differentiation status.

To identify potential small molecules that promote dif-
ferentiation of basal-like breast cancer, we performed 3D 
morphological screening with a natural product library. 
In brief, MDA-MB-231 cells were plated on the surface of 
the Matrigel, cultured for 2 days, then treated with a nat-
ural drug library (Selleckchem) comprising 144 natural 
products for 4 days in 96 well plates. The circularity of 3D 
spheroids was analyzed and quantified using ImageJ Fiji 
(Fig. 1E). The screening results were then sorted accord-
ing to the circularity of the 3D spheroids, with round 
morphology at the top and stellate morphology at the 
bottom. Several natural products, such as cyclocytidine 
HCI, rutaecarpine, and tanshinone IIA were identified to 
induce a morphology switch from stellate to round in the 
3D cultured MDA-MB-231 cells (Fig.  1Fand Additional 
file 1: Figure S1A). As cyclocytidine and tanshinone have 
been reported to suppress various cancer growth [29, 30], 
we chose rutaecarpine for further study.

To examine the function of rutaecarpine in inducing 
the differentiation of basal-like breast cancer, we analyzed 
the morphologies of MDA-MB-231 and BT549 cells with 
rutaecarpine treatment for 4 days in 3D culture. Consist-
ent with the screening results, both MDA-MB-231 and 
BT549 formed round spheroids with a smaller diameter 
under the treatment of rutaecarpine (Fig.  2A and B). 
Immunofluorescence staining showed higher expres-
sion of the luminal gene KRT8 in rutaecarpine treated 
spheroids (Fig.  2C and D). In addition, rutaecarpine 
increased the mRNA expression of the luminal genes, 
such as KRT8, KRT18, EPCAM, and GATA3 in 3D cul-
tured spheroids (Fig. 2E and F). Collectively, these results 
indicate that rutaecarpine promotes the basal-like TNBC 
cells differentiated into luminal-like cells in 3D culture.

Rutaecarpine induces differentiation of TNBC cells 
through elevated ROS
Rutaecarpine has been reported to improve lung dys-
function through its classic function as a COX2 inhibi-
tor [31, 32]. However, the COX2 inhibitor rofecoxib does 
not induce the differentiation of MDA-MB-231 cells in 

3D culture (Additional file  1: Figure S1B). Since rutae-
carpine-treated 3D spheroids have a smaller diameter, 
we then explored whether rutaecarpine induces the dif-
ferentiation of TNBC cells by limiting the proliferation 
or migration of cancer cells. Unexpectedly, rutaecarpine 
treatment neither induces cell cycle arrest, reduces col-
ony formation, nor limits cell migration in 2D cultured 
MDA-MB-231 cells (Additional file  1: Figure S2A, B, C 
and D).

To explore the mechanism of rutaecarpine in pro-
moting TNBC cell differentiation, we performed RNA-
sequencing (RNA-seq) on MDA-MB-231 cells and 
rutaecarpine-treated MDA-MB-231 cells purified from 
3D organoids. The gene set enrichment analysis (GSEA) 
displayed enrichment in the ROS pathway (NES = 1.53, 
p < 0.05) as well as the apoptosis pathway (NES = 1.84, 
p < 0.001) (Fig.  2G and 3A). Consistent with the results 
of the GSEA, PI staining also showed that rutaecarpine 
increases the apoptosis of MDA-MB-231 cells in the cen-
tral part of the 3D spheroids, which represents the matu-
ration of luminal structures similar to the differentiation 
process of MCF-10A cells in 3D spheroids (Fig. 2H and 
I).

Several articles have reported that ROS dynamics con-
trol the differentiation states of neuron progenitor cells 
or breast cancer cells [33, 34]. To investigate whether 
rutaecarpine induces the differentiation of TNBC cells 
through increasing ROS, we treated the rutaecarpine-
induced differentiated 3D spheroids with NAC, the scav-
enger of ROS. Expectedly, NAC reverses the elevated 
ROS level, spheroid morphologies, and molecular fea-
tures caused by rutaecarpine treatment (Fig. 3B, C, D, E 
and F). Taken together, these results indicate that rutae-
carpine induces the differentiation of TNBC cells in 3D 
culture through increasing ROS level.

