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Abstract 

The current ageing trend of the world population has, in part, accounted for Alzheimer disease (AD) being a public 
health issue in recent times. Although some progress has been made in clarifying AD-related pathophysiological 
mechanisms, effective intervention is still elusive. Biometals are indispensable to normal physiological functions of the 
human body—for example, neurogenesis and metabolism. However, their association with AD remains highly con-
troversial. Copper (Cu) and zinc (Zn) are biometals that have been investigated at great length in relation to neurode-
generation, whereas less attention has been afforded to other trace biometals, such as molybdenum (Mo), and iodine. 
Given the above context, we reviewed the limited number of studies that have evidenced various effects following 
the usage of these two biometals in different investigative models of AD. Revisiting these biometals via thorough 
investigations, along with their biological mechanisms may present a solid foundation for not only the development 
of effective interventions, but also as diagnostic agents for AD.
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Background
In the last five decades, technological inventions and 
enhancements have attempted to improve our under-
standing of AD. β-amyloid accumulation, along with 
several determinants like tau phosphorylation, oxida-
tive stress, dyshomeostases of the gut microbiome and 
biometals have been linked to AD neuropathology. In 
our previous report, some of these factors were thor-
oughly analyzed [1]. Despite unclear mechanisms, some 

of these determinants appear to work both synchro-
nously and independently. For example, oxidative stress 
augments β-amyloid levels to cause neurodegenera-
tion. Correspondingly, accumulated β-amyloid triggers 
mitochondrial dysfunction, leading to oxidative stress 
[2]. Therefore, to target only one factor of the disease 
may not effectively result in a significant improvement. 
Similarly, as AD has got an intricate pathophysiologi-
cal mechanism, it is possible that a combination of dif-
ferent interventional agents may have to be employed to 
effectively manage and treat the disease. In recent times, 
interventional agents (sodium oligomannate, aduca-
numab and lecanemab) have been approved by health 
agencies to manage the condition [2–4]. The more recent 
approval of aducanumab has received a lot of criticisms 
from research and medical experts, with Walsh and 
colleagues doing a comprehensive thought-provoking 
editorial in the BMJ [5]. Most of the criticisms are in rela-
tion to the lack of substantial evidence to necessitate its 
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approval. Indeed, aducanumab does significantly mitigate 
β-amyloid levels. However, whether decreased β-amyloid 
by aducanumab is concomitant with improved cogni-
tion and ADCS-ADL (Alzheimer’s Disease Co-operative 
Study-Activities of Daily Living Inventory) to justify 
its approval for usage in the clinical setting is unclear. 
Although one clinical trial showed aducanumab to 
meet both its primary and secondary clinical objectives 
(EMERGE) amid longer follow-up and increased dose, 
results from another clinal study (ENGAGE) showed the 
contrary [6, 7].

Trace biometals like Cu and Zn have been heavily 
investigated in relation to AD [8]. Both Cu and Zn are key 
players in oxidative stress, protein misfolding and aggre-
gation [9, 10]. Although these biometals have been inves-
tigated at great length, minimal progress has been made 
in terms of their utilization as interventional agents or 
targets for AD. The excessive research has presented sev-
eral conflicting reports to the extent of some researchers 
calling for the discontinuation of metal chelators for AD, 
while others are still in favor of them [11, 12]. Further, 
the tremendous studying of Cu and Zn has led to less 
attention being afforded to other trace biometals that are 
used by the human body. Cobalt is a trace biometal and a 
major factor in vitamin  B12 synthesis. This vitamin neces-
sitates several neurological functions including cognition 
[13]. There are reports showing that decreased serum 
vitamin B12 may enhance neurodegenerative disease 
risk [14, 15]. Until recently, no study had reported the 
connection between cobalt and PIN-1 (Peptidyl-prolyl 
cis–trans isomerase NIMA-interacting 1) in neurodegen-
eration. PIN-1 has been demonstrated to cause AD when 
its expression is downregulated [16]. Contrastingly, when 
its expression is upregulated, cancer may be triggered 
[16, 17]. In a recent study, cobalt decreased PIN-1 expres-
sion, and halted the  G0/G1 phase of the cell cycle by cur-
tailing cyclin D protein levels, which in turn resulted in 
apoptosis of H4 human neuroglioma cells. Furthermore, 
in increasing the concentration of cobalt, disrupted 
activity and function of PIN-1 mice were discerned. In 
the in-vivo analysis using C57BL/6J mice, significant 
levels of cobalt were detected in the hippocampus, cor-
tex, and blood. This coincided with mitigated levels of 
PIN-1, culminating in aggravated phosphorylated tau 
protein, β-amyloid protein, cognitive dysfunction, and 
neuronal loss in both hippocampus and cortex. More 
importantly, the same study analyzed blood samples of 
patients who had undergone metal-on-metal hip replace-
ments. Following assessment, increased amount of cobalt 
was observed and was concomitant with reduced PIN-1 
protein [18]. Although the study results are interesting, 
it is also a cause for concern. This is because patients 
who have had such hip replacements might need regular 

blood checks to ascertain the level of cobalt and modu-
late its level should there be an increase beyond the safety 
threshold, thereby preventing the potential development 
of AD.

