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Abstract 

Background: The performance of previously published glomerular filtration rate (GFR) estimation equations 
degrades when directly used in Chinese population. We incorporated more independent variables and using com‑
plicated non‑linear modeling technology (artificial neural network, ANN) to develop a more accurate GFR estimation 
model for Chinese population.

Methods: The enrolled participants came from the Third Affiliated Hospital of Sun Yat‑sen University, China from Jan 
2012 to Jun 2016. Participants with age < 18, unstable kidney function, taking trimethoprim or cimetidine, or receiv‑
ing dialysis were excluded. Among the finally enrolled 1952 participants, 1075 participants (55.07%) from Jan 2012 
to Dec 2014 were assigned as the development data whereas 877 participants (44.93%) from Jan 2015 to Jun 2016 
as the internal validation data. We in total developed 3 GFR estimation models: a 4‑variable revised CKD‑EPI (chronic 
kidney disease epidemiology collaboration) equation (standardized serum creatinine and cystatin C, age and gender), 
a 9‑variable revised CKD‑EPI equation (additional auxiliary variables: body mass index, blood urea nitrogen, albumin, 
uric acid and hemoglobin), and a 9‑variable ANN model.

Results: Compared with the 4‑variable equation, the 9‑variable equation could not achieve superior performance in 
the internal validation data (mean of difference: 5.00 [3.82, 6.54] vs 4.67 [3.55, 5.90], P = 0.5; interquartile range (IQR) 
of difference: 18.91 [17.43, 20.48] vs 20.11 [18.46, 21.80], P = 0.05; P30: 76.6% [73.7%, 79.5%] vs 75.8% [72.9%, 78.6%], 
P = 0.4), but the 9‑variable ANN model significantly improve bias and P30 accuracy (mean of difference: 2.77 [1.82, 
4.10], P = 0.007; IQR: 19.33 [17.77, 21.17], P = 0.3; P30: 80.0% [77.4%, 82.7%], P < 0.001).

Conclusions: It is suggested that using complicated non‑linear models like ANN could fully utilize the predictive abil‑
ity of the independent variables, and then finally achieve a superior GFR estimation model.
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Background
Glomerular flirtation rate (GFR) has been well recognized 
as the best overall indicator of kidney function, which is 
widely used in diagnosis, treatment and prognosis of 
chronic kidney disease (CKD) [1]. GFR can be measured 
by renal or serum clearance of exogenous filtration mark-
ers such as inulin and iohexol, but the so-called measured 
GFR (mGFR) values are cumbersome and costly to be 
derived in clinical routine. Therefore, investigators have 
developed widely used GFR estimation equations using 
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established filtration markers (e.g., serum creatinine and 
cystatin C) in association with demographical variables 
(e.g., age, gender and race) [2–7]. The global organization 
kidney disease: improving global outcomes (KDIGO) has 
recommended to use estimated GFR (eGFR) as the initial 
test in clinical practice and epidemiological survey [8]. 
By 2017, many countries have been reporting eGFR with 
serum creatinine measurement [9].

The most accepted eGFR equations are modification 
of diet in renal disease (MDRD) [5] and chronic kidney 
disease epidemiology collaboration (CKD-EPI) equations 
[7], which can provide acceptable GFR estimates for the 
North American population. However, these eGFR esti-
mations may not perform well among Chinese popu-
lation, as these equations were not developed based on 
Chinese population [10]. Therefore, studies have been 
conducted to develop accurate equations for Chinese 
or Asian population [11]. However, most of these stud-
ies focus on either establishing an ethnic factor [10] or 
developing a new equation just using traditional regres-
sion method.

In the development of GFR estimation equations, the 
standard procedures are using natural logarithm trans-
formation of mGFR and filtration markers, then using 
ordinary least square linear or piecewise linear regres-
sion. This simple linearity might not explain the com-
plicated relationship among kidney function, GFR and 
filtration markers [1, 12]. Moreover, the potential predic-
tive power of auxiliary variables (demographical variables 
and other laboratory test variables) was not sufficiently 
utilized, as no interaction terms were incorporated into 
the equations. Studies have shown that using compli-
cated non-linear modeling technology may improve the 
performance of GFR estimation [13–16]. Therefore, we 
used artificial neural network (ANN), a powerful and 
common methodology in machine learning, to develop a 
more accurate eGFR model for Chinese population, and 
validated this model and compared its performance with 
standard regression equation models.

