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Abstract 

Background: The crosstalk of purine biosynthesis and metabolism exists to balance the cell energy production, pro-
liferation, survival and cytoplasmic environment stability, but disorganized mechanics of with respect to developing 
heart failure (HF) is currently unknown.

Methods: We conducted a multi-omics wide analysis, including microarray-based transcriptomes, and full spectrum 
metabolomics with respect to chronic HF. Based on expression profiling by array, we applied a bioinformatics platform 
of quantifiable metabolic pathway changes based on gene set enrichment analysis (GSEA), gene set variation analysis 
(GSVA), Shapley Additive Explanations (SHAP), and Xtreme Gradient Boosting (XGBoost) algorithms to comprehen-
sively analyze the dynamic changes of metabolic pathways and circular network in the HF development. Additionally, 
left ventricular tissue from patients undergoing myocardial biopsy and transplantation were collected to perform the 
protein and full spectrum metabolic mass spectrometry.

Results: Systematic bioinformatics analysis showed the purine metabolism reprogramming was significantly 
detected in dilated cardiomyopathy. In addition, this result was also demonstrated in metabolomic mass spectrom-
etry. And the differentially expressed metabolites analysis showing the guanine, urea, and xanthine were significantly 
detected. Hub markers, includes IMPDH1, ENTPD2, AK7, AK2, and CANT1, also significantly identified based on XGBoost, 
SHAP model and PPI network.

Conclusion: The crosstalk in the reactions involved in purine metabolism may involving in DCM metabolism repro-
gramming, and as coregulators of development of HF, which may identify as potential therapeutic targets. And the 
markers of IMPDH1, ENTPD2, AK7, AK2, and CANT1, and metabolites involved in purine metabolism shown an impor-
tant role.
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Introduction
The heart is a blood-pumping organ with the highest 
energy demand in the body. In a normal heart, 60%–80% 
of energy-producing substances are free fatty acids (FFA), 
while 10%–20% are derived from glucose, acetone, lactic 
acid, and ketone bodies [1]. Heart failure, the end stage 
of multiple cardiovascular diseases, is a development 
process with cardiac remodeling as the core, in which 
multiple factors such as hemodynamics, neurohormones, 
genetic factors, and energy metabolism participate jointly 
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[2]. Among these, abnormal energy metabolism is not 
only the direct manifestation of heart failure symptoms, 
but also one of their pathological bases. Normal myo-
cardial energy metabolism comprises the following three 
steps [3–5]: (1) the utilization of substrates, (2) the oxida-
tive phosphorylation of mitochondrial respiratory chain, 
and (3) the transport and utilization of ATP. Problems 
arising in any of the three steps would cause disorders of 
myocardial energy metabolism.

Heart failure often manifests as energy deficiency 
and mitochondrial oxidative damage due to changes 
in energy substrates. Metabolites associated with glu-
cose, lipid, and amino acid metabolism processes are 
abnormal in heart failure. In an early stage of the dis-
ease, fatty acid (FA) oxidation (FAO) appears to be nor-
mal or slightly higher. With progression of the disease, 
FAO is impaired, and glucose is then preferentially 
used as a substrate for energy metabolism, known as 
the “cardiac metabolic reprogramming” [6]. In 2004, 
van Bilsen et  al. put forward the concept of metabolic 
remodeling of the failing myocardium, which argued 
that when heart failure occurs, myocardial structure 
and cell metabolism are both disordered, causing car-
diac dysfunction, and changes in cardiac energy metab-
olism give rise to severe heart failure [7]. In addition, 
Guo et al. investigated the mechanisms of heart failure 
using a metabolomics technique based on ultra-perfor-
mance liquid chromatograph quadrupole time-of-flight 
mass spectrometry (UPLC/TOF–MS). They identified 
13 metabolites in the serum as potential biomarkers of 
heart failure, and these compounds were mainly associ-
ated with inflammation, energy metabolism disorders, 
and amino acid disorders [8]. Li et al. established a rat 
model of chronic heart failure (CHF) and identified 23 
metabolites related to CHF with non-targeted meta-
bonomics. Their results showed that the metabolism 
of branched chain amino acids (BCAA) in the heart of 
rats with heart failure was significantly inhibited [9]. Li 
et  al. selected 27 healthy, 22 stage B1, 18 stage B2 pre 
clinical MMVD dogs with mucinous mitral valve dis-
ease and 17 MMVD dogs with congestive heart failure 
(CHF) history for metabonomic analysis. They found 
that there were 173 known metabolites of different con-
centrations among the four groups, of which 40% were 
amino acids and 30% were lipids, revealing changes in 
energy metabolism and amino acid metabolism during 
the occurrence and development of MMVD and CHF 
[10]. Li et  al. used the method of metabonomics and 
16S rRNA sequencing to analyze the fecal metabolism 
profile and intestinal microbial composition of H-HF 
rats, and found that the intestinal microbial composi-
tion of H-HF rats had changed significantly, the myce-
lium/Bacteroid (F/B) ratio increased, and the number 