The study above underlies the need for thorough inves-
tigation of other trace biometals in AD. In that regard, 
we analyzed the role of two biometals (Mo and iodine) 
that we believe that been largely overlooked. We elabo-
rate on their potentiality in not only as prospective inter-
ventional agents, but also as diagnostic medium for the 
disease. Lastly, we present figures that summarizes our 
report. Figure 1a shows the effects of biometal deficien-
cies leading to AD, Fig. 1b illustrates the potential effec-
tiveness of molybdenum and iodine in countering AD, 
and Fig. 2 differentiates the level of Zn, Cu, molybdenum 
(Mo), and iodine between a healthy brain and an AD 
brain.

Overview of copper and zinc in AD
Considering the extensive reportage, we summarize 
some studies that have attempted to elucidate the link 
regarding Zn and Cu in AD.

Copper (Cu)
Cu is a key trace element important for all oxygen-requir-
ing processes, neurotransmitter synthesis, and neuronal 
myelination. In addition, Cu regulates the brain’s meta-
bolic needs owing to its involvement in energy and iron 
metabolism [19–21]. Cu, as an essential cofactor, readily 
binds to enzymes and shifts between the  Cu2+ and  Cu+ 
oxidative states [19]. The brain is susceptible to oxida-
tive stress triggered by the redox nature of Cu given 
that about 7.3% of total body Cu content is present in 
the brain [19]. Cu homeostasis is tightly regulated and 
mediated through trafficking and transportation. Ceru-
loplasmin is one of the main Cu-binding proteins in the 
plasma. In both serum and brain of AD patients, ceru-
loplasmin levels are elevated [22, 23]. Besides, cultured 
primary and secondary microglia have been used to evi-
dence the instigation of proinflammatory response by 
ceruloplasmin. The inflammatory response was demon-
strated by enhanced NO release and cytokines, such as 
tumour necrosis factor (TNF) and interleukin-1 beta (IL-
1β) [24].

Cu, as an essential neuro-regulator, is released into 
the synaptic cleft of glutamatergic synapses during neu-
rotransmission at micromolar concentrations [19, 25]. 
Free ionic Cu released at NMDA-responsive synapses 
activates the NMDA receptor. It is therefore not surpris-
ing that glutamatergic dysfunction in AD brain may be 
partly due to Cu dyshomeostasis [26]. Initially, Cu was 
thought to be a negative regulator of neurotransmission. 
However, a recent finding showed Cu to have a unique 
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Fig. 1 a The effects of zinc, copper, and cobalt deficiencies in AD. In AD brain, the paucity of zinc limits the accessibility of metalloproteinase, and 
causes β-amyloid to aggregate. The built-up β-amyloid that forms plaques traps copper and abate its level, subsequently expediting the possibility 
of oxidative stress. Similarly, the AD brain has augmented levels of cobalt, which potentially downregulates PIN-1 expression and decreases the 
level of cyclin D. Downregulated PIN-1 expression instigates cognitive dysfunction by accelerating phosphorylated tau protein and β-amyloid 
accumulation. b The therapeutic effect of molybdenum and iodine. Dietary iodine may counteract oxidative stress in AD by mitigating hydrogen 
peroxidation formation and enhancing the output of glutathione peroxidase. Similarly, molybdenum may impair neuroinflammation through the 
inhibition of astrocyte and microglia formation, and result in hindering both oxidative stress and β-amyloid
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biphasic mechanism in neurotransmission [27]. In that 
study, hippocampal neurons of Sprague–Dawley rats 
exposed to Cu for 3 h resulted in augmented AMPAergic 
neurotransmission. This, in part, might have been due to 
the accumulated AMPA receptors at the plasma mem-
brane [27].β-amyloid peptides are generated through 
amyloid precursor protein (APP) proteolysis [28]. APP is 
a transmembrane glycoprotein involved in axonal trans-
port, vesicular trafficking, and neuronal survival. There 
are two alternate pathways of APP processing: the amy-
loidogenic and nonamyloidogenic pathways [29, 30]. The 
APP has two Cu-binding binding domains, one localized 
in the β-amyloid region and the other in the N-terminus. 
The presence of Cu (II) reductase activity within the 
Cu-binding domain of APP may potentiate ROS forma-
tion via Cu reduction [19]. Regarding the amyloidogenic 
processing of the APP, β-amyloid is formed through the 
cleavage of APP by β- and γ-secretases [29, 30]. In the 
nonamyloidogenic pathway, APP generates p3 peptide 
after it undergoes cleavage by α- and γ-secretases. Pro-
motion of the amyloidogenic pathway and increased syn-
thesis of β-amyloid have been consistently linked to AD 
neuropathology.

It is worth noting that modulation of secretases’ 
expression by metal ions is most likely to play a role in 

determining the pathway by which the APP is processed. 
Zn has been implicated in the regulation of α-secretase 
and γ-secretase activities [31, 32]. The interaction 
between Cu and β-secretase BACE 1 promotes the amy-
loidogenic processing of the APP. Moreover, Cu modi-
fies the APP not only through the Cu-binding domain 
but also its processing and control of β-amyloid synthe-
sis [33]. For instance, the work by Cater and colleagues 
showed that altered levels of intracellular Cu may influ-
ence the APP metabolism. In addition, elevated intracel-
lular Cu enhanced the secretion of the α-cleaved APP, 
while the β-cleaved APP formation and secretion were 
higher in Cu-deficient cells [34].