Rutaecarpine induces metabolic reprogramming in TNBC 
cells
ROS are byproducts of biological reactions of energy 
generation and are primarily produced in the mitochon-
dria through oxidative metabolism [35]. To explore how 
rutaecarpine induces elevated ROS of TNBC cells in 3D 
spheroids, we performed proteomic analysis on MDA-
MB-231 cells and rutaecarpine-treated MDA-MB-231 
cells purified from 3D spheroids. Kyoto Encyclopedia of 

Fig. 3  Rutaecarpine induces differentiation of TNBC cells through elevated ROS. A. GSEA analysis showing significant enrichment of ROS genes. 
B. Spheroid formation from MDA-MB-231 and BT549 cells with the treatment of DMSO or rutaecarpine and NAC. C. Quantification of circularity 
and Feret’s diameter for spheroids formed by MDA-MB-231 and BT549 cells. One-way ANOVA; **** p < 0.0001. D. FCM analysis of the MFI of ROS 
in cells from spheroids. E. Quantification of ROS level in cells from spheroids. One-way ANOVA; **** p < 0.0001. F. qPCR of luminal differentiation 
genes in cells from MDA-MB-231 and BT549 spheroids with different treatment. One-way ANOVA; * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001

(See figure on next page.)
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Genes and Genomes (KEGG) pathway analysis of 92 dif-
ferentially expressed proteins revealed significant enrich-
ment in the metabolic pathways, especially in carbon 
metabolism and oxidative phosphorylation (Fig.  4A and 
B).

Previous studies have shown that metabolic stress 
could induce elevated ROS and limit cancer invasive-
ness through inducing the differentiation of cancer cells, 
especially in glioblastoma [10, 36–38]. We then asked 
whether rutaecarpine induces elevated ROS as a result 
of metabolic stress or raised oxidative phosphorylation. 
Firstly, we assessed the ECAR and OCR of MDA-MB-231 
cells in 3D spheroids and found that MDA-MB-231 cells 
have lower ECAR and OCR under the induction of rutae-
carpine, denoting a reduced glycolytic rate and oxidative 
phosphorylation (Fig. 4C). These results suggest that the 
elevated ROS may not be due to the increased electron 
transport chain (ETC) flux (Fig. 4B and C).

To further understand the metabolic states of the cells, 
we quantified the ratio of ATP/ADP using the fluorescent 
reporter PercevalHR [39] and the ratio of NAD+/NADH 
with the fluorescent reporter SoNar [26] at the single 
cell dimension. In brief, MDA-MB-231 cells express-
ing the reporters were seeded on a Matrigel substrate. 
After spheroid maturation, the cells were collected with 
a cell recovery buffer, and the ratios monitored in real-
time using flow cytometry. Consistent with the results 
of ECAR and OCR, rutaecarpine-treated MDA-MB-231 
cells entered a metabolic quiescent state with a lower 
ratio of ATP/ADP and NAD+/NADH (Fig.  4D and E). 
Energy metabolomic analysis also showed a significant 
change in carbon metabolism, including the accumula-
tion of glucose and AMP along with reduced pyruvate 
and a-KG (Fig. 4F). To gain an insight into the metabolic 
features of rutaecarpine-treated MDA-MB-231 cells, we 
analyzed the cells in spheroids using SCENITH assay 
[40]. MDA-MB-231 cells in the spheroids displayed a 
significantly altered metabolic profile towards mitochon-
drial metabolism with reduced glucose dependence fol-
lowing rutaecarpine treatment (Fig.  4G). These results 
suggest that rutaecarpine-treated cells with impaired 
glucose catabolism entered an advanced state of cellular 
starvation.

FH is identified as the direct target of rutaecarpine
Given that rutaecarpine induces the differentiation of 
TNBC cells through elevated ROS without increased 
ETC flux, we hypothesized that rutaecarpine has other 
targets that influence the generation or elimination of 
ROS. To test this, we performed the DARTS assay to 
identify the direct target of rutaecarpine. Equal amounts 
of cell lysates from MDA-MB-231 cells in 2D culture 
or 3D culture were mixed with rutaecarpine (10 uM) 
for 1.5  h and then incubated with pronase for 20  min 
at room temperature. The samples were then loaded on 
SDS-PAGE gels, and the gels stained with Coomassie 
blue (Fig. 5A). As shown in the SDS-PAGE gel, three pro-
tein bands were increased in the rutaecarpine-treated cell 
lysates from the 3D organoids specifically (Fig. 5B). Mass 
spectrometry analysis identified several proteins involved 
in carbon metabolism which may be the potential target 
of rutaecarpine (Fig. 5C).