of bacteria in rhamnoideae, lactobacilliaceae, and lac-
tobacilliaceae decreased. The levels of 17 genera and 35 
metabolites changed significantly and were identified 
as potential biomarkers of H-HF. Correlation analysis 
showed that there was a strong correlation between 
specific altered genera and altered fecal metabolites. 
The reduction of short chain fatty acid (SCFA) pro-
ducing bacteria and trimethylamine N-oxide (TMAO) 
may be a significant feature of H-HF [11]. Furthermore, 
Juho Heliste et al. included Finnish patients with heart 
failure to screen out a new genetic variation related to 
heart failure, and identified a new variation for func-
tion through in  vitro and in  vivo studies. This study 
suggests the role of TRIM55 gene polymorphism in 
heart failure susceptibility [12]. Vilela et al. [13] found 
that uncoupling protein 2 (UCP2), a proton trans-
porter located in the inner mitochondrial membrane, 
can transport  H+ from the outer side back to the inner 
side of the membrane. This reduces the electrochemi-
cal gradient of  H+ across the membrane formed during 
substrate oxidation, and decouples oxidative phospho-
rylation of the respiratory chain from ATP synthesis. 
As a result, the energy released from  H+ oxidation is 
converted into heat, and ATP production is diminished. 
If UCP2 expression is upregulated in smooth muscle 
tissue, it can further mediate a reduction in ATP pro-
duction, increasing myocardial energy metabolism dis-
orders and thereby aggravating heart failure. Therefore, 
UCP2 is considered to be a “ruler” of myocardial cell 
metabolism, which can sense changes in the metabo-
lism–energy state. UCP2 influences multiple steps of 
substrate metabolism to modulate the process of glyco-
lysis, glucose uptake, and energy production, regulate 
the efficiency of oxidative phosphorylation, and main-
tain the balance of energy supply and demand [13]. Kim 
et  al. and Fry et  al. have all demonstrated that beta3 
adrenoceptor (beta3-AR) agonists inhibit adipocyte dif-
ferentiation by downregulating gene expression levels 
of peroxisome proliferator-activated receptor (PPAR) 
and adipocyte FA-binding protein (aP2), thereby caus-
ing the reversion of myocardial energy metabolism 
back towards fetal energy metabolism [14, 15]. Other 
researchers have proposed that cardiac beta3-AR acti-
vates the extracellular signal-regulated kinase/mitogen-
activated protein kinase (Erk-MAPK) pathway through 
phosphorylation, which downregulates PPAR-alpha 
expression or activity; subsequently, FAO is impaired 
and metabolic remodeling is induced. This may be 
another mechanism by which beta3-AR mediates nega-
tive inotropic effects through influencing myocardial 
cell metabolism, but it still needs to be verified. Per-
ilipin 5 (Plin5) plays a role in bidirectional regulation 
of lipid metabolism balance during energy metabolism 
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in myocardial cells. Plin5 binds to adipose triglycer-
ide lipase (ATGL), thereby inhibiting lipid dissolution 
and facilitates FA storage. When stress or heart failure 
occurs, protein kinase A (PKA) phosphorylates and 
activates Plin5, promotes the release of ATGL from the 
complex, and triggers ATGL activity, thus accelerating 
FA degradation and participating in metabolic repro-
gramming of myocardial cells [16].

Metabolomics is a scientific method emerging after 
genomics and proteomics in recent years, and it consti-
tutes an essential part of systems biology. Metabonomic 
analysis can detect small-molecule metabolites (including 
lipids, carbohydrates, and amino acids), and these indi-
cators are further analyzed using multivariate statistical 
methods, such as principal component analysis (PCA), 
partial least squares discriminant analysis (PLS-DA) [17], 
and orthogonal partial least squares discriminant analysis 
(OPLS-DA) in order to determine the corresponding bio-
markers and elaborate the mechanisms of disease patho-
genesis and associated molecular pathways. Identification 
of novel biomarkers can predict disease progression and 
guide individualized treatment [18]. Various physiologi-
cal reactions catalyzed by gene encoding enzymes and 
their interaction systems can be reflected through meta-
bolic networks [19]. In the present study, an integrated 
analysis strategy based on non-targeted metabolomics 
and transcriptomics was used to analyze the metabolic 
profile of patients with heart failure, and patients without 
heart failure were included as a control group. The aim of 
the study was to explore systemic metabolic changes in 
heart failure and the involved pathways of metabolic dis-
orders, and to search for novel markers and therapeutic 
targets for heart failure. The findings could provide new 
thoughts for clinical diagnosis and treatment of heart 
failure.

Methods
Transcriptional expression profiling analysis
The CEL raw microarray data of GSE57338 [20], 
GSE19303 [21], and GSE120895 [22] were downloaded 
from NCBI GEO database (https:// www. ncbi. nlm. nih. 
gov/ geo/). In order to remove the interference of patho-
logical phenotypes of other heart diseases, only the DCM 
and control samples before any treatment were selected. 
In GSE57338, annotated by platforms of GPL11532 
(Affymetrix Human Gene 1.1 ST Array), the left ventri-
cle (LV) myocardium of DCM and non-failing controls 
were included, and ischemic myocardium excluded. In 
GSE19303, annotated by platforms of GPL570 (Affy-
metrix Human Genome U133 Plus 2.0 Array), the LV 
endomyocardial biopsies of DCM patients before the 
treatment of immunoglobulin substitution (IA/IgG) and 
controls were selected. Additionally, through literature 

reading and data set unit filtering, we find that the data-
sets of GSE19303 and GSE120895 actually come from 
the same research team (Sabine Ameling’s group; Uni-
versity Medicine Greifswald, Greifswald, Germany). In 
order to avoid repeated application of data, we select the 
GSE19303 dataset for the subsequent analysis.

Here, microarray data processing as following [23]: 
(1) raw data (CEL files) were downloaded; (2) “Affy” 
or “Oligo” algorithm were used for raw CEL fluores-
cence microarray data reading; (3) “RMA” algorithm 
was applied for data background correction, normaliza-
tion, gene name matching, and missing value handling; 
(4) “LIMMA” method was used for differential gene 
expression analysis. The criteria for selecting differen-
tially expressed genes: log2 fold change ≥ 1.5; Benjamini-
Hochberg (B-H) adjusted P-value < 0.05. The analysis 
process is shown in Fig. 1.

Gene set enrichment analysis and gene set variation 
analysis
We conducted a gene-set enrichment analysis (GSEA; 
http:// softw are. broad insti tute. org/ gsea/ index. jsp) of 
based on “clusterProfiler” and “AnnotationHub” algo-
rithms [24, 25]. Here, the algorithmic parameters of the 
number of genes in the minimum gene set is 10, as well 
as 500 in the largest gene set. The terms with B-H cor-
rected P-value < 0.05 with the permutation test number is 
1000 were considered as significantly enriched pathway.