Methods
Study design and study participants
Patients diagnosed with CKD in the Third Affiliated Hos-
pital of Sun Yat-sen University during January 2012 to 
June 2016 were recruited consecutively into this study. 
Participates were excluded for any of the following rea-
sons: (1) age < 18 years; (2) having acute kidney function 
deterioration, skeletal muscle atrophy, edema, pleural 
effusion or ascites, heart failure, malnutrition, amputa-
tion, or ketoacidosis; (3) taking trimethoprim or cimeti-
dine; or (4) receiving dialysis at the time of study.

The institutional review board at the Third Affili-
ated Hospital of Sun Yat-sen University approved this 

study. A written informed consent was obtained from all 
participants.

Laboratory measurements
GFR was measured by 99mTc-DTPA renal dynamic imag-
ing, which had been recalibrated to a dual plasma sample 
99mTc-DTPA GFR. Renal dynamic imaging was obtained 
with a Millennium TMMPR SPECT using the General 
Electric Medical System (Discovery VH, GE Health-
care). Serum samples from each participant were col-
lected on the same day of performing GFR measurement 
and assayed on a Hitachi 7180 auto-analyzer (Hitachi 
reagents from Roche Diagnostics) in a single laboratory 
at the Department of Laboratory in the Third Affiliated 
Hospital of Sun Yet-sun University. Creatinine was meas-
ured by an enzymatic method and then recalibrated to 
the isotope dilution mass spectrometry reference method 
[17, 18]. We also recalibrated serum cystatin C to the 
standard reference material (ERM-DA471) [19]. The 
laboratory test variables were extracted from the analysis 
report and recorded manually.

Development of revised CKD‑EPI equations and ANN 
model
The revised equations were derived using the same 
method for developing the CKD-EPI equation by Inker 
and colleagues [7]. We first developed an equation for 
GFR estimation using a combination of conventional 
4 variables including age, sex, serum creatinine (Scr) 
and serum cystatin C (Scys), then we further developed 
a 9-variable equation by incorporating 5 more auxil-
iary variables including body mass index (BMI), blood 
urea nitrogen (BUN), albumin (ALB), uric acid (UA) and 
hemoglobin (HGB). For both equations the dependent 
variable was mGFR. mGFR and independent variables 
Scr, Scys, and BUN were log-transformed, so the cor-
relation between mGFR and the independent variables 
became nearly linear. We developed the equations with 
4- and 9-variable which fit the piecewise linear splines 
with a knot of both Scr and Scys by using splines Package 
in R software (version 3.5.0, R Development Core Team). 
The method for determining the knot of spline of Scr and 
Scys was described in Additional file 1.

We also developed an ANN model with the same 9 
independent variables for GFR estimation. Prior to ANN 
development, we performed data cleaning and pre-pro-
cessing on the development data, including outlier delet-
ing and variable normalization. We used only 1 hidden 
layer with 4 neurons, and the activation functions in all 
hidden neurons were set as Leaky ReLU (alpha = 0.1) 
[20]. The ANN was trained by Stochastic gradient 
descent (SGD) optimizer, and the whole development 
of ANN was implemented under Keras framework in 
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Python (version 3.6.6, Python Software Foundation). 
The detailed ANN model development was described in 
Additional file 2.

Model evaluation and statistical analysis
The performance indicators of GFR estimation include 
bias, precision and accuracy Bias and precision were 
defined as the median and the interquartile range (IQR) 
of the difference of eGFR minus mGFR, respectively. 
Accuracy was assessed as P30 (percentage of eGFR 
within ± 30% of mGFR). Besides the model evaluation on 
overall cohort, we also performed the identical evaluation 
procedures on subgroups divided by mGFR. Data from 
patients from Jan 2015 to Jun 2016 were used for internal 
validation on the performance of the derived models. We 
also performed a sensitivity analysis by developing and 
internally validating the 3 GFR estimation models based 
on random split datasets.

Complete-case analysis was used to handle the missing 
data. The 95% confidence intervals were calculated with 
bootstrap methods (2000 bootstraps) [21–23]. Wilcoxon 
signed rank test was used to compare the bias between 
models, whereas Permutation test for comparison of pre-
cision, and McNemar test for comparison of P30. All sta-
tistical analysis was performed using MATLAB software 
(version 2018b, MathWorks).