Given that rutaecarpine induces metabolic stress on 
TNBC cells mainly from impaired glucose catabolism 
(Fig. 4F and G), we selected CS and FH, two core com-
ponents of the tricarboxylic acid (TCA) cycle for further 
verification (Fig. 5C). Through a secondary DARTS assay, 
we confirmed that FH, but not CS, is the direct target of 
rutaecarpine in 3D spheroids, as FH level increased in 
the rutaecarpine-treated cell lysates in a dose-dependent 
manner under pronase addition (Fig. 5D and Additional 
file  1: Figure S3A). Purified FH protein and additional 
tests also indicated that rutaecarpine can directly bind to 
FH (Fig.  5E). Together, these results suggest that rutae-
carpine promotes the differentiation of TNBC cells by 
directly targeting FH.

Inhibition of FH induces the differentiation of TNBC cells 
through elevated ROS
As rutaecarpine directly binds to FH, we investigated 
whether rutaecarpine affects the protein abundance of 
FH. Consistent with the results from the proteomic anal-
ysis (Fig.  4B), Western-blot results indicated that rutae-
carpine does not affect FH levels in MDA-MB-231 cells 
in either 2D or 3D cultures (Fig. 5F).

(See figure on next page.)
Fig. 4  Rutaecarpine induces metabolic reprogramming in TNBC cells. A. KEGG analysis showing significant enrichment in metabolism, genetic 
information processing and human disease. B. Heat map of carbon metabolism and oxidative phosphorylation. C. ECAR and OCR test with TECAN 
for 1.5 h for the cells in 3D spheroids and quantification. Unpaired Student’s t-test; * p < 0.05; **** p < 0.0001. D. FCM test of SoNar-expressing cells 
in spheroids. Quantification of intracellular F488/F405 (NAD.+/NADH) ratios in single cells resuspended in HBSS buffer. Unpaired Student’s t-test; 
* p < 0.05. E. FCM analysis of PercevalHR-expressing cells in spheroids. Quantification of intracellular F488/F405 (ATP/ADP) ratios in single cells 
resuspended in HBSS buffer. Unpaired Student’s t-test; *** p < 0.001. F. Heat map of metabolomic analysis of DMSO- and rutaecarpine-treated 
MDA-MB-231 cells in spheroids. G. SCENITH test of the MDA-MB-231 cells in spheroids DMSO or rutaecarpine treatment. Student’s t-test; **** 
p < 0.0001
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FH is an enzyme involved in the TCA cycle and con-
verts fumarate to malate. Although the TCA cycle is 
blocked by loss of FH activity, it can still operate in 
reverse to metabolize glutamate to citrate by reduc-
tive carboxylation [41]. Inhibiting the TCA cycle in this 
manner can potentially increase the generation of ROS 
by halting the flux of electrons at iron-sulphur centers 
or flavin groups. Trapped in the ‘traffic gridlock,’ these 
electrons may be captured by O2 to generate superoxide 
[42, 43]. Consistent with our observations, rutaecarpine-
treated cells upregulate the components of mitochondrial 
complex V (ATP synthase) to meet the energy demand 
(Fig. 4B), which may be accompanied by the generation 
of ROS. Thus, we propose that rutaecarpine blocks the 
enzymatic activity of FH, leading to the induction of ele-
vated ROS.

To test whether rutaecarpine functions as an inhibitor 
of FH, we treated the cell lysates of MDA-MB-231 cells 
with rutaecarpine and used an FH inhibitor as a positive 
control. Remarkably, rutaecarpine induced a blockage of 
FH activity similar to that of the FH inhibitor (Fig. 6A). 
Consistently, the FH inhibitor also induced the differen-
tiation of TNBC cells in 3D spheroids through elevated 
ROS, which could be reversed by NAC treatment (Fig. 6B 
and C, Additional file  1: Figure S3B, C&D). Moreover, 
inducible knockdown of FH expression promoted the 
differentiation of MDA-MB-231 cells (Fig. 6D, E and F). 
Overall, rutaecarpine induces elevated ROS by inhibiting 
the activity of FH, thereby promoting the luminal differ-
entiation of TNBC cells in 3D spheroids.

Lastly, we analyzed the prognostic values of FH and 
the luminal genes in breast cancer based on The Can-
cer Genome Atlas (TCGA) database. The expression of 
FH was elevated while the expressions of luminal genes, 
KRT18 and GATA3 were decreased in TNBC patients 
compare with luminal type patients (Fig.  6G). Addi-
tionally, FH expression was identified as an independ-
ent prognostic factor in breast cancer patients (Fig. 6H). 
Taken together, these results demonstrate that rutaecar-
pine induces luminal differentiation of TNBC cells in 3D 
spheroids through metabolic reprogramming.