Additionally, gene set variation analysis (GSVA) is a 
non-parametric unsupervised analysis method that is 
used to evaluate the results of gene set enrichment of 
microarray or RNA-seq. By integrating the Molecular 
Signatures Database (v7.5.1; http:// www. gsea- msigdb. 
org/ gsea/ msigdb/ index. jsp), the gene list of pathways was 
collected [26, 27]. The GSVA and the GSEABase pack-
ages were used for standardized scoring of the gene sets 
for each cell.

Participant inclusion
The study recruited consecutive patients who presented 
to the Department of Cardiovascular Surgery at the 
Guangdong General Hospital and Guangdong Acad-
emy of Medical Sciences (Approved No. of Ethics Com-
mittee: No. GDREC2020162H(R1)) in June 2019–July 
2021. According to the 2016 ESC Heart Failure Guide-
lines, the clinical diagnostic criteria for DCM are objec-
tive evidence of decreased ventricular dilatation and 
myocardial contraction functions [28]: ① left ventricu-
lar end-diastolic diameter > 5.0  cm (female) or > 5.5  cm 
(male) (or > 117%, i.e., 2SD + 5% of the predicted value 
of age and body surface area); ② left ventricular ejection 
fraction < 45% (Simpsons method) and left ventricular 
short-axis shortening rate (LVFS) < 25%; and ③ excluding 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://software.broadinstitute.org/gsea/index.jsp
http://www.gsea-msigdb.org/gsea/msigdb/index.jsp
http://www.gsea-msigdb.org/gsea/msigdb/index.jsp
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hypertension, valvular heart disease, congenital heart 
disease, or ischemic heart disease. Samples of the control 
group were obtained from myocardial biopsies of three 
relatively healthy participants. The patient exclusion cri-
teria were as follows: (1) the patient was aged less than 
18  years old; (2) the patient had systemic disease that 
affected the metabolism, such as malignant tumor, auto-
immune disease, endocrine disease, or end-stage renal 
insufficiency; (3) the patient had blood-borne infectious 
disease, such as acquired immunodeficiency syndrome, 
hepatitis B, or hepatitis C; and (4) the patient lacked tis-
sue samples. All participants signed an informed consent 
form. The study was approved by the hospital ethics com-
mittee and complied with the 1975 Declaration of Hel-
sinki (2000 revision) [29].

Mass spectrometry‑based metabolomic profiling
The LC–ESI–MS/MS system (UPLC, ExionLC AD, 
https:// sciex. com. cn/; MS, QTRAP® System, https:// 
sciex. com/) 30 were measured in our mass spectrometry 
study. A triple quadrupole-linear ion trap mass spectrom-
eter (QTRAP; QTRAP® LC–MS/MS System), equipped 
with an ESI Turbo Ion-Spray interface, were acquired 
via the LIT and triple quadrupole (QQQ) scans. Addi-
tionally, the positive and negative ion mode analyzed via 
Analyst 1.6.3 software (Sciex) [31]. Quality control was 
performed with a mixture of the sample extracts. Qual-
ity control samples were inserted into analytical samples, 

once every ten analytical samples, to monitor the repeat-
ability of measurement under the same operating con-
ditions. The total ion current (TIC) chromatogram and 
multiple reaction monitoring (MRM) multi-peak chro-
matogram were obtained. A triple quadrupole mass spec-
trometer was used to select the characteristic ion of each 
substance. The signal intensity (counts per second) of the 
characteristic ion was acquired in the detector. With the 
mass spectrometer output files of samples, MultiQuant 
software was used for chromatographic peak integra-
tion and correction. Chromatographic peak area repre-
sents the relative content of the corresponding substance 
[32]. We exported and saved all chromatographic peak 
area integration data. To compare the content of each 
detected metabolite in different samples, we corrected 
the chromatographic peak of each metabolite in different 
samples based on the retention time and peak type of the 
metabolite, to ensure the accuracy of qualification and 
quantification.

Orthogonal partial least squares‑discriminant analysis
With the metabolomic data collected above, we could 
carry out metabolite identification and sample data qual-
ity control analysis, select differential metabolites, and 
perform function prediction and analysis of metabolites 
in samples. Orthogonal partial least squares-discrimi-
nant analysis (OPLS-DA), which combines orthogonal 
signal correction and PLS-DA, decomposes the matrix 

Fig. 1 Flowchart overview of this study

https://sciex.com.cn/
https://sciex.com/)30
https://sciex.com/)30
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information of independent variables into depend-
ent variables-related and -unrelated information [32]. 
This method enables maximization of intergroup dif-
ferences, facilitating the identification of differential 
metabolites, and filters out unrelated differences to fur-
ther identify differential variables, enriching differential 
analysis results. Based on “MetaboAnalystR” R package, 
variable importance in projection (VIP) from the OPLS-
DA model was used to preliminarily select differential 
metabolites between groups [33].

The data was log transform (log2) and mean centering 
for further differential metabolite analysis. And a permu-
tation test with 200 permutations was applied to elimi-
nate the data overfitting. We defined metabolites with 
VIP ≥ 1.0 and absolute Log2FC (fold change) >  = 1 as 
the significantly differential metabolites (i.e., if the ratio 
of a metabolite in the tumor group to that in the control 
group was ≥ 2 or ≤ 0.5, the difference was considered as 
statistically significant).

Functional annotation and enrichment analysis 
of differential metabolites
Based on the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) Compound database (http:// www. kegg. jp/ kegg/ 
compo und/) and KEGG Pathway database [34], we’re 
subquentlly annotated metabolites, analyzed the inter-
actions and mapped to the pathways of potential meta-
bolic pathways, including the carbohydrate, nucleotide, 
and amino acid metabolism and organic substance bio-
degradation, and carried out comprehensive annotation 
of enzymes for a series of reactions. For pathway enrich-
ment, the hypergeometric test’s P value < 0.05 was con-
sidered as statistically significant.