Results
Characteristics of participants
Among the initially enrolled 2997 CKD patients during 
2012 and 2016, 970 with incomplete data and 75 with 
irregular recordings were excluded (details are avail-
able in Fig. 1). Finally, 1952 participants were included 
in the model development or validation, including 
1075 (55.1%) participants from Jan 2012 to Dec 2014 
assigned into the development dataset to derive the 
revised equations and ANN, whereas 877 (44.9%) from 
Jan 2015 to Jun 2016 assigned as the internal validation 
dataset to independently evaluate the performance of 
the derived models.

Table  1 summarizes the characteristics of both 
development and internal validation datasets. For the 
development dataset, 57.3% were male; mean age was 
55.6 years (standard deviation [SD] 14.5); mean mGFR 
was 71.0 (SD, 27.4) mL/min/1.73 m2, serum creatinine 
1.5 (SD, 1.3)  mg/dL, and serum cystatin C 1.5 (SD, 
0.9)  mg/L. For internal validation dataset, 59.0% were 
male; mean age was 57.4 (SD, 13.4)  years; mGFR was 
68.8  (27.1) mL/min/1.73 m2, serum creatinine 1.3 (SD, 
0.9)  mg/dL, and serum cystatin C 1.3 (SD, 0.7)  mg/L. 
There were few participants with mGFR less than 
30  mL/min/1.73  m2 in both development and internal 
validation dataset (6.5% and 6.3% respectively).

Fig. 1 Flowchart of study design. GFR glomerular filtration rate, AAK African American Study of Kidney Disease and Hypertension, BMI body mass 
index
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Formulation of revised CKD‑EPI equations and ANN model
The knots of serum creatinine for female and male par-
ticipants were 0.7 and 0.9  mg/dL, respectively, whereas 
the knots of serum cystatin C were both 0.9  mg/L. The 
formulations of revised 4-variable and 9-variable CKD-
EPI equations were shown in Table  2. Additional file  3 
shows how to implement the 9-variable ANN model.

Performance of models in the internal validation dataset
The performance of three derived models was summa-
rized in Table  3. The bias (median difference) between 
mGFR and eGFR of the revised 4-variable CKD-EPI 
equation is 4.67 [95% CI 3.55–5.90], the precision 20.11 
[18.46–21.80]  mL/min/1.73  m2, and the accuracy (or 
P30) 75.8% [72.9–78.6%].

Compared with the revised 4-variable CKD-EPI equa-
tion, the 9-variable equation has similar bias (5.00 
[3.82–6.54] mL/min/1.73  m2, P = 0.5) and P30 (76.6% 
[73.7–79.5%], P = 0.4), and a slightly better precision 
(18.91 [17.43–20.48] mL/min/1.73 m2, P = 0.05).

The bias of 9-variable ANN model is 2.77 [1.82–4.10] 
mL/min/1.73  m2, which is much smaller than that of 
4-variable revised CKD-EPI equation (P = 0.007). The 
P30 of ANN model is 80.0% [77.4–82.7%], significantly 
higher than the two equation (P < 0.001). However, it 
is similar in precision between ANN and the 4-variable 
equation (P = 0.3, see Table 3).

The model performance in subgroups by mGFR was 
similar with the overall performance. In both subgroups 
of mGFR < 60  mL/min/1.73  m2 and mGFR ≥ 60  mL/

min/1.73  m2, the 9-variable ANN model consistently 
achieved superior P30 than the two revised equations. 
However, in subgroup of mGFR ≥ 90  mL/min/1.73  m2 
the ANN model tended to be more biased (median of 
difference − 2.91 [− 4.60 to − 1.32] mL/min/1.73  m2) 
(Table 3).

The sensitivity analysis based on random split datasets 
showed that the 9-variable ANN model has significantly 
superior P30 and precision and similar bias compared 
with the 4-variable CKD-EPI equation (see Additional 
file 4).

Discussion
Accurate evaluation of GFR is important for assessing 
the severity of CKD, predicting prognosis and deciding 
proper therapeutic interventions. Since publication of 
Cockcroft-Gault (CG) Equation in 1976 [2], many stud-
ies have been conducted to derive actionable models to 
estimate GFR. The major barrier of accurately estimate 
individual’s GFR is non-GFR determinants of filtration 
markers [1, 12, 24, 25], which degrade the ideal linear 
correlation between GFR and filtration markers. Under 
the consideration of cost and convenience, such unmeas-
ured non-GFR determinants are unable to be incