
Xiao et al. Journal of Translational Medicine          (2022) 20:475  
https://doi.org/10.1186/s12967-022-03691-2

RESEARCH

Causality of genetically determined 
metabolites on anxiety disorders: a two‑sample 
Mendelian randomization study
Gui Xiao1,2, Qingnan He3, Li Liu1,2, Tingting Zhang1,2, Mengjia Zhou1,2, Xingxing Li1,2, Yijun Chen4, 
Yanyi Chen4 and Chunxiang Qin1,2*    

Abstract 

Background:  Although anxiety disorders are one of the most prevalent mental disorders, their underlying biologi-
cal mechanisms have not yet been fully elucidated. In recent years, genetically determined metabolites (GDMs) have 
been used to reveal the biological mechanisms of mental disorders. However, this strategy has not been applied to 
anxiety disorders. Herein, we explored the causality of GDMs on anxiety disorders through Mendelian randomization 
study, with the overarching goal of unraveling the biological mechanisms.

Methods:  A two-sample Mendelian randomization (MR) analysis was implemented to assess the causality of GDMs 
on anxiety disorders. A genome-wide association study (GWAS) of 486 metabolites was used as the exposure, 
whereas four different GWAS datasets of anxiety disorders were the outcomes. Notably, all datasets were acquired 
from publicly available databases. A genetic instrumental variable (IV) was used to explore the causality between the 
metabolite and anxiety disorders for each metabolite. The MR Steiger filtering method was implemented to examine 
the causality between metabolites and anxiety disorders. The standard inverse variance weighted (IVW) method was 
first used for the causality analysis, followed by three additional MR methods (the MR-Egger, weighted median, and 
MR-PRESSO (pleiotropy residual sum and outlier) methods) for sensitivity analyses in MR analysis. MR-Egger intercept, 
and Cochran’s Q statistical analysis were used to evaluate possible heterogeneity and pleiotropy. Bonferroni correction 
was used to determine the causative association features (P < 1.03 × 10–4). Furthermore, metabolic pathways analysis 
was performed using the web-based MetaboAnalyst 5.0 software. All statistical analysis were performed in R software. 
The STROBE-MR checklist for the reporting of MR studies was used in this study.

Results:  In MR analysis, 85 significant causative relationship GDMs were identified. Among them, 11 metabolites 
were overlapped in the four different datasets of anxiety disorders. Bonferroni correction showing1-linoleoylglycer-
ophosphoethanolamine (ORfixed-effect IVW = 1.04; 95% CI 1.021–1.06; Pfixed-effect IVW = 4.3 × 10–5) was the most reliable 
causal metabolite. Our results were robust even without a single SNP because of a “leave-one-out” analysis. The MR-
Egger intercept test indicated that genetic pleiotropy had no effect on the results (intercept = − 0.0013, SE = 0.0006, 
P = 0.06). No heterogeneity was detected by Cochran’s Q test (MR-Egger. Q = 7.68, P = 0.742; IVW. Q = 12.12, 
P = 0.436). A directionality test conducted by MR Steiger confirmed our estimation of potential causal direction 
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Introduction
Anxiety disorders are a significant health problem wide-
spread and are the leading psychiatric causes of the 
global burden of diseases [1]. The World Health Organi-
zation (WHO) has also ranked anxiety disorders as one 
of the largest causes of disability worldwide largely due to 
their high prevalence, chronicity, and comorbidity [2, 3]. 
Effective prevention and treatment of anxiety disorders 
are critical to reduce the morbidity and disability. Nota-
bly, the exploration of the biological mechanism is the 
basis for the prevention and therapy of anxiety disorders 
[4]. Multiple factors, such as psychological and genetic 
factors, are thought to be involved in the biological 
mechanisms of anxiety disorders [4, 5]. However, anxi-
ety disorders are complex conditions, and their biological 
mechanisms are not fully understood. Although progress 
in genetics (particularly genome-wide association stud-
ies (GWASs)) have largely improved the development of 
etiology research for mental disorders [6–8], there is still 
a great barrier translating these genetic findings into bio-
logical mechanisms.