Traditional enrichment analysis based on hypergeo-
metric distribution is mainly fit for differential metabo-
lites with marked upregulation or downregulation, 
tending to miss some metabolites without significant 
differential expression but with important biological 
significance. Metabolic set enrichment analysis (MSEA) 
enables enriching metabolomic data into a series of pre-
set metabolic sets, without pre-specifying the threshold 

of differential metabolites [35]. We used MSEA to 
identify metabolic sets with significant differences. P 
value < 0.05 for pathway enrichment was considered as 
statistically significant.

Hub markers detection based on machine learning and PPI 
network
The expression level of purine metabolism gene list was 
extracted from GSE120895 dataset. The gene expres-
sion value prediction algorithm based on XGBoost is 
superior to the traditional machine learning algorithm 
and D-GEX algorithm [36]. And with this method, the 
hub genes were identified. A total of 221 samples were 
selected, which included 137 control and 84 DCM sam-
ples. And then we’re split the dataset: 75% for training, 
25% for validation. Bayesian optimization algorithm and 
learning framework based on Boost tree model have 
optimized the important super parameters and param-
eters of XGBoost, greatly improving the stability, predic-
tion accuracy and calculation efficiency of the model. The 
prediction results of the model are explained based on 
Shapley Additive ExPlans (Sharp) method [37].

The training loss is loss, the complexity of the tree 
is Ω(f ), and the number of trees is k in this formula 
[38]. The XGBoost fine-tuned parameters is: learning 
rate = 0.05, gamma = 0.009, subsample = 0.85, colsam-
ple bytree = 0.8, max depth = 8, and num boost round 
(boosting iterations) = 500.

SHAP is the only consistent and locally accurate fea-
ture attribute method based on expectations. This tech-
nology can explain the feature importance score in the 
complex training model, and propose an interpretable 
prediction for the test sample. SHAP values are proposed 
to uniformly measure feature importance because impor-
tance values (fi) were assigned to each feature which 
exemplifies the effect of including features in the model 
predictions. The SHAP value was calculated as follows in 
cooperative game theory [39]:

$(ϕ) =
∑n

i=1
loss(Xixi)+

∑m

m=1
�
(

fk
)

where F denotes the set of all features and S denotes the 
subset of all features obtained from F after the removal 
of the ith feature. Then, the two models fsU{i} and fs are 
retrained and the predictions of these two models are 
compared with the current input fsU{i}(xsU{i})-fs(xs), 
where xs denotes the value of the input features in the set 

S. To estimate  from  2|F| differences, the SHAP method 
approximates the Shapley values by performing Shapley 
sampling or Shapley quantitative influence.

Similarly, as a conventional calculation method, the 
calibration curve of AUC, accuracy, sensitivity, and speci-
ficity of the model for the test set were drawn. The top 

http://www.kegg.jp/kegg/compound/
http://www.kegg.jp/kegg/compound/
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10 with higher SHAP value presented as the hub gene 
explained by black-box ML models (MLGs).

After extract the top 15 important genes from the 
SHAP model, STRING online database (version 11.0; 
https:// string- db. org/) [40], a protein–protein inter-
action (PPI) network was conducted with the thresh-
old of 0.4. The PPI network was constructed utilizing 
Cytoscape software (version 3.8.2; https:// cytos cape. 
org/). And the degree of each node in each cluster 
based on Maximal Clique Centrality (MCC) method 
were calculated via the CytoHubba software [40]. The 
advantages of MCC is can capture the dynamic charac-
ters following the time series, and then clustered these 
nodes based on iterative computation. For the net-
work, top 10 gene with the highest degree in the PPI 
network was screened out as the hub gene with impor-
tant biological function (BFGs). In this plot, we over-
lap the top 10 BFGs and MLGs to detect the important 
features, which has the characteristics of both biologi-
cal function and classification and prediction ability of 
ML model. Finally, the GSVA- normalized map score 
of purine pathways and RMA-normalized hub gene’s 
expression level of GSE120895were calculate dataset 
for the external validation.

Results
Transcriptional expression profiling analysis
Based on DE analysis, a total of 177 DEGs were detected 
(included 143-downregulated and 34-upregulated). Fig-
ure  2A shown the top DEGs in GSE57338 dataset. And 
the list of DEGs shown in Additional file 1: Table S1.

Gene set enrichment analysis and gene set variation 
analysis
The GSEA analysis showed that the metabolic related 
pathways were identified. And the results shown that 
the cGMP metabolic process (Normalized enrichment 
score (NES) = 2.11,adjusted p-value = 0.0362, enriched 
gene = 3), linoleic acid metabolic process (NES =  − 1.97, 
adjusted p-value = 0.0115, enriched gene = 13), phos-
phatidylethanolamine metabolic process (NES =  − 1.87, 
adjusted p-value = 0.0472, enriched gene = 4), long-
chain fatty acid binding (NES =  − 1.89, adjusted 
p-value = 0.029, enriched gene = 5), NAD metabolic pro-
cess (NES =  − 2.00, adjusted p-value = 0.0048, enriched 
gene = 14), and oxygen transport (NES = 2.09, adjusted 
p-value = 0.0366, enriched gene = 3) were significantly 
identified (Fig. 2B, D).

Of the GSVA-normalized pathway score detection, 
the maps, includes purine metabolism, alanine aspar-
tate and glutamate metabolism, cysteine and methionine 

metabolism, sphingolipid metabolism, O-glycan biosyn-
thesis, and tryptophan metabolism, where significant 
difference were detected between the control and DCM 
samples based on “LIMMA” powerful different analysis 
(Fig. 2C and Table 1). Here, integrating the above differ-
ential pathway analysis results, we found that the purine 
metabolic pathway, an interesting metabolic change, may 
play an important regulatory role in the occurrence and 
process of DCM heart failure. The list of pathway analysis 
results following the GSEA and GSVA algorithms were 
presented in Additional file  2: Table  S2 and Additional 
file 3: Table S3, respectively.