In AD patients, some brain regions appear to have 
excess Cu while other areas are deficient. This mis-locali-
zation of Cu has significant effects on neuronal function, 
having been implicated in cognitive deficits and other 
AD neuropathological facets [35, 36]. In affected areas 
of AD brains, Cu levels are markedly curtailed and could 
be attributed to its entrapment in senile plaques. Spe-
cifically, the Cu content in β-amyloid plaques was nearly 
five-fold higher than normal age-matched controls. Addi-
tionally, tissues surrounding the senile plaques showed 
lowered Cu levels, indicating a possible local Cu defi-
ciency [37].

Fig. 2 The different levels of zinc, copper, molybdenum, and iodine between healthy brain and AD brain. Metalloproteinases can break 
down β-amyloid, with zinc necessitating that function. Zinc transporters are abnormally expressed in AD brains. As zinc is displaced in AD, 
metalloproteinases are reduced, with the resultant effect of accumulated β-amyloid protein in the brain. Whereas some brain regions in AD patients 
might have lower copper levels, other areas may be in excess. Furthermore, AD brains (specifically, within the β-amyloid plaques) have higher 
concentration of copper than healthy brains. Besides, β-amyloid oligomers instigate cell membrane disruption and alter actin structure. However, 
the usage of  MoS2 quantum dots may reverse these detrimental effects. Concerning iodine, its level in the brain of healthy individuals may be low 
and unevenly distributed. Notwithstanding, brain regions involved in cognition appear to have highest level of iodine
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Post-mortem examination remains the best option in 
ascertaining the amount of Cu in the brain and to directly 
detect β-amyloid plaques [35]. Measuring serum Cu may 
provide an insight regarding the extent of Cu in living 
patients, and thus, could be a prospective diagnostic tool 
for AD [38]. Noteworthy is that serum Cu can be in the 
form of non-ceruloplasmin-bound-copper (non-Cp–Cu) 
or bound to either ceruloplasmin or albumin. It is the 
uptake of free Cu ion that passes both the blood–brain 
barrier (BBB) and blood-cerebrospinal fluid barrier and 
is distributed to the CSF and brain parenchyma. In com-
parison to non-healthy controls, AD patients have higher 
copper serum levels (particularly non-Cp–Cu) [38–40].

In summary, Cu is necessary for various neurological 
functions—neuronal myelination, neurotransmitter for-
mation and brain metabolism. Presently, there is signifi-
cant gaps regarding the specific level of Cu in AD. While 
senile plaques may partly account for Cu paucity in some 
sections of the brain, what could be the rationale behind 
its augmented serum content in AD? What will be the 
best strategy in shifting Cu in the serum to other Cu-defi-
cient compartments? In any case, will the effectiveness of 
that strategy correspond with significant improvement 
in AD? Future studies addressing some of these uncer-
tainties could be instrumental in the development of an 
effective interventional mechanism for AD.

Zinc (Zn)
Zn is an essential trace biometal that maintains the func-
tion of various metalloenzymes in diverse non-enzymatic 
biological reactions and serves as a crucial component in 
hormone-receptor interactions, neurotransmission, and 
neurogenesis [41, 42]. It participates in signal transduc-
tion processes. As a neuro-regulator, Zn modulates brain 
excitability by inhibiting excitatory and inhibitory recep-
tors. Noteworthy is that Zn qualifies as both neurotrans-
mitter and second messenger [43]. It regulates synaptic 
plasticity in the form of long-term potentiation (LTP) and 
long term-term depression (LTD), which underlies learn-
ing and memory. Both LTP and LTD are regulated by the 
NMDA (N-methyl-d-aspartate) receptor subunits. Far 
more, Zn is co-released with glutamate into the synap-
tic cleft to control the activity of post-synaptic proteins, 
NMDA and AMPA receptors (α-amino-3-hydroxyl-5-
methyl-4-isoxazolepropionate-acid) [43–45].

Zn homeostasis in the brain is primarily modulated 
by metallothioneins, Zn transporters, and members 
of the ZiP (zinc-regulated and iron-regulated trans-
porter proteins) family [46]. Metallothionein (MT) is 
a Zn and Cu modulator that induces antioxidant reac-
tion. Growth inhibitory factor (i.e., MT-3), an isoform 
of metallothionein, is abundant in astrocytes, cerebellar 
cortex, and Zn-enriched neurons. In AD brain, MT-3 

level is considerably lower. Reduced MT-3 and loss of 
its protective effects may exacerbate AD pathogenesis. 
Besides, MT-3 has been associated with various neu-
rodegenerative diseases, such as amyotrophic lateral 
sclerosis, Parkinson disease, and prion disease [47, 48]. 
Zn transporters are divided into two major families: 
 SLC30 (ZnTs1-10) and  SLC39 (ZiPs1-14). In the cyto-
plasm,  SLC30 and  SLC39 families of zinc transporters 
decreases and increases intracellular Zn level respec-
tively [49]. ZnT1 is ubiquitously expressed and exports 
Zn to the extracellular space of the brain. Its interaction 
with the GluN2A-containing NMDA receptors forms the 
GluN2A/ZnT1 complexes and modulates postsynaptic 
receptors [50]. ZnT4 is present in lysosomal and endos-
teum compartments of the hippocampus, and functions 
by loading cytoplasmic Zn in the secretory vesicles [51]. 
Also, ZnT6 is found in the membrane of the Golgi appa-
ratus where Zn binds to the APP and inhibits the cleav-
age of the APP at the α-secretase site [52, 53]. Like ZnT1, 
the ZiP1 transporter is ubiquitously expressed in human 
tissues [54]. It increases with advancing age of the human 
frontal cortex [55]. In AD brains, ZiP1 level is markedly 
increased with disease progression and Braak staging 
[56]. Hence, it is possible that the upregulation of ZiP1 
levels could be an attempt to maintain normal Zn home-
ostasis as cytoplasmic Zn concentration may decrease 
with AD progression [56]. Notwithstanding, further 
studies using appropriate animal models may provide 
some insight and improve our current understanding.

AD is classified into preclinical AD (PCAD), MCI, 
early-stage AD (EAD), and late-stage AD (LAD). PCAD 
patients have normal cognitive functions but with exist-
ing AD neuropathology, while MCI patients have mem-
ory loss and evidence of neuropathology but with normal 
daily activities [57, 58]. In AD, alteration of the  SCL30 
group of Zn transporter is dependent on the pathologi-
cal phase of the disease. For instance, in PCAD patients, 
increased cytoplasmic Zn concentration is concomitant 
with downregulated and upregulated ZnT1 and ZnT6 
expressions respectively in the hippocampus. In contrast, 
both EAD and LAD patients have increased expression 
levels of ZnT1, ZnT4, and ZnT6 [59, 60]. We are unsure 
of the specific reasons underlying these variations. Spec-
ulatively, during AD progression, increased level of ZnT1 
might compel Zn accumulation in the extracellular space 
that in turn would aggravate β-amyloid deposition. In 
addition, Zn concentration in the trans-Golgi network 
increases due to upregulated ZnT6 expression that exac-
erbates β-amyloid aggregation through the inhibition of 
the APP cleavage by α-secretase. Conclusively, the effects 
of altered ZnT1 levels on NMDA receptor function, and 
how ZnT4 influences AD neurobiology is presently not 
clear and warrants further studies.
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Controversies surrounding zinc in AD
Metalloproteinases are enzymes that can necessitate the 
breakdown of β-amyloid. Interestingly, Zn is required for 
the normal functioning of metalloproteinases [61]. In AD, 
Zn displacement curtails the overall availability of met-
alloproteinases within the brain. With the decrement of 
this enzyme, β-amyloid is likely to aggregate in the brain 
and gradually instigate AD-associated symptoms, such as 
cognitive decline. Therefore, attenuated metalloprotein-
ases owing to Zn dysfunction could partly account for the 
possible rationale behind β-amyloid accumulation in the 
brain of AD patients. It is worth noting that the blood–
brain barrier (BBB) limits the traversal of molecules and 
pathogens from the peripheral to the CNS, and Zn is no 
exception. Interestingly, when  Zn2+ was conveyed across 
the BBB of APP23 mice, mitigated β-amyloid plaques, 
cytokines, and synaptic loss were observed at a signifi-
cant degree [61].

Several contentions regarding Zn and its resultant 
effect in AD have been put forward. Notably, β-amyloid 
and APP proteins were exacerbated in APP/PS1 mice 
that were given water containing  ZnSO4 (20  mg/mL or 
20  ppm). This led to compromised memory and spa-
tial learning [62]. In a subsequent preclinical study, 
hippocampal synaptic proteins (PSD—93&95, NR2B, 
NMDA-NR2A, AMPA-GluR1) and dendritic spines were 
considerably lower in 21-day old ICR mice that had been 
administered water containing high doses of Zn (60 ppm 
or 60  mg/mL). In addition, memory dysfunction, along 
with curtailed level of hippocampal BDNF and TrkB neu-
rotrophic signaling were reported [63].

On the contrary, some reports have observed Zn sup-
plementation to improve cognition and improve mito-
chondria function. For instance, Corona and colleagues 
did observe increased BDNF levels as well as decrement 
in both tau and β-amyloid pathologies in 3xTg-AD mice 
that had been administered with  ZnSO4-supplemented 
tap water. The enhanced BDNF levels was related to the 
instigation of matrix metalloproteinases. Additionally, 
mitochondrial activities were restored in the hippocam-
pal region [64]. In a more recent study, Zn supplemen-
tation improved the short- and long-term recognition 
memory of young rats as well as the short-term recogni-
tion memory and spatial working memory of adult rats. 
Interestingly, exacerbated Cu contents were neutralized 
by zinc supplementation [65].

Zn supplementation regulates oxidative stress. For 
example, adult male Wistar rats were exposed to cad-
mium for 6  months to induce oxidative stress in the 
brain. When Zn (either 30 or 60 mg/L) was administered 
to these animals, the cadmium-instigated oxidative dam-
age was reversed. This was evidenced by the enhanced 
antioxidative markers (SOD, CAT, GPx) and mitigated 

pro-oxidant factors (such as myeloperoxidase and  H2O2) 
[66]. In a meta-analysis study involving adults taking Zn 
supplements, decreased oxidative stress was observed 
following serum analysis. Interestingly, this also coin-
cided with decreased inflammatory markers (TNF-α and 
C-reactive protein) [67].

While the precise role of Zn in neurodegeneration, par-
ticularly AD, remains a topic of interest, we believe its 
homeostasis in the brain must be tightly controlled. As 
such, studies addressing the optimal level of Zn in the 
brain necessary for favorable outcomes in AD would be 
worthwhile. Further, whether increase in Zn concentra-
tion in the brain via supplementation or diet has a direct 
effect on biomarkers such as SOD in curtailing oxidative 
stress in AD is presently unclear. In addition, whether 
excessive Zn level in the brain might compromise the 
function of SOD and lead to oxidative stress is open to 
question. To thoroughly understand Zn’s mechanism, 
feasibility, and potential applicability in AD, prospective 
studies will have to address some of these challenges.

The need for investigations of other biometals: significance 
of molybdenum and iodine in AD
Iodine
Iodine is a biometal whose role in biological processes 
in humans cannot be overstated. Besides being involved 
in the metabolic processes of thyroid hormones (thy-
roxine (T4) and triiodothyronine (T3)), conditions such 
as goiter come about because of its decreased intake in 
diet [68, 69]. There is presently no study that has spe-
cifically investigated and correlated iodine levels directly 
to AD. However, several reports have attempted to link 
iodine and AD via thyroid hormones [70, 71]. Some of 
the association being made pertains to thyroid hormones 
involvement in neurotransmission, cognition, and hip-
pocampal function, with reports such as that of Red-
man et  al. thoroughly reviewing these relations [71]. As 
previously stated, synaptic plasticity promotes learning 
and memory. Therefore, its dysfunction is likely to affect 
cognition [72]. Although mechanism remains to be elu-
cidated, thyroid hormones have been shown to affect 
synaptic plasticity in the hippocampal region [73]. Specif-
ically, Gilbert and Sui used propylthiouracil to suppress 
thyroid hormone level in pregnant rats. This resulted in 
compromised spatial learning and LTP, concomitant with 
impaired synaptic plasticity [73].

Regarding neurotransmission, Smith and colleagues 
observed heightened acetylcholine activity in the fron-
tal cortical and hippocampal sections of the brain when 
adult male rats were chronically administered l-thyrox-
ine (5 mg/kg and 10 mg/kg). More importantly, this out-
come coincided with improved cognitive performance 
[70]. Indeed, several clinical studies have been conducted 
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in children to ascertain the association between cogni-
tion and iodine using various cognitive assessments, with 
positive correlation being observed [74–77]. Nonethe-
less, studies evidencing such association in AD patients is 
significantly lacking, at least to the best of our knowledge. 
Therefore, it remains to be seen what the outcome will be 
when similar investigations are replicated in AD patients.

Molybdenum
The physiological functions of Mo are numerous, from 
participating in the disintegration of toxic agents and 
drugs to being involved in genetic and protein processes 
[78]. In human biological processes, Mo functions as a co-
factor that leads to the activation of enzymes like sulfite 
oxidase, aldehyde oxidase, xanthine oxidase, and mito-
chondrial amidoxime reducing component [79]. These 
enzymes are involved in various physiological functions, 
such as removal of toxic products and synthesis of uric 
acid that necessitate the degradation of nucleotides [79, 
80]. Although rare, Mo deficiency causes detrimental 
health effects. In comparative studies that found low lev-
els of Mo by analyzing nail and hair samples, there was a 
probable risk of esophageal cancer development in popu-
lates [81, 82]. Mo deficiency may indirectly be involved in 
AD. Sulfite oxidase instigates the conversion of sulfite to 
sulfate [83]. Increased sulfite levels, possibly through Mo 
deficiency, could compromise the human gut microbiota 
as recently observed [84, 85]. The human gut microbiota 
is still an evolving research area in AD. However, altered 
levels of some gut microbiota may cause AD as thor-
oughly reviewed from our previous study [1].

Xanthine oxidase catalyzes the formation of xanthine 
from hypoxanthine via oxidative mechanism, which is 
then converted to uric acid [79]. In comparison to age-
matched controls, curtailed levels of xanthine and hypox-
anthine were found in the frontal cortex of postmortem 
brain samples of AD individuals [86]. Mo’s involvement 
in the formation of uric acid is particularly interesting 
given that several investigations have attempted to evi-
dence the relationship between serum uric acid and cog-
nition. In several of these studies, there was a correlation 
between increased serum uric acid content and mitigated 
risk of developing AD and MCI, as well as improvement 
in cognitive decline [87–89]. The positive effects of uric 
acid in these studies, although interesting, is also a cause 
for concern as its (i.e., uric acid) augmented concentra-
tion causes gout [90]. Indeed, results from prospective 
cohort studies showed a lower risk of developing AD in 
patients with gout [91, 92].

Given the above studies, will it therefore be rational 
for individuals, especially those at high risk, to endure 
the symptoms of gout (such as joint pain and swelling) 
and mitigate their risk of developing MCI, AD, or slow 

cognitive decline? The answer is presently unclear; how-
ever, future studies may shed light on the right course 
of action. In view of the relationship between Mo and 
xanthine oxidase, it is possible that individuals residing 
in areas with low Mo levels or eating Mo-deficient diets 
may be at an increased risk of developing AD.

Molybdenum: Could it be a prospective interventional 
agent for AD?
Mo has multiple functions in neurodegenerative diseases, 
especially in AD, from being a possible diagnostic agent 
to its ability to inhibit β-amyloid and regulate oxidative 
stress [93]. In the context of diagnostics for AD, Dou 
and colleagues engineered a two-dimensional assem-
blage of thin-layer molybdenum disulfate and quinoline-
malononitrile aggregation induced emission. With its 
enhanced fluorescence features, the compound was bet-
ter at detecting Aβ42 peptide accumulations in the brain 
of 12-month-old APP/PS1 transgenic mice when com-
pared to the sole use of quinoline-malononitrile aggre-
gation induced emission. The enhanced fluorescence 
feature of this flat assemblage was due to its effectiveness 
in permeating through the BBB [94]. Comparable studies 
such as that of Qu et al. also demonstrated the ability of 
a reaction of molybdate and hydroxyapatite to trigger an 
electrochemical current that can evaluate both functional 
and inhibitory activities of beta-site amyloid precursor 
protein cleaving enzyme-1 (BACE-1) [95]. We have pre-
viously showed BACE-1 to be regulated by miR-124 in 
AD, leading to alterations in autophagy expressions [96].

There is some evidence that Mo can counteract oxida-
tive stress and β-amyloid. In several experimental mod-
els of AD, the antioxidant features of Mo-containing 
agents have been evidenced. β-amyloid triggers oxida-
tive stress via the generation of ROS and are cytotoxic 
[1]. Nanoparticles of Mo oxide were synthesized using 
the pulsed laser ablation technique. Beside stimulating 
the clearance and hindering β-amyloid agglomeration, 
these nanoparticles also lowered ROS amount that had 
been triggered by β-amyloid [97]. CAT, just like SOD, is 
a potent antioxidant. The link between inflammation and 
oxidative stress has been reviewed [1], with animal mod-
els of AD also confirming the association [98]. Microglia 
 M1 and  M2 are inflammatory markers, with the  M1 phe-
notype being proinflammatory while the  M2 phenotype 
is anti-inflammatory. In a recent study, a constructed 
nanoparticle (molybdenum disulphide quantum dots 
and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-
N-[amino (polyethylene glycol)-2000] that was aimed at 
the mitochondria was effective in not only penetrating 
the BBB, but also afforded protection to both neuronal 
cells and microglial against β-amyloid. Specifically, the 
in-vitro analysis using BV-2 cells showed the constructed 
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nanoparticle to safeguard against β-amyloid-instigated 
mitochondria destruction, and moderate ROS level that 
had been triggered by β-amyloid, while significantly 
modulating neuroinflammation via corresponding down-
regulated and upregulated proinflammatory (TNF-α, 
interleukin (IL)-6, and IL-1β) and anti-inflammatory 
(TGF-β) expressions. In using APP/PS1 transgenic mice 
for the in-vivo assessment, a significant upregulated 
CD206 expression and downregulated CD16/32 expres-
sion were observed in the brain. In addition, there was 
marked mitigation of Iba-1 level and oxidative stress (via 
downregulated 4-hydroxynoneal) in the hippocampal 
region [99]. Two deductions are worth noting from the 
above study, and in both cases relate to the specificity of 
the nanoenzyme. In the brain of the transgenic mice used 
for the study, the constructed nanoenzyme was specifi-
cally targeting the hippocampus and not the cortices, as 
β-amyloid were noted to be lower in that section. Thus, is 
it possible that a nanoenzyme focusing on the mitochon-
dria could be significantly beneficial to the hippocampus 
and have minimal or no improvement to the cortex? That 
remains to be clarified through additional studies using 
various disease models. The other intriguing aspect of the 
study had to do with the detection of this nanoenzyme in 
other organs (liver, kidney, spleen, and lung) to the extent 
of minimizing both oxidative and inflammatory damages 
in renal tubules, as well as not affecting the immuno-
logical activities of the spleen. In addition, the RT-qPCR 
analysis of both TGF-β and TNF-α genes showed respec-
tive increase and decrease, together with no disruptions 
to the functions of antioxidant enzymes (CAT and SOD) 
in the lung of transgenic mice. Conclusively, detrimental 
effects were not reported in these organs, indicating that 
not only is the nanoenzyme effective, but also possess 
no risk to other areas of the body. Contrastingly, other 
studies have reported detrimental effects, such as intes-
tinal damage, downregulated antioxidant enzyme gene 
expression, apoptosis, and ROS production following the 
usage of molybdenum disulphide  (MoS2) [100, 101]. The 
difference between these two studies [100, 101] and that 
of Ren et al. [99] was the absence of complexation. There-
fore, it is plausible the presence of a potent molybdenum 
complexation could have mitigated these unfavorable 
effects, as has been observed [102]. Nonetheless, well-
organized future preclinical studies may clarify these 
contradictions.

More recent analysis using Mo-containing agents in 
different investigative models of AD have been reported. 
Notably, Sudipa et al. employed insulin protein as an in-
vitro method and found ammonium molybdate to signifi-
cantly suppress generated β-amyloid fibrils. Their result 
was substantiated via the in-vivo route using drosophila 
fly. Interestingly, no harmful effects were reported [103]. 

A similar study by Linga and colleagues attained similar 
results. Their study utilized nanosheets of  MoS2 to suc-
cessfully detect β-amyloid oligomers and significantly 
suppress its aggregation [104].

Actin, as a protein of multi-functional value, is involved 
in microfilament formation and takes a role in the modu-
lation of DNA replication and cell motility [105, 106]. 
The potential association between dysregulated actin and 
AD has been extensively investigated. Specifically, the 
correlation between AD and actin appears to be through 
dysfunctionality in gelsolin and cofilin-1 proteins (i.e., 
actin-binding proteins) [107–109]. For instance, recent 
investigations showed β-amyloid oligomers to trigger 
the phosphorylation of cofilin-1 protein, causing its aug-
mentation in both APP/PS1 mice and AD patients, and 
leading to curtailed synaptic density and plasticity. More 
importantly, when fasudil was used to limit the ROCK 
pathway (Rho-associated protein kinase), the stimulated 
effects were abrogated [110]. In the study by Li et  al., 
they observed β-amyloid oligomers to instigate disrup-
tion to the cell membrane and alter the actin structure. 
Nevertheless, the application of  MoS2 quantum dots (in 
SH-SY5Y cells) counteracted these detrimental effects, 
resulting in reduced oxidative stress and cell death [111]. 
The only limitation to this study had to do with being 
an in-vitro analysis. Therefore, it would be interesting if 
similar results could be achieved following its replication 
in different animal models of AD, while also examining 
other AD pathological features, such as neurofibrillary 
tangles (NFT), synaptic plasticity and density, and cog-
nition. More importantly, the delineation of the mecha-
nisms involved could be significant in facilitating the 
employment of this nanoparticle as an interventional 
agent for AD. Table 1 summarizes other fabricated nano-
particles containing Mo that have shown potentiality in 
improving some of the neuropathological facets of AD.

In summary, Mo has an immense potential to serve 
as an interventional agent against AD. However, further 
thorough studies are required, most especially to ascer-
tain the appropriate concentration necessary to achieve 
the desired outcome in AD.

Iodine: a familiar, but an unchartered biometal in AD
Studies have used iodine-containing agents as diagnostics 
in AD [119, 120]. Notably, a fabricated (123) I-ABC577 
agent, (a subsidiary of radio-iodinated imidazopyridine) 
was tested in animal and human models of AD and ascer-
tained to be a possible single photon emission computed 
imaging biomarker for the diagnosis of β-amyloid [121]. 
The investigation into the catabolism of β-amyloid (Aβ40 
and Aβ42) in mice (APPswe/PS1dE9) and humans showed 
peripheral organs, such as kidney, skin, liver and gastro-
intestinal tract to be prominent in clearing β-amyloid, 
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consequently curtailing its load and mitigating neuroin-
flammation (via decreased TNF-α, IL-6, IL-1 cytokines, 
microgliosis and astrocytosis), tau phosphorylation (via 
minimized pS396 and pS199) and neuronal degeneration 
(via augmented synaptophysin, PSD93/95 and synapsin-1 
levels) in the hippocampus and neocortex [122]. This 
study opens the avenue of targeting β-amyloid clearance 
in the periphery as a viable treatment for AD, as devel-
oping interventional agents that accelerates the catabolic 
activities of these peripheral organs could be beneficial 
for the disease. β-amyloid and oxidative stress appear 
to go hand-in-hand as evidenced from previous reports 
[1, 123], in that, decreased β-amyloid curtails ROS and 
vice-versa. Thus, using the study [122] as a rationale, it is 
possible that decreased oxidative stress in the periphery 
may potentially abate β-amyloid in the peripheral region, 
which in turn could minimize cumulated β-amyloid in 
the brain. We refer to a recent study that established the 
association between iodine and oxidative stress occur-
ring in the periphery [69]. Dietary, but not supplemen-
tal, iodine was demonstrated to regulate plasma levels 
of both glutathione peroxidase and triiodothyronine in 
Rex rabbits. In particular, glutathione peroxidase was 
elevated, leading to the suppressed formation of  H2O2 
[69]. Exacerbated level of  H2O2 causes oxidative stress 
damage, having been reported and reviewed extensively 
[124, 125]. In pregnant hypertensive women lacking 
iodine, excessive degrees of oxidative stress (as measured 
by thiobarbituric acid reactive substance, TBARS) along 
with diminished activities of catalase and SOD were 

noted [126]. Moreover, 196 children (between the ages 
of 9 and 16) with moderate iodine insufficiency showed 
exacerbated oxidative stress (as confirmed by higher total 
oxidant status and lower total antioxidant status) [127]. 
One of the intricacies surrounding AD pathogenesis 
has to do with materialization of symptoms years after 
associated possible risk factors have been triggered. As 
such, the early dysregulation of oxidative stress in the 
children [127] and pregnant women (especially if young) 
[126] might have potentially stimulated the aberrant for-
mation of β-amyloid in these individuals, which in turn 
would have already placed them in a precarious position 
of likely developing a neurodegenerative disease like AD 
in later years (say between 20 and 30 years from time of 
study conclusion). Although this is from a hypothetical 
viewpoint, continual observation of the health status of 
these individuals could be paramount. Additionally, ani-
mal models investigating the long-term effect of iodine 
deficiency in AD development could be significant, as it 
would either refute or substantiate our hypothesis. In the 
event of substantiating, it could open avenues for both 
understanding and tackling the disease. Future studies in 
this area could focus on (1) ascertaining which of the two 
(either iodine supplements or dietary iodine) has benefi-
cial effects in combating oxidative stress in AD, and (2) 
establishing the optimal daily iodine intake (either die-
tary or supplements).