In recent years, modern omics-based technologies, 
including metabolomics, have made a positive contribu-
tion to the exploration of disease mechanisms. Specifi-
cally, metabolomics can provide novel information into 
the biological mechanisms of diseases by revealing the 
intermediate metabolites and altered metabolic path-
ways [9, 10]. A recent robust study of GWAS of metabo-
lites has identified the disease-relevant loci and suggest 
mechanisms for diseases and disease-related traits [11]. 
Several studies have suggested that metabolites are func-
tional intermediates that can be used to illustrate the 
potential biological mechanisms related to the genetics of 
mental disorders [12–14]. It is worth noting that metabo-
lites are the final products or the intermediate of metabo-
lism that can play important in human. The database of 
genotype dependent metabolic phenotypes (also known 
as genetically determined metabolites (GDMs)) has 
recently been established using a GWAS involving non-
targeted metabolomics [15, 16]. The developed GDMs 
can promote insight of the underlying relationship of 
human serum metabolites and associative genetic vari-
ants in the biological mechanisms of mental disorders by 

providing functional intermediates [17–19]. Studies have 
shown the significance of GDMs in the biological mech-
anism of major depression, bipolar disorders, autism 
spectrum disorders and hyperactivity disorders [17]. 
However, GDMs and pathway analysis geared toward 
exploring the biological mechanisms of anxiety disorders 
are still lacking, which calls for a deep analysis to deter-
mine the role played by the effects between genetic vari-
ation and metabolites in the biological mechanisms of 
anxiety disorders.

Mendelian randomization (MR) analysis is a useful epi-
demiological research strategy in which genetic variants 
are used to connect exposure with outcome as instru-
mental variables (IV) for assessing causal relationships. 
Compared to other epidemiological research strategies, 
MR can provide unbiased estimates on how genotypes 
are decided at conception, and are commonly not suscep-
tible to confounding factors and reverse causation [20]. 
Given this huge advantage, MR has been widely applied 
in the past decade to infer causality of related risk expo-
sure to disease using publicly available GWAS summary 
statistics [21, 22]. Recently, GWAS have extended the 
metabolic spectrum, from which an atlas of GDMs was 
developed.

Herein, we speculated that this GDMs atlas could be 
used to infer the causality of GDMs on anxiety disor-
ders. Consequently, we implemented a two-sample MR 
approach to: (1) assess the causal effects of human serum 
metabolites on anxiety disorders; (2) identify the GDMs 
that have causal effects on four different GWASs of anxi-
ety disorders; and (3) identify potential metabolic path-
ways which might help to understand the mechanism of 
anxiety disorders.

Materials and methods
MR design and data source
The general design of this MR research was stated in 
Additional file 1: Fig. S1. The study methods were com-
pliant with the STROBE-MR checklist [23]. Genetic asso-
ciation data for serum metabolites were obtained from 
the metabolomics GWAS server (http://​metab​olomi​cs.​
helmh​oltz-​muenc​hen.​de/​gwas/). Notably, Shin et al. [24] 
reported the most comprehensive exploration of genetic 

(P < 0.001). In addition, two significant pathways, the “primary bile acid biosynthesis” pathway (P = 0.008) and the 
“valine, leucine, and isoleucine biosynthesis” pathway (P = 0.03), were identified through metabolic pathway analysis.

Conclusion:  This study provides new insights into the causal effects of GDMs on anxiety disorders by integrating 
genomics and metabolomics. The metabolites that drive anxiety disorders may be suited to serve as biomarkers and 
also will help to unravel the biological mechanisms of anxiety disorders.

Keywords:  Anxiety disorders, Genetically determined metabolites, Mendelian randomization, Serum metabolite, 
1-linoleoylglycerophosphoethanolamine
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influences on human metabolism so far, by performing a 
GWAS of non-targeted metabolomics, which successfully 
screened out 486 metabolites with genetic influences on 
human serum metabolites. In more detail, a total of 7824 
participants were recruited from two European popula-
tion cohorts, including 1768 participants from the KORA 
F4 study in Germany and 6056 from the UK Twin Study. 
Both studies were approved by local ethics committees, 
and all participants voluntarily signed informed con-
sent before the study. Fasting serum was analyzed using 
non-targeted mass spectrometry analysis. For metabolic 
analyses, standardized processes of identification and rel-
ative qualification were conducted using Metabolon, Inc. 
(https://​www.​metab​olon.​com/). After strict quality con-
trol, 486 metabolites in total were analyzed, including 309 
known metabolites and 177 unknown metabolites. More-
over, the 309 known metabolites were further classified 
into eight biochemical classes (peptides, nucleotides, 
amino acids, energy, cofactors and vitamins, lipids, car-
bohydrates, and xenobiotics) in conformity to the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database. 
Notably, genotyping information for the two cohorts are 
described detailly in previous research [24, 25]. Finally, 
there were approximately 2.1 million single nucleotide 
polymorphisms (SNPs) in the GWAS meta-analysis.