Rutaecarpine induces differentiation of TNBC in vivo
To examine the efficacy of rutaecarpine in inducing dif-
ferentiation in  vivo, we used a xenograft mouse model 
with BALB/c mice bearing 4T1 xenografts. The mice 
were administered a vehicle or rutaecarpine via intra-
tumoral injection. Consistent with our in vitro findings, 
rutaecarpine treatment resulted in a significant inhibi-
tion of tumor growth compared to the control, as evi-
dent from the decreased tumor sizes (Fig. 7A, B and C). 
We further examined whether the anti-tumor function 
of rutaecarpine comes from its differentiation induction 
efficacy. Notably, we found that rutaecarpine-treated 
4T1 cells form luminal-like structures within the tumors 
and that each rutaecarpine-treated tumor has a broader 
luminal-like area compared to the control vehicle-treated 
tumors (Fig. 7D, E and F). In addition, to the morphology 
conversion, there was a significant change in the levels 
of the differentiation gene. Rutaecarpine-treated tumors 
had a larger KRT18 positive area and a smaller VIM 
positive area compared to the vehicle-treated tumors, 
indicating that rutaecarpine induces the luminal dif-
ferentiation of 4T1 cells (Fig.  7G, H, I and J). Thus, the 
xenograft mouse model demonstrated strong evidence 
for the differentiation induction potential of rutaecarpine 
in vivo.

Discussion
Breast cancer is the most frequent malignancy in women 
and is the second leading cause of cancer-related deaths 
among women worldwide [44]. While considerable pro-
gress has been made in terms of the diagnosis and treat-
ment of non-TNBCs, which has led to more effective 
treatment and improved patient survival [11], TNBC 
patients with worse prognoses still lack target therapeu-
tic strategies [45].

Here in this study, we generated a 3D spheroid screen 
based on morphological features and found that rutae-
carpine-induced the differentiation of TNBC cells, sup-
pressed tumor growth, and restored a luminal-like 
structure in  vivo. Mechanically, rutaecarpine increased 
cellular ROS and reduced the levels of ECAR, OCR, 
NAD+/NADH, and ATP/ADP in TNBC cells. Moreover, 

(See figure on next page.)
Fig. 6  Inhibition of FH induces differentiation of TNBC cells through elevated ROS. A. Quantification of fumarase activity of MDA-MB-231 cell 
lysates under different treatments using a fumarase kit. An FH inhibitor was used as a positive control. One-way ANOVA; **** p < 0.0001. B. 
Spheroid formation from MDA-MB-231 and BT549 cells following treatment with DMSO, FH inhibitor, and NAC. C. Quantification of circularity 
and Feret’s diameter for spheroids formed by MDA-MB-231 and BT549 cells. One-way ANOVA; **p < 0.01; ****p < 0.0001. D. Western-blotting 
showing a reduction in FH in protein level with the knockdown of shRNA of FH in MDA-MB-231 cells. E. Spheroid formation from MDA-MB-231 
cells with, and without the knockdown of FH. F. Quantification of circularity and Feret’s diameter for spheroids formed by MDA-MB-231 cells with, 
and without the knockdown of FH. Unpaired Student’s t-test; **** p < 0.0001. G.TPM analysis of FH, KRT18 and GATA3 genes in tumors from luminal 
and TNBC patients based on TCGA database. Unpaired Student’s t-test; *** p < 0.001; **** p < 0.0001. H. Relapse-free survival (RFS) classified by the FH 
transcription levels in breast cancer patients. Log-rank (Mantel-Cox) test; **** p < 0.0001
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FH was identified as a novel binding protein of rutaecar-
pine using DARTS. Furthermore, the inhibition of FH 
increased cellular ROS and induced the differentiation 
of TNBC cells in 3D culture, while NAC reversed these 
phenotypes. These data provide compelling evidence that 
rutaecarpine is a potential drug for differentiation ther-
apy in patients with basal-like TNBCs (Figs. 7K and 8).