Iodine may be related to cognitive function. A post-
mortem study was conducted to assess iodine levels 
in various sections of the brain. Although iodine was 

Table 1 Summary of fabricated nanoparticles containing molybdenum employed for AD in preclinical studies

Mo, Molybdenum; DAB-3,3-Diaminobenzidine;  MoS2, Molybdenum disulfide; AuNR, gold nanorods; QDs, Quantum dots; PC12, pheochromocytoma cells;  BiVO4, 
Bismuth vanadate; FeOOH, Iron oxyhydroxide; CoDOTA, Cobalt 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid; CeNP@MnMoS4–; t-tau, total tau

Interventional agents Species Results References

CeNP@MnMoS4 PC12 cells This agent curtailed oxidative stress and stimulated neurite outgrowth, while hinder-
ing β-amyloid that had been instigated by  Cu2+

[112]

MoS2 SH-SY5Y 
cells (human 
neuroblastoma 
cells)

The nanoparticle obstructed  Ca2+ channel development and β-amyloid to minimize 
oxidative stress

[102]

Mo polyoxometalate complexes PC12 cells Both  Cu2+ and  Zn2+ were effective in instigating β-amyloid (Aβ40) accumulation, 
which was hindered following treatment with these agents

[113]

Also, apoptosis, mitochondrial membrane potential depolarization and oxidative 
stress were impaired by Mo polyoxometalate complexes

MoS2/AuNR SH-SY5Y cells 
(neuroblas-
toma)

This nanocomposite, beside disaggregating and hindering β-amyloid (Aβ42) fibrils, 
also alleviated ROS triggered by β-amyloid

[114]

MoS2 – This agent regulated β-amyloid (Aβ33–42) by inhibiting its agglomeration [115]

MoS2-CoDOTA PC12 cells (rats) The nanoparticle crossed the BBB to significantly hinder and degrade β-amyloid fibril-
lations, along with curtailing cytotoxicity instigated by β-amyloid

[116]

MoS2 QDs – The agent, as an immunosensor, discerned β-amyloid levels in a precise manner [117]

FeOOH/Mo:BiVO4 Human  tau441 Doped Mo ions and FeOOH integrated into  BiVO4 photoelectrode augmented the 
photocurrent impulses of DAB to diagnose t-tau proteins

[118]
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observed to be generally low and unevenly dispersed, its 
highest levels were discerned in the putamen, frontal cor-
tex, and caudate nucleus [128]. Noteworthy is that these 
brain regions have been intensely investigated and impli-
cated in cognitive functions [129–132]. It is also inter-
esting to note that the brain samples used for the study 
were from humans who had no history of either psychi-
atric or neurological conditions. Based on this result, 
does it mean that iodine levels increase with age? Despite 
the absence of specific evidence addressing the above 
quandary, data from the National Health and Nutrition 
Examination Survey (NHANES), which evaluated the 
iodine status of the US population between 2007 and 
2008 agree with the statement that iodine increases with 
age. In that study, the median urine iodine concentration 
of those between 50 and 59 years was 149 μg while that 
of 60–69  years and ≥ 70  years were 165  μg and 187  μg 
respectively. Interestingly, the NHANES study conducted 
between 2005 and 2006 showed similar outcome [133]. 
As there is no other available literature data demonstrat-
ing the normal iodine levels in the human brain by age 
group, it is difficult to draw any meaningful conclusion 
from the study conducted by Pinto et  al. [128]. In this 
regard, future studies focusing on this area is paramount 
as results from investigations could determine whether 
iodine may be a prospective interventional agent for AD.

Conclusion and future directions
Mo and iodine are closely related to AD. These less 
investigated trace biometals have positive impacts—
for instance, modulation of inflammation, oxidative 
stress, and β-amyloid proteins. More so, they can detect 
β-amyloid levels in the brain. With the aim of further 
exploring the applicability of these biometals not just as 
interventional agents, but also as diagnostic tools for AD, 
future studies could attempt to:

1. Ascertain the normal level of iodine in the human 
brain.

2. Establish the probable mechanism involved in 
iodine’s role in brain function.

3. Investigate the therapeutic effects of iodine in AD 
mice models and extend to patients.

4. Establish the functional role of Mo in AD, and strate-
gies in utilizing it to either remedy or counteract the 
disease, thereby preventing disease development and 
progression.

5. Determine the beneficial effects of dietary and sup-
plementary iodine in repudiating oxidative stress.

Other future studies could also attempt to ascertain 
the specific contribution of Zn/Cu in AD and their 

optimal concentration needed to improve synaptic 
plasticity or decrease accumulated β-amyloid.
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