Selection of instrumental variables (IVs)
In principle, the instrumental variables used in MR anal-
ysis must satisfy the following three assumptions: (1) 
IVs must be relevant to exposure (i.e.,: metabolites); (2) 
IVs must be associated with outcome (i.e., anxiety dis-
orders) only via exposure (i.e., metabolites); and (3) IVs 
must be independent of any confounder [26]. To deter-
mine the IVs for the 486 metabolites, some procedures 
were done to ensure that the first assumption was true. 
First, the genetic variants were extracted with association 
thresholds at P < 1 × 10–5, which are mostly used in MR 
analysis to elucidate a greater variation when few SNPs 
are available for exposure. Second, independent variants 
were identified using a clumping procedure implemented 
in R software, in which a linkage-disequilibrium thresh-
old of r2 < 0.5 within a 5000 kb window in the European 
1000 Genomes Project Phase 3 reference panel was set. 
Instrumental SNPs were selected by removing palindro-
mic SNPs with middle allele frequency (MAF). Palindro-
mic SNPs are those with the A/T or G/C allele, whereas 
the MAF is from 0.01 to 0.30. SNPs with the incorrect 
causal direction are excluded by MR Steiger filters. SNPs 
with an MAF less than 0.01 were also excluded from the 
original GWAS because of their low confidence level. 
Next, we used the explained variance (R2) and F statis-
tic parameters to determine whether the identified IVs 
were powerful enough to represent metabolite levels. The 

above design formula is presented in Additional file  2: 
Table S1. Typically, a threshold of F > 10 is suggested for 
MR analysis. The mRnd was used to calculate the statis-
tical power for Mendelian randomization (https://​cnsge​
nomics.​shiny​apps.​io/​mRnd/).

GWAS of anxiety disorders
This study aimed at evaluating the potential causal rela-
tionship between metabolites and anxiety disorders with 
a wide range of impact in both males and females from 
MRC-IEU. Anxiety disorders are typically diagnosed on 
the basis of structured clinical interviews for the fifth edi-
tion of the Diagnostic and Statistical Manual of Mental 
Disorders (DSM-5) and the tenth edition of the Interna-
tional Classification of Diseases (ICD-10). Anxiety disor-
ders also can be screened with self-report questionnaires. 
Moreover, providing care for mental health problems 
including anxiety disorders concerns general practition-
ers, and psychiatrists [27, 28]. Therefore, given the com-
pleteness of the data and diagnosis of anxiety disorders, 
we analyzed the data obtained from different sources, 
including patients diagnosed by psychiatrists for anxiety 
(53,414 cases and 407,288 controls); unspecified anxiety 
disorders diagnosed by secondary ICD-10 (1523 cases 
and 461,487 controls); patients diagnosed by general 
practitioners for anxiety (158,565 cases and 300,995 con-
trols); and self-reported anxiety (6410 cases and 462,933 
controls). Additional file  2: Table  S2 shows the detailed 
information. Notably, all IVs were extracted from MR-
Base (http://​app.​mrbase.​org/) database (20).

MR analyses
The IVW method (when there is heterogeneity, a random 
effect model of IVW is used, and if there is no heteroge-
neity, a fixed effect model of IVW is used) was used to 
assess causal effects for two-sample MR analyses. Nota-
bly, the IVW method can provide a consistent assess-
ment of the causality of the exposure when each variant 
satisfies all three assumptions of valid instrumental vari-
ables. An estimate of IVW can be obtained by calcu-
lating the slope of the weighted linear regression [26]. 
Next, sensitivity analysis was performed using MR-Egger 
approach, which can provide consistent estimates with 
invalid instruments [29]. The MR-Egger can discover 
the violations of the IVs assumption and provide esti-
mates of effects unaffected by these violations. Moreover, 
the weighted median method also provided consistent 
estimates, with up to 50% of the variants being thought 
noneffective instruments. MR-PRESSO is another novel 
MR method that can check and rectify horizontal pleio-
tropic outliers, thereby providing a right estimate [30]. 
To assess the possibility of horizontal pleiotropy and 
bias caused by ineffective IVs, MR-Egger intercepts were 

https://www.metabolon.com/
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also calculated [31]. Moreover, this study employed the 
MR-PRESSO global test to assess the existence of hori-
zontal pleiotropy. We calculated the odds ratios (OR) to 
measure causal effects, as well as Cochran’s Q statistics, 
to estimate heterogeneity among SNPs [32]. A “leave-
one-out” sensitivity analysis was implemented to deter-
mine whether results were affected by a single SNP [31]. 
Additionally, we performed the MR Steiger directional-
ity test to ascertain whether our results supported our 
hypothesis. Notably, all analyses were conducted using 
Two Sample MR 0.5.6 and MR-PRESSO packages in R 
software (version 3.6.0). P < 0.05 was considered statisti-
cally significant. We adopted a multiple-testing-adjusted 
threshold of P < 1.03 × 10−4 (0.05/486) using the Bonfer-
roni correction to declare a statistically significant, causal 
relationship [33]. We also reported metabolites that had a 
P < 0.05, but were above the Bonferroni-corrected thresh-
old, as suggestive risk predictors for anxiety disorders.

Metabolic pathway analysis
Metabolic pathway analysis was performed using the 
web-based Metaconflict 5.0. (https://​www.​metab​oanal​
yst.​ca/) [34]. Functional enrichment analyses and the 
pathway analyses module were used to identify underly-
ing metabolite groups or pathways which may be relevant 
to the biological process of anxiety disorders. In all, 25 
serum metabolic pathways were screened out from two 
metabolite databases, including 24 from both the Small 
Molecule Pathway Database (SMPD) [35] and the KEGG 
database, and one from SMPD alone. Notably, this study 
only analyzed the metabolites that passed the advised 
threshold of association by IVW (P IVW < 0.05).

Results
Strength of the instrumental variables
We performed a two-sample MR analysis to evaluate the 
causality of GDMs on anxiety disorders using four differ-
ent pairs of GWAS summary data. The generated IVs of 
486 metabolites are ranging from 3 to 56 SNPs (glycode-
oxycholate generated the least IVs: 3 SNPs; and p-aceta-
midophenylglucuronide generated the most IVs: 56 
SNPs); These generated IVs could explain 0.011–0.225% 
of the variance of their corresponding metabolites (Addi-
tional file  2: Tables S3–S11). In addition, the minimum 
F statistic of these IVs was 10.23, suggesting that all IVs 
were sufficiently effective for the MR analysis of the 486 
metabolites (F statistic > 10).

Causality of genetically determined metabolites on anxiety 
disorders
The IVW method was employed to confirm the causal-
ity among the 486 metabolites and anxiety disorders 

using four pairs of GWAS summary data. 103 remark-
able causative association features (matching with 85 
unique metabolites) were conformed at PIVW < 0.05 in 
total, including 57 known metabolites and 28 unknown 
metabolites. Additional file 2: Table S12 shows the known 
metabolites that were significantly associated with the 
GWAS datasets of anxiety disorders. Additional file  2: 
Table  S13 shows the characteristics of SNPs and their 
genetic associations with known metabolites and the 
anxiety disorders. And Fig. 1 shows the known metabo-
lites significantly associated with anxiety disorders (as 
well as the subgroup analysis of metabolites signifi-
cantly associated with the four different GWAS data-
sets of anxiety disorders). Table 1 shows that there were 
11 overlapped metabolites in the four different GWAS 
datasets of anxiety disorders (there were no metabolites 
that overlapped with the other three anxiety disorders 
GWAS in the unspecified anxiety disorders diagnosed 
by secondary ICD-10). It is worth noting that there may 
be some common molecular mechanisms between four 
different GWAS datasets of anxiety disorders. Next, we 
performed the Bonferroni correction to determine the 
causative association features (P < 1.03 × 10–4). Results 
found one causal effect feature of metabolites associ-
ated with anxiety disorders diagnosed by psychiatrists, 
namely 1-linoleoylglycerophosphoethanolamine (P fixed-

effect IVW = 4.31 × 10–5) (Additional file 2: Table S14). The 
statistical power of 1-linoleoylglycerophosphoethanola-
mine for anxiety diagnosed by psychiatrists was 47%. In 
particular, fixed-effect IVW estimates demonstrated that 
1-linoleoylglycerophosphoethanolamine increased the 
risk of anxiety disorders (OR 1.04; 95% CI 1.021–1.06; P 
fixed-effect IVW = 4.3 × 10–5) (Table  1). Moreover, as for the 
additional methods, weighted median analysis (OR 1.049, 
95% CI 1.022–1.077, P = 0.0003), and MR-Egger analysis 
(OR 1.092, 95% CI 1.040–1.147, P = 0.005) indicated con-
sistent results (Additional file 2: Table S7). As indicated 
by the MR Steiger directionality test results, our estimate 
of causal direction was accurate (P < 0.001). In addition, 
we performed a reverse MR analysis, which found no 
causal relationship between anxiety disorders (exposure) 
and 1-linoleoylglycerophosphoethanolamine (outcome) 
(Additional file 2: Table S15); Finally, to verify our results, 
we performed MR analysis with two additional GWAS 
data of anxiety disorders (finn-b-KRA_PSY_ANXI-
ETY: 20,992 cases and 197,800 controls; finn-b-KRA_
PSY_ANXIETY_EXMORE: 20,992 cases and 166,584 
controls), and also found that the 1-linoleoylglycerophos-
phoethanolamine might have causality with anxiety dis-
orders (Additional file  2: Table  S16). Consequently, we 
discovered that the 1-linoleoylglycerophosphoethanola-
mine might be causally associated with anxiety disorders, 
and the result is reliable.

https://www.metaboanalyst.ca/
https://www.metaboanalyst.ca/
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Fig. 1  Mendelian randomization associations of known metabolites on the risk of the four different GWAS datasets of anxiety disorders (derived 
from the fixed-effect IVW analysis). IVW, inverse-variance weighted
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Sensitivity analyses
While the IVW method is extremely effective for 
inferring causality between an exposure and a disease 
outcome, it is known to be susceptible to weak instru-
ment bias. Therefore, we further conducted sensitivity 
and pleiotropy analysis to assess the robustness of the 
causality. The sensitivity analyses result for 1-linole-
oylglycerophosphoethanolamine on the anxiety dis-
orders diagnosed by psychiatrists are shown in Fig.  2. 
Notably, the causal relationship was reliable if three 
extra MR tests were performed, with results showing 

that there was no proof of horizontal pleiotropy for 
the 1-linoleoylglycerophosphoethanolamine presented 
in Additional file  1: Figs. S2, S3. And based on the 
results of “leave-one-out” method, MR analysis was 
responsible, and single SNPs did not affect the results 
(Additional file  1: Fig. S4). Moreover, for the IVW 
method, Cochran’s Q statistic was 12.12 (P = 0.436). 
The Cochran’s Q statistic was 7.68 (P = 0.742) for the 
MR-Egger method. The results of Cochran’s Q test sug-
gested little heterogeneity. MR-Egger regression was 
also conducted to examine the horizontal pleiotropy 

Table 1  Overlapped metabolites identified for the four different GWAS datasets of anxiety disorders

OR, odds ratio; CI, confidence interval

*p < 0.05

**p < 0.01

***p < 0.001

Description Anxiety disorders 
diagnosed by psychiatrists

Unspecified 
anxiety disorders 
diagnosed 
by secondary 
ICD-10

Anxiety disorders 
diagnosed by general 
practitioners

Self-reported anxiety

OR (95% CI) P OR (95% CI) P OR (95% CI) P OR (95% CI) P

1-arachidonoylglycerophosphocholine 0.975(0.958–0.992) 0.004** 0.993(0.987–0.999) 0.020

1-eicosatrienoylglycerophosphocholine 1.017(1.001–0.033) 0.039* 1.045(1.022–1.069) 0.000***

1-linoleoylglycerophosphoethanola-
mine

1.040(1.021–1.060) 0.000*** 1.054(1.025–1.084) 0.000***

adrenate (224n6) 0.969(0.942–0.997) 0.032* 0.958(0.920–0.997) 0.035*

androsterone sulfate 1.010(1.003–1.016) 0.007** 1.009(1.001–1.017) 0.031*

cholate 1.009(1.002–1.017) 0.011* 1.004(1.001–1.007) 0.005

docosahexaenoate (DHA; 226n3) 0.971(0.947–0.995) 0.019* 0.949(0.906–0.994) 0.025*