Mass spectrometry and orthogonal partial least 
squares‑discriminant analysis
Here, 12 patients were included in our study (6 control 
samples from myocardial biopsy in patients with sus-
pected myocarditis, 6 DCM samples from heart trans-
plantation). Based on extensive targeting technology, 
1474 metabolites were detected. OPLS-DA combin-
ing the orthogonal signal correction (OSC) and partial 
least squares discriminant analysis (PLS-DA) methods, 
which can effectively extract the main information of 
variables with less correlation, and filter the difference 
variables by removing irrelevant differences. Accord-
ing to the analysis of OPLS-DA model, Fig.  3A shows 
the scores of control and DCM groups, suggesting that 
there is a significant difference between the two groups. 
Based on OPLS-DA model, the VIP score preliminar-
ily screen the metabolites with different among the 
control and DCM samples. In results, according to the 
criterion of differentially expressed metabolites (DEMs), 
the 75 metabolites defined as significantly down-regu-
lated, and 353 metabolites were up-regulated (Fig.  3B). 
And Fig.  3C shown the significant DEMs with the 
higher VIP score, which includes the PC(O-16:0_18:2), 
L-Histidine, LysoPC 20:4(2n isomer), LPC(18:2/0:0), 
PysoPE 20:4(2n isomer1), Tranexamic Acid, PC(O-
16:1_18:2), PE(20:1_16:0), Lysopc 18:2, Lysope 18:2 
(2  N Isomer), SM(d18:1/19:0), PC(O-18:1_16:0), 
LysoPC 18:2(2n isomer1), Lysopc 18:1, LysoPC 20:4, 
PC(16:0_18:3), PE(18:1_18:2), PC(16:0_18:1), Xan-
thine and Carnitine C2:0. Additionally, the top up or 
down-regulated DEMs also presented in Fig.  3D (Up-
regulated: TG(8:0_16:0_16:1), TG(8:0_16:0_18:1), 
TG(8:0_16:0_16:0), TG(10:0_16:0_18:1), PS(16:0_18:1), 
PC(14:0_16:1), TG(14:1_16:1_18:1), Carnitine C14:0 
and L-Histidine); Down-regulated: LysoPC 22:4 (2n iso-
mer1), LysoPC 22:4, Purine, PysoPE 20:4 (2n isomer1), 
LPC(0:0/18:2), LPC(0:0/22:4), Xanthosine, PysoPE 22:6 
and Adenylocuccinic Acid). And the metabolite expres-
sion profiles and DEMs results shown in Additional file 4: 
Table S4.

https://string-db.org/)
https://cytoscape.org/
https://cytoscape.org/
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Functional annotation and enrichment analysis 
of differential metabolites
The biological DEMs interacts in organisms to form 
different pathways. Figure  4A shown the annotation 

results of the DEMs are classified according to the 
metabolic pathway in KEGG. Here, the Purine metabo-
lism (DEMs = 11, rate = 16.92%), Arginine biosynthesis 
(DEMs = 3, rate = 21.43%),
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Table 1 The differential analysis of metabolic pathways based on gene set variation analysis

Terms t Adj.P.Val B

KEGG_PURINE_METABOLISM 9.02 6.11E−16 29.98

KEGG_ALANINE_ASPARTATE_AND_GLUTAMATE_METABOLISM 8.65 3.65E−14 25.15

KEGG_CYSTEINE_AND_METHIONINE_METABOLISM  − 9.29 6.14E−16 29.38

KEGG_SPHINGOLIPID_METABOLISM  − 8.41 1.39E−13 23.67

KEGG_O_GLYCAN_BIOSYNTHESIS  − 8.03 1.41E−12 21.25

KEGG_TRYPTOPHAN_METABOLISM 7.58 1.78E−11 18.52

Fig. 3 LC–ESI–MS/MS differentially expressed metabolites (DEMs) detection. A The clustering plot showing a significant difference among the 
DCM and control group basing on the OPLS-DA model. B The volcano plot shows the difference in the expression level of metabolites between 
the DCM and control groups, and the statistical significance of the DEMs. C The VIP values of different metabolites. The red dots representing the 
up-regulated DEMs, and the green points representing the down-regulated DEMs. D After the qualitative and quantitative analysis of metabolites, 
log2 transformed, and the change of difference of DEMs is presented. Red is the up-regulated DEMs, and green is the down-regulated DEMs
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Fig. 4 The functional enrichment and correlation analysis among the DEMs. A The KEGG metabolism analysis results were detected, and the 
abscissa is the number of DEMs enriched in the corresponding maps, and the proportion of DEMs also calculated. B The bar plot showing the 
patterns of the GSVA score of the purine metabolism, and the difference detected by LIMMA algorithm. C Maps of purine metabolism, histidine 
metabolism, and beta-Alanine metabolism were significantly identified based on MSEA analysis. D The heatmap shown the purine- related 
metabolites relative expression levels. E The correlation heatmap presenting the interaction relationship basing on partial correlation network 
analysis
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Alanine, aspartate and glutamate metabolism (DEMs = 3, 
rate = 10.71%), Histidine metabolism (DEMs = 2, 
rate = 12.5%), Aminoacyl-tRNA biosynthesis (DEMs = 3, 
rate = 6.25%), beta-Alanine metabolism (DEMs = 2, 
rate = 9.52%), et al. And the maps including purine metabo-
lism, glutamate metabolism, et  al. were primarily enriched 
(Fig. 4C).

Of the purine pathway, the different analysis of GSVA 
score shown the maps of GOBP: regulation of NAD-P–
H oxidase activity (t = 5.90, adjusted P-Value = 2.41E-07, 
B = 9.22), GOBP: purine deoxyribonucleoside metabolic 
process(t = 5.88, adjusted P-Value = 2.41E-07, B = 9.12), 
and GOBP: purine containing compound transmembrane 
transport (t = 5.90, adjusted P-Value = 2.41E-07, B = 9.22)
were up-regulated; while the pathway of GOBP: purine 
nucleoside monophosphate catabolic process(t = -3.79, 
adjusted P-Value = 0.0012, B = 0.092), GOMF:NADP 
binding(t =  − 4.70, adjusted P-Value = 5.33E-05, B = 3.67), 
and GOMF:NADPH binding (t =  − 6.11, adjusted 
P-Value = 2.04E-07, B = 10.34) were down-regulated. The 
GSVA score of purine metabolism related pathway were pre-
sented in Fig. 4B, Additional file 5: Table S5.