Several previous efforts have been made to screen for 
differentiation targets of TNBCs. Such studies used the 
transcription or expression of differentiation mark-
ers such as KRT5, KRT8, or CDH1, to identify potential 
targets or compounds in 2D culture breast cancer cell 
lines [46, 47]. However, 2D culture models are unable 
to simulate the cell–cell interaction and tissue structure 
in normal breast tissue, which is an important feature of 
differentiation. Notably, a recent study compared 2D and 
3D screening models and found that CRISPR phenotypes 
in 3D models more accurately reflected those of in vivo 
tumors, and revealed drivers that are essential for cancer 
growth in 3D and in vivo, but not in 2D models [48].

In this study, we developed a 3D morphological screen-
ing platform to screen for drugs that can induce the dif-
ferentiation of TNBCs. In doing so, rutaecarpine was 
identified as an effective compound. Rutaecarpine treat-
ment not only altered the levels of differentiation mark-
ers but also displays a round spheroid morphology in a 
3D culture model that is unique to normal luminal breast 
cells. When applied in  vivo, rutaecarpine also exhibited 
potent anti-tumor capabilities that induced the formation 
of luminal-like structures resembling normal mammary 
glands. This morphological screening platform therefore 
provides a valuable tool for differentiation therapy drug 
discovery.

As a natural product, rutaecarpine exhibits various 
activities, including anti-inflammatory, antithrombotic, 
and neuronal protection [31, 49, 50]. It has also been 
shown to have antitumor characteristics through inhibit-
ing cell proliferation and promoting apoptosis [51]. Yet, 
its function in promoting tumor differentiation and the 
underlying molecular mechanisms have not been eluci-
dated. In this study, we demonstrated that rutaecarpine 
reverses the malignant phenotype and induces the differ-
entiation of basal-like TNBCs in 3D culture and in vivo. 
Rutaecarpine treatment leads to an increase in levels of 

luminal differentiation markers cytokeratin 8/18 as well 
as decreased levels of the basal marker vimentin. In 3D 
culture models, rutaecarpine alters the morphology of 
basal-like TNBC MDA-MB-231 spheroids and induces 
apoptosis of the cells inside the spheroids, eventually 
forming acini-like structures similar to those of immor-
talized MCF-10A cells. Moreover, in a xenograft mice 
model, rutaecarpine induced the formation of luminal 
structures that resemble normal human breast tissue. 
These findings suggest that rutaecarpine is a promising 
drug candidate for differentiation therapy of basal-like 
TNBCs.

Although excessive ROS induces DNA mutation and 
genomic instability, or as a signal molecule, acceler-
ates tumor cell proliferation, survival, and metastasis, 
a moderate amount of ROS is essential for normal dif-
ferentiation and development [35, 52]. For example, 
ROS-mediated changes in mitochondrial dynamics 
thereby regulate stem cell fate decisions [53, 54]. Nota-
bly, increased ROS is involved in the clearance of matrix-
deprived cells, which plays a key role during mammary 
gland development [55, 56]. In addition, the modulation 
of redox signaling promotes the transition of breast can-
cer stem cells from mesenchymal-like to epithelial-like 
states [34]. Consistently, we found that rutaecarpine 
treatment increases cellular ROS in breast cancer cells 
and alters metabolic patterns. We further identified FH 
as the principal pharmacological target of rutaecarpine. 
Germline mutations in the FH gene are also correlated 
with an increased risk of tumorigenesis [57, 58], which 
indicates FH is a tumor suppressor. However, the inhibi-
tion of FH exhibits anti-proliferative activities in a vari-
ety of cancer cells [59]. We found that the FH inhibitor 
increases cellular ROS, and induces the differentiation of 
basal breast cells in 3D culture models. The antioxidant 
NAC also reversed the phenotypes induced by rutaecar-
pine treatment or FH inhibition. These results suggest 
that rutaecarpine induces the differentiation of basal-like 
TNBC cells by modulating redox signaling.

In this study, we established a 3D morphologic-func-
tional screening model that better simulates the differ-
entiation features of epithelial tissues compared with 2D 
models. Using this method, we identified rutaecarpine 
as a potential candidate for inducing the differentiation 

Fig. 7  Rutaecarpine induces differentiation of TNBC in vivo. A. The growth curves of xenograft tumors derived from 4T1 cells. Mice were subjected 
to daily treatments with PBS or rutaecarpine. Unpaired Student’s t-test; * p < 0.05. Mean ± SEM. B. The 4T1 tumors removed from mice in each 
group are shown. C. Statistical analysis of the volume of the dissected tumors at end points. Unpaired Student’s t-test; * p < 0.05. Mean ± SEM. D. 
HE staining for the tumor slides. E. Proportion analysis for the tumor slides with luminal structure. F. Statistical analysis of the luminal-like area 
of the tumor slides. Unpaired Student’s t-test; ** p < 0.01. Mean ± SEM. G. IF staining of KRT18 and CD44 for the tumor slides. H. Statistical analysis 
of the KRT18 positive area of the tumor slides. Unpaired Student’s t-test; ** p < 0.01. Mean ± SEM. I. IF staining of VIM for the tumor slides. J. Statistical 
analysis of the VIM positive area of the tumor slides. Unpaired Student’s t-test; ** p < 0.01. Mean ± SEM. K. Working model for the mechanism 
of rutaecarpine induced differentiation of TNBC cells in 3D culture

(See figure on next page.)
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of TNBCs. The efficacy of rutaecarpine for inducing the 
differentiation of TNBCs was verified in both 3D sphe-
roids and in  vivo models. Despite these highly encour-
aging results, there are several questions that need to 
be addressed in future studies. Firstly, while we demon-
strated that rutaecarpine promotes luminal differentia-
tion in a xenograft mouse model, further investigations 
are required to determine the efficacy of rutaecarpine 
in inducing differentiation in spontaneous breast cancer 
mouse models and patient-derived transplanted tumor 
models. Secondly, our study revealed that rutaecarpine 
induces differentiation through metabolic modulation, 
yet this may only represent a fraction of the underlying 
mechanisms. Further investigations into other aspects 
such as epigenetic regulation are required for a com-
prehensive understanding. Finally, although the animals 
treated with rutaecarpine did not exhibit any reduction 
in body weight during our observation, more rigorous 
exploration is needed to assess the potential long-term 
toxicity of rutaecarpine.

Conclusion
Poor differentiation is a hallmark of basal TNBCs and is 
associated with poor patient prognosis. In this study, we 
developed a morphological high-throughput screening 
model and identified that rutaecarpine effectively induces 
the differentiation of TNBCs in 3D culture and in  vivo. 
These data provide a discovery platform to identify 
drugs that induce differentiation and suggest that rutae-
carpine may have therapeutic potential in the differen-
tiation therapy of TBNCs. Furthermore, dedifferentiation 
has emerged as a general trait of cancer evolution and a 
driver of resistance to immunotherapy [60, 61]. Recently, 
immunotherapy represents a potential treatment strategy 

in TNBCs [62]. Exploring the combination of rutae-
carpine with immune checkpoint inhibitors may be 
promising.
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Additional file 1: Figure S1. Related to Figs. 1 and 2: Rutaecarpine, but 
not COX2 inhibitor, induces differentiation of TNBC cells in 3D culture. 
A. Spheroid formation from MDA-MB-231 cells treated with the top 
three candidate drugs from the 3D screening, using DMSO as a vehicle 
control. Cyclocytidine HCl, 10 uM; Rutaecarpine, 10 uM; Tanshinone IIA, 
10 uM. B. Spheroid formation from MDA-MB-231 cells treated with DMSO, 
rutaecarpine, and a COX2 inhibitor, rofecoxib. Figure S2. Related to 
Fig. 2: Rutaecarpine has no effect in either cell cycle, colony formation or 
migration of MDA-MB-231 cells. A. Cell cycle analysis of MDA-MB-231 cells 
purified from spheroids treated with DMSO or rutaecarpine in 3D culture. 
B. Colony formation assay of MDA-MB-231 cells treated with DMSO or 
rutaecarpine in 2D culture. C. Quantification of the colony formation assay 
of MDA-MB-231 cells. Unpaired Student’s t-test; ns, p > 0.05. D. Quantifica-
tion of the migration assay of MDA-MB-231 cells with the treatment of 
DMSO or rutaecarpine in 2D culture. Unpaired Student’s t-test; ns, p > 0.05. 
Figure S3. Related to Fig. 5: FH, but not CS, is the direct target of rutaecar-
pine. A. DARTS assay to identified the target of rutaecarpine in spheroids 
formed by MDA-MB-231 cells using western-blotting. B. FCM test for the 
ROS of MDA-MB-231 and BT549 spheroids treated with DMSO, FH inhibi-
tor, or a combination of FH inhibitor and NAC. C. Quantification of ROS 
MFI in spheroids formed by MDA-MB-231 and BT549 spheroids. One-way 
ANOVA; * p < 0.05; ** p < 0.01. D. qPCR of luminal marker genes in DMSO 
or FH inhibitor-treated MDA-MB-231 and BT549 spheroids. Unpaired 
Student’s t-test; * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.
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