epiandrosterone sulfate 1.012(1.001–1.023) 0.029* 0.995(0.992–0.998) 0.003

gamma-glutamylphenylalanine 0.961(0.935–0.987) 0.003** 0.959(0.921–0.999) 0.043*

phenyllactate (PLA) 0.958(0.933–0.984) 0.002** 0.952(0.907–0.998) 0.041*

tryptophan betaine 1.008(1.002–1.015) 0.010* 1.014(1.003–1.025) 0.012*

Fig. 2  Sensitivity analysis for1-linoleoylglycerophosphoethanolamine on the anxiety disorders diagnosed by psychiatrists passing Bonferroni 
correction
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between IVs and results, but no remarkable intercept 
was discovered (intercept = −  0.0013, SE = 0.0006, 
P = 0.06). Furthermore, MR-PRESSO results indicated 
no horizontal pleiotropy in the MR study (P = 0.42). A 
funnel plot (Additional file  1: Fig. S5) displays neither 
horizontal pleiotropy nor heterogeneity in our MR 
study. All the results shown that the causal effect of 
1-linoleoylglycerophosphoethanolamine on the anxiety 
disorders diagnosed by psychiatrists appears to be reli-
able. Furthermore, Table  2 shows that five association 
metabolites passed all the sensitivity analyses (P < 0.05) 
without horizontal pleiotropy in the 11 overlapped 
metabolites. MR-Egger regression was also conducted 
to examine the horizontal pleiotropy of the five asso-
ciation metabolites, no remarkable intercept was dis-
covered. And the results of Cochran’s Q test suggested 
little heterogeneity (Table  2). The genetic variants 
that explain the relationship between the five metabo-
lites and anxiety disorders are presented in Additional 
file  2: Tables S17–S21 and Additional file  1: Figs. S6–
S9, separately. Moreover, we performed the reverse MR 
analysis, which found no causal relationship between 
anxiety disorders (exposure) and the five association 
metabolites (outcome) (Additional file  2: Table  S15). 
The P-value distribution of the Pfixed-effect IVW < 0.05 
metabolites on anxiety disorders are presented in Addi-
tional file 1: Fig. S10.

Metabolic pathway analyses
Two important metabolic pathways which mainly 
involved in the anxiety disorders were identified in 
the metabolic pathways analyses (Additional file  2: 
Table S22). Results showed that the “primary bile acid 
biosynthesis” pathway might be relevant to the devel-
opment of self-reported anxiety disorders (P = 0.008), 
whereas “valine, leucine, and isoleucine biosynthesis” 

pathway was found to be associated with anxiety disor-
ders diagnosed by general practitioners (P = 0.03).

Discussion
This Mendelian randomization study provides unbiased 
evaluation of the causal relationship between GDMs and 
anxiety disorders using four different GWAS datasets, 
including anxiety disorders diagnosed by psychiatrists, 
unspecified anxiety disorders diagnosed by secondary 
ICD-10, anxiety diagnosed by general practitioners, and 
self-reported anxiety disorders. We identified 85 metabo-
lites relevant to the risk of anxiety disorders after using 
genetic variants as probes. Among them, 11 metabolites 
were overlapped in the four different datasets of anxi-
ety disorders, with Bonferroni correction showing that 
1-linoleoylglycerophosphoethanolamine had the most 
reliable causal relationship. Moreover, pathway enrich-
ment analysis identified two significant metabolic path-
ways, the “primary bile acid biosynthesis” pathway and 
the “valine, leucine, and isoleucine biosynthesis” path-
way, which are mainly involved in the anxiety disorders.

As far as we know, this is the first MR study that has 
combined genomics with metabolomics to evaluate the 
causality of GDMs on anxiety disorders. Herein, results 
identified a cluster of metabolites in serum showing rela-
tionship with anxiety disorders, among which 1-linole-
oylglycerophosphoethanolamine had a robust effect on 
anxiety disorders diagnosed by psychiatrists and anxiety 
disorders diagnosed by general practitioners. In a previ-
ous study, researchers conducted a delivering preterm 
with or without preeclampsia population-based birth 
cohort, and found that higher 1-linoleoylglycerophos-
phoethanolamine density decreased odds of preec-
lampsia [36]. The result is corresponding with previous 
research which revealed that women who developed 
preeclampsia had lower levels of lysophospholipids com-
pared to healthy term pregnancies [37–39]. In addition, 

Table 2  five association metabolites passed all the sensitivity analyses

*p < 0.05

**p < 0.01

***p < 0.001;

Description Pfixed-effect IVW PMR-Egger PWeighted-median PMR-PRESSO PMR-PRESSO Global PMR-Egger intercept PIVW. Q