Finally, the expression level of 12 purine DEMs, 
includes hypoxanthine, guanine, inosine, urea, L-glu-
tamine, adenosine, adenine, deoxyguanosine, ADP-
ribose, xanthine, xanthosine, and guanosine, shown in 
Fig.  4D. In addition, Fig.  4E inspecting the correlation 
of 12 purine DEMs based on metabolites expression 
level. And Table  2 presenting the differential results of 
metabolites.

Hub markers detection based on machine learning and PPI 
network
The receiver operating characteristic (ROC) curves 
shown the outstanding efficacy of the XGboost model 

for outcome prediction (AUC = 0.995, 95% confi-
dence interval [CI] 0.993–0.997), and the recall results 
(AUC = 0.993, 95% CI 0.992–0.995) (Fig. 5A). To identify 
the important features, the SHAP summary plot the top 
15 features of the of XGboost model (Fig. 5B), and SHAP 
value of the features impact on XGboost model also 
depicted (Fig. 5C). The Fig. 5D presented the distribution 
of SHAP values for the top 15 observation in the form of 
force plot, and thus reflecting the sum of each predictor’s 
attributions.

In addition, the hubs includes inosine-5′-monophosphate 
dehydrogenase 1 (IMPDH1; MCC = 260, Degree = 9, 
Clustering Coefficient = 0.56, Radiality = 3.93), 
cAMP-specific 3′,5′-cyclic phosphodiesterase 4D 
(PDE4D;MCC = 138,Degree = 7, Clustering Coeffi-
cient = 0.71, Radiality = 3.71), cAMP-specific 3′,5′-cyclic 
phosphodiesterase 4A (PDE4A; MCC = 246, 
Degree = 7,ClusteringCoefficient = 0.76, Radiality = 3.71), 
soluble calcium-activated nucleotidase 1 (CANT1;MCC = 14, 
Degree = 5, Clustering Coefficient = 0.60, Radiality = 3.64), 
adenosine deaminase (ADA;MCC = 144,Degree = 6, 
Clustering Coefficient = 0.87, Radiality = 3.64), ade-
nylate kinase 2 (AK2;MCC = 288,Degree = 8, Clus-
tering Coefficient = 0.71, Radiality = 3.86), adenylate 
kinase 7 (AK7;MCC = 296,Degree = 9, Clustering 
Coefficient = 0.64, Radiality = 3.93), adenosine kinase 
(ADK;MCC = 292,Degree = 10, Clustering Coeffi-
cient = 0.49, Radiality = 4.07), ectonucleoside triphosphate 
Di phosphohydrolase 2(ENTPD2;MCC = 48,Degree = 5, 
Clustering Coefficient = 0.90, Radiality = 3.57), and nucleo-
side diphosphate kinase A(NME1;MCC = 29, Degree = 7, 
Clustering Coefficient = 0.38, Radiality = 3.79) were detected 
among the PPI network based on MCC analysis (Fig.  6A). 
After overlap, the hub genes, includes IMPDH1, ENTPD2, 
AK7, AK2, and CANT1, were identified in Fig.  6B. The 

Table 2 Results of differential analysis of purine metabolites

Compounds Formula Class.II CAS VIP Log2FC Type

Guanine C5H5N5O Nucleotide and Its metabolomics 73–40–5 1.98 1.78 Up

Urea CH4N2O Amines 57–13–6 1.85 1.95 Up

Xanthine C5H4N4O2 Nucleotide and Its metabolomics 69–89–6 0.37  − 1.45 Down

L-Glutamine C5H10N2O3 Amino acids 56–85–9 1.26 0.34 Insig

Adenosine C10H13N5O4 Nucleotide and Its metabolomics 58–61–7 1.67 0.72 Insig

Xanthosine C10H12N4O6 Nucleotide and Its metabolomics 146–80–5 0.38  − 0.07 Insig

Hypoxanthine C5H4N4O Nucleotide and Its metabolomics 68–94–0 1.30 0.34 Insig

Inosine C10H12N4O5 Nucleotide and Its metabolomics 58–63–9 0.47 0.09 Insig

Deoxyguanosine C10H13N5O4 Nucleotide and Its metabolomics 961–07–9 0.85 0.35 Insig

Guanosine C10H13N5O5 Nucleotide and Its metabolomics 118–00–3 0.75 0.25 Insig

ADP-ribose C15H23N5O14P2 Nucleotide and Its metabolomics 20762–30–5 1.05 0.41 Insig

Adenine C5H5N5 Nucleotide and Its metabolomics 73–24–5 0.51 0.14 Insig
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heatmap of expression profile showed that there were sig-
nificant differences in the expression level (Fig.  6C). This 
plot of Fig. 6D depicts the how hub gene’s expression levels 
were in relation to SHAP values. Consequently, according to 
the model, the lower the SHAP value, corresponding to the 
higher expression level of these genes, may suggesting the 
more likely DCM becomes.
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Validation of purine metabolism related hub pathway 
and gene
Additionally, hub genes were validated using the external 
dataset of GSE120895. Consequently, the results shown 
that the bulk of purine metabolism related pathway pre-
senting a significant difference between the control and 
DCM groups (Fig.  7A, B). After RMA-normalized, the 
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relative expression level of IMPDH1, ENTPD2, AK7, 
AK2, and CANT1 were significantly higher in DCM left 
ventricular samples than the control groups (Fig. 7C).