1-arachidonoylglycerophosphocholine for anxiety 
disorders diagnosed by psychiatrists

0.0042** 0.026* 0.0002*** 0.0096** 0.149 0.338 0.207

androsterone sulfate for anxiety disorders diag-
nosed by psychiatrists

0.0065** 0.0185* 7.63 × 10–5*** 0.0136* 0.113 0.311 0.091

1-linoleoylglycerophosphoethanolamine for anxi-
ety disorders diagnosed by general practitioners

0.002** 0.0148* 0.0001*** 0.003** 0.366 0.146 0.408

1-eicosatrienoylglycerophosphocholine for anxiety 
disorders diagnosed by general practitioners

0.001** 0.0447* 0.116 0.0005*** 0.696 0.440 0.670

epiandrosterone sulfate for self-reported anxiety 0.0028** 0.023* 0.0027** 0.007** 0.554 0.249 0.620
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preeclampsia women were more likely to be diagnosed 
with anxiety disorders. 1-linoleoylglycerophosphoetha-
nolamine is an important member of the phosphatidy-
lethanolamine (PE) family, whose components mainly 
include fatty acids, ethanolamine, phosphoric acid, and 
glycerol [40]. As a lipid chaperone, PE can assist in the 
folding of certain membrane proteins, and is closely asso-
ciated with anxiety disorders. A previous study found 
that stress-prone Wistar-Kyoto rats had lower PE in the 
anxiety state compared to the non-stress prone rats, sug-
gesting that PE may be associated with the anxiety disor-
ders [41]. Studies have also found that alcohol-dependent 
patients are often accompanied by anxiety disorders 
when they quit drinking, and the concentration of PE 
in plasma is higher after alcohol-dependent patients 
quit drinking [42]. Notably, Yang et al. [17] explored the 
relationship between metabolism and some psychiat-
ric disorders, and found that the genetic associations of 
1-linoleoylglycerophosphoethanolamine were involved in 
the risk of major depression. Clinically, the comorbidity 
of depression and anxiety is common, and the two often 
influence each other. Although 1-linoleoylglycerophos-
phoethanolamine seems like a hopeful biomarker for 
anxiety disorders, further studies should be conducted to 
clarify the relevant mechanism.

This MR analysis also identified certain metabo-
lites, some of which had been reported in previous 
research. Androsterone sulfate whose chemical formula 
is 3α-hydroxy-5α-androstan-17-one 3α-sulfate, is one of 
the primary urinary metabolites of androgens. Previous 
studies reported that metabolite networks enriched in 
androsterone sulfate, tyrosine, indoxyl sulfate, or caffeine 
are associated with a negative personality [43]. Nega-
tive personality manifested as inhibition in social situa-
tions is often described as distress or anxiety. Moreover, 
sleep-related impairment was inversely correlated with 
androgen deprivation therapy-induced reduction in 
androsterone sulfate [44]. Given that people with sleep 
disorders are often accompanied by anxiety disorders, 
androsterone sulfate might play a role in neurodevel-
opment of anxiety disorders. Epiandrosterone sulfate 
is a vital endogenous androstane steroid produced by 
the adrenal cortex. Notably, the steroid is an important 
neurosteroid and neurotrophin, which plays an impor-
tant physiological function in human body. A recent 
omics investigation into chronic widespread musculo-
skeletal pain revealed that epiandrosterone sulfate is an 
important biomarker [45]. Considering that people with 
chronic pain are often accompanied by anxiety disorders, 
epiandrosterone sulfate might play a role in neurode-
velopment of anxiety disorders. In addition, p-acetami-
dophenylglucuronide showed robust association with 
intelligence, and thus it can be used to predict important 

health outcomes that may affect anxiety disorders [15]. It 
is worth mentioning that our results are consistent with 
above results and emphasize the significance of genetics 
in the progression of mental disorders. It is worth not-
ing that the use of drugs also has an effect on metabolite 
profiles. The baseline characteristics and the drug use of 
the participants involving in the study are listed in Addi-
tional file 2: Table S23–S25. The effect of drugs (such as 
antihypertensive and lipid lowering drugs) on the human 
metabolite concentrations is still not fully understood, 
and further studies are needed.

In this study, the metabolic pathway analysis showed 
that “primary bile acid biosynthesis”, and “valine, leucine, 
and isoleucine biosynthesis” pathways are mainly associ-
ated with anxiety disorders. Notably, primary bile acids 
are synthesized in liver cells by cytochrome P450-medi-
ated oxidation of cholesterol, resulting in the synthesis of 
primary bile acids (such as deoxycholic acids). Primary 
bile acids have rich functions and are important physi-
ological factors for intestinal nutrient absorption, bile 
secretion of lipids, toxic metabolites and exotic organ-
isms. At the same time, primary bile acids are signal-
ing molecules and metabolic regulators, which play an 
important role in activating nuclear receptor and G-pro-
tein-coupled receptor (GPCR) signals, regulating liver 
lipid, glucose and energy homeostasis and maintaining 
metabolic homeostasis. Studies have proved that primary 
bile acid metabolites/pathways are involved in several 
aspects of brain function and behavior [46]. Moreover, 
it has been reported that changes in the gut microbiota 
composition may be associated with alterations in the 
primary bile acid metabolism that are involved in the 
biological process of psychological disorders in Crohn’s 
disease [47]. A traditional Chinese medicine cohort 
revealed that amino acid metabolism, such as cysteine 
and methionine metabolism, might be involved in brain 
health disorders characterized by alterations in evalua-
tion of bile acid biosynthesis [48]. Altogether, these find-
ings suggest that biosynthesis of primary bile acids might 
play an important role in the biological mechanism of 
anxiety disorders.

Valine, leucine, and isoleucine are structurally associ-
ated with branched-chain fatty acids and are important 
members of the family of 9 essential amino acids. Metab-
olism of valine, leucine and isoleucine have been proved 
to be associated with cancer progression in numerous 
studies, and key proteins in metabolic pathways may act 
as potentially prognostic and diagnostic biomarkers in 
human cancers [49]. Given that people with cancers are 
often accompanied by anxiety disorders, valine, leucine, 
and isoleucine might play a role in neurodevelopment 
of anxiety disorders. Previous studies have proved that 
plasma concentrations of valine, leucine, and isoleucine 
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are increased significantly in conditions associated with 
insulin resistance, such as obesity and diabetes mellitus 
[50]. Research has demonstrated that anxiety symptoms 
are prevalent in people with diabetes, and may affect dia-
betes management and glycemic control [51, 52]. Chen 
et al. [53] established a rat model to explore the potential 
mechanisms of antidepressant effects, with the mainly 
enriched pathways being valine, leucine, and isoleucine 
degradation. It should be noted that this model is built 
on liver tissue, suggesting that the liver may potentially 
be connected with mental disease through some metabo-
lites. To sum up, the biosynthesis of valine, leucine, and 
isoleucine might be relevant to the biological mechanism 
of anxiety disorders.

However, this study had several limitations. First, given 
the classification of the original data, we could not fur-
ther subdivide the pressure type of anxiety disorders in 
combination with the ICD classification standard, and 
thus we could only analyze the anxiety disorders as a 
whole. Second, the power of the IVs depends largely 
on the sample size of GWASs, therefore, more data are 
needed to improve the accuracy of the generated GDMs. 
Third, although Mendelian randomization has been 
shown to be a powerful method to assess the causality 
between human blood metabolites and anxiety disorders, 
the results should be verified by further studies based on 
experimental data. Fourth, the veracity of the MR analysis 
relies largely on the explanation of the instrumental vari-
ables on exposure. Therefore, it is necessary to expand the 
sample size to provide a more accurate assessment of the 
genetic impact on metabolites. Fifth, due to insufficient 
data, we used metabolites with uncorrected P values for 
pathway analysis. At last, although this study identified 
multiple metabolites that contribute to the risk of anxiety 
disorders, further studies are needed to reveal their roles 
in the pathogenic mechanism of anxiety disorders.

Conclusion
In conclusion, this MR research totally identified 85 
metabolites that may have causality on the pathogen-
esis of anxiety disorders, including 11 known metabo-
lites having causality on more than one type of anxiety 
disorders. And 1-linoleoylglycerophosphoethanolamine 
had a robust effect on anxiety disorders among them. 
Moreover, this study identified two important metabolic 
pathways that may be relevant to the pathology of anxiety 
disorders. Collectively, our findings will provide valuable 
insights on using some metabolites as potential biomark-
ers to explore the targeted drugs for treating human 
diseases, but more studies are required to validate the 
results.
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