Discussion
Based on the integrated analysis of transcriptomics and 
complete-spectrum metabolomics, we found that purine 
metabolism may be a prominent metabolic change in 
cardiac pathological progression of patients with DCM. 
Purine metabolism is involved in the normal energy flow 
of the heart. Purines are often distributed in DNAs and 
RNAs, catalyzed by various oxidases to form hypoxan-
thine and xanthine, then oxidized by urate oxidase to 
realize uric acid metabolism. Evidence is accumulating 
that levels of purine degradation intermediates indicate 
the energy state of myocardial cells. In physiological con-
ditions, if energy consumption of the heart increases, 
purine nucleotides and their metabolites also increase; 
conversely, a distinctive reduction in total purine release 
suggests that myocardial cells relatively conserve energy 
and maintain the energy state of the myocardium. In 
pathological conditions, when myocardial ischemia 

occurs, ATP is degraded into xanthine and accumulated 
in tissues, and massive xanthine in myocardial cells is 
then degraded into uric acid by xanthine oxidase, with 
simultaneous production of superoxide anions in a large 
number, causing pathological damage of the cells. In 
hypoxic conditions, the degradation products of adeno-
sine and inosine are better energy sources than extracel-
lular glucose, which further delay the accumulation of 
nicotinamide adenine dinucleotide (NADH) and display a 
certain protective effect on the cells. DCM patients with 
heart failure have abnormal energy metabolism, and this 
condition can further aggravate damage of myocardial 
cell structure and function, namely, “myocardial meta-
bolic remodeling”, with the two factors mutually influenc-
ing each other.

The IMPDH1 encoded the rate-limiting enzyme in the 
de novo synthesis of xanthine monophosphate (XMP) 
from inosine-5’-monophosphate (IMP). As reported, 
IMPDH1 function as the catalyzes in the development 
of multiple organs and progression of cardiovascular 
disease. Kofler et  al., found that the inosine monophos-
phate dehydrogenase (IMPDH) activity may significantly 
correlated with the incidence of acute rejection episodes 
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and transplant vasculopathy based on a prospective 
study [41]. Ohmann et  al., demonstrated that the hap-
lotype of IMPDH1, includes the SNPs of rs2288553, 

rs2288549, rs2278293, rs2278294, and rs2228075, may 
strongly associated with the gastrointestinal related 
side effects of immunosuppressive therapy after heart 
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the control groups
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transplantation in pediatric patients [42].Burckart and 
Amur reviewed that the polymorphisms of IMPDH1 and 
IMPDH2 were detected which’re significantly correlated 
with the static graft, survival rate, and the incidence of 
adverse drug effects in heart transplant patients [43]. 
The ENTPD2 is encoded type 2 enzyme of the family 
of ECTO-nucleoside triphosphate diphosphohydrolase 
(E-NTPDase), playing an important role in hydrolyze 
5’-triphosphates and maintain the stability of cell mem-
brane protein. During the normal systolic and diastolic 
physiological activities of mice, Rücker et al., via detects 
the functional state of mitochondria, pH value, ATP and 
ADP hydrolysis in heart tissue, and thus found that the 
cation-dependent enzymes of ATP and ADP hydrolysis 
optimum pH is 8.0, and AMP hydrolysis is 9.5. Addition-
ally, the content of ENTPD2 gene and protein was the 
highest expression in the left ventricle of mice [44]. It is 
suggested that a play an important role in maintaining 
normal cardiac diastolic and systolic function. Bertoni 
et  al., also found that the activity of ENTPD2 may play 
a significant role in regulate the extracellular ATP and 
adenosine levels during the pathological process of vas-
cular smooth muscle cell plasticity [45]. CANT1 is a sub-
set of cell growth factor of apyrase family and functions 
as a calcium-dependent nucleotidase with a preference 
for urinary dihydrate (UDP); it plays a key role in the 
pathophysiological process involved in calcium ion bind-
ing and pyrophosphatase activity. Yang et al., found that 
the CANT1 expression level is closely related with TP53-
mutantation and poor prognosis of hepatocellular car-
cinoma [46]. Based on whole-exome sequencing (WES) 
analysis of three patients from two unrelated families, 
Byrne et al. found that a variant of CANT1 may contrib-
ute to the pathogenesis of pseudodiastrophic dysplasia 
related cardiac developmental defect [47]. Jelin et al., also 
reported that the mutations in CANT1 may significantly 
correlated with specific skeletal dysplasias in the neonatal 
dysplasia [48]. AK2 and AK9 are belong to the family pro-
teins of adenylate kinases, that catalyze the production 
and breakdown of adenine nucleotide composition with 
the reversible transfer method. However, AK2 and AK9 
shown a tissue-specific and developmentally regulated 
in different physiological and pathological processes. 
Isozyme-2 of adenylate kinase is major localized in the 
mitochondrial intermembrane space and presenting 
an important role in regulation of catalase, oxidase cell 
apoptosis. Zhang et al., illustrated that the AK2 deletion 
wound lead to fetal intrauterine death. And in adult mice, 
organ-specific ablation of AK2 can lead to heart failure, 
which may be related to metabolic dysfunction involved 
in Krebs cycle and glycolytic metabolite buildup [49]. 
As the key metabolic sensor of cell energy economy, the 
expression level of AK2 play an important role in regulate 

metabolic signaling circuits, nuclear transport, and ener-
getics of cell cycle involving in DNA synthesis and repair 
[50]. Carrasco et al., found that the deletion of AK2 may 
compromise the nucleotide exchange in the mitochon-
drial intermembrane space, and thus regulate the bal-
ance of mitochondria energetics with K(ATP) channels 
[51]. The enzyme Adenylate Kinase 7 (AK7) may func-
tion as the phosphotransferase, and plays a role in energy 
homeostasis. Romeo-Guitart et al., found that AK7 may 
significantly correlated with intracellular endoplasmic 
reticulum (ER) stress and the activation of unfolded pro-
tein response [52]. Lorès et al., shown that the homozy-
gous missense mutation L673P leads to the deletion of 
Ak7 protein, and thus result in the injury of mitochondria 
respiratory function and dysfunction of assembly [53].

The function of stem cell in the heart can be enhanced 
by biomaterials [54], and it has good therapeutic effect 
on heart failure. Heart failure is caused by primary myo-
cardial cell dysfunction (such as hereditary cardiomyo-
pathy) or myocardial cell loss (such as after myocardial 
infarction). The current drug treatment has reduced the 
mortality and morbidity, but can not produce new myo-
cardial cells [55]. The natural materials commonly used 
in heart tissue engineering include collagen, elastin, 
gelatin, fibrin, chitosan and silk fibroin [56], and they 
have proper biochemical characteristics of cell attach-
ment and proliferation [57]. Engineered heart tissue 
(EHT) based on novel biomaterials or nanomaterials is 
a promising method to treat heart failure. It is mainly 
to obtain mature EHT in drug screening or cell therapy, 
use natural biological materials or synthetic nanomate-
rials to provide mechanical support, and generate 2D or 
3D myocardial cell slices with non-shrinking cells [58]. 
Nevertheless, researchers are faced with many obstacles 
in translating the application of biomaterials into clinical 
practice [59]. Finding an ideal biomaterial is still chal-
lenging. It should be close to the natural extracellular 
matrix cells to survive, strengthen the coupling between 
donor and host cells, and have no immune response after 
degradation. Using stem cells and bioengineering tech-
nology to develop EHT technology will provide mature 
myocardial cells to supplement lost myocardium, repair 
scar tissue, and bear local mechanical and hemodynamic 
loads imposed on them. In addition to manipulating EHT 
in vitro, researchers can also optimize the host substrate 
environment by targeting fibroblast activation pathways 
or modifying ECM to promote cell implantation and 
functional integration of newborn cardiomyocytes. Good 
biomaterials can be combined in stem cell therapy. These 
intervention methods need further research, combined 
with EHT technology, to ensure the efficacy of heart fail-
ure treatment.
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Studies have shown that ventricular remodeling and 
myocardial energy metabolism remodeling are the basis 
of heart failure [60]. Mitochondria are the main energy 
source of myocardial cells, accounting for about one-third 
of the volume of myocardial cells, and myocardial cells 
also have high metabolic activity [61]. Therefore, new 
cardiovascular diseases can be developed for mitochon-
dria. Heart failure is closely related to energy deficiency 
and mitochondrial dysfunction [62]. The mitochondrial 
dysfunction of heart failure may provide a new method, 
which is not only conducive to hemodynamics, but also 
a supplement to the existing limited methods. However, 
up to now, mitochondrial targeted therapy has not suc-
cessfully affected the progress of this disease [63]. Com-
pared with other organs, the heart needs a lot of energy. 
About a third of an adult cardiomyocyte is made up of 
mitochondria. Most of the energy consumed by the heart 
is provided by oxidative metabolism of mitochondria, 
and the key mechanism of cardiac systolic failure is the 
inability to produce and transfer energy. However, more 
and more people are realizing that mitochondria not only 
provide energy, but also play important biological and 
regulatory roles, such as cell growth and death, protein 
quality control, REDOX balance, ion homeostasis, bio-
synthesis, reactive oxygen species (Ros) signaling, etc. 
Researchers are beginning to realize that the pathogenic 
role of mitochondria in cardiovascular disease and heart 
failure is not only related to decreased ATP production, 
but also to general maladaptation of the functional spec-
trum [64]. But the integration of mitochondrial bioener-
getics into each behavior is poorly understood, and the 
contribution of each unique biological function of mito-
chondria to the development of heart failure remains 
unclear. In addition. Further elucidation of the linkages 
between the many other functions of mitochondria and 
the processes involved in oxidative metabolism may help 
to discover new therapeutic targets. The renin-angioten-
sin system (RAS) is involved in cardiovascular disease 
risk factors and is an enzymatic pathway that promotes 
cardiovascular disease (CVD) and the progression of car-
diovascular disease. Renin mediates the conversion of 
angiotensinogen to the inactive polypeptide angiotensin 
I and then to the active hormone angiotensin II (Ang II) 
[65]. As a pro-oxidant and fibroblast factor, angiotensin 
II (Ang II) is the main effector peptide of RAS [66]. The 
increase of angiotensin ii and superoxide disproportiona-
tion in central and peripheral nervous system play a role 
in enhancing sympathetic vasomotor tension in heart 
failure. RAS activity and oxidative stress are gradually 
increased during the development of heart failure [67]. 
Drugs that target various components of the systemic 
RAS, including angiotensin ii type 1 receptor blockers 

(ARBs), renin inhibitors, and angiotensin converting 
enzyme inhibitors, are used to treat heart failure [68].

In this study, due to the complexity of collecting sam-
ples, not many samples were included. New samples 
should be collected in future work to further verify our 
findings. In addition, we should further verify the expres-
sion level of AK2, AK7, CANT1, ENTPD2, IMPHD1 and 
other marker genes in DCM patients, and screen impor-
tant pathways for further in-depth research. In addition, 
in future research, we will collect external data to further 
verify our results, and conduct internal cross validation 
to further ensure the accuracy of our conclusions.

Conclusions
The present study demonstrated a significant upregula-
tion in the expression levels of two metabolites, guanine 
and urea, accompanied by a significant downregulation 
of xanthine, in myocardial tissues of DCM. However, 
the major regulatory genes that cause changes in the 
above-mentioned metabolites and DCM phenotype 
may be IMPDH1, ENTPD2, AK7, AK2, and CANT1. 
These differential genes and metabolites are likely to 
serve as vital markers for diagnosis or treatment during 
heart failure progression in DCM. In the future work, it 
is suggested to take IMPDH1、ENTPD2、AK7、AK2 
and CANT1 as targets to develop drugs for the treat-
ment of chronic HF, and Improve the physical condi-
tion of HF patients by regulating purine metabolism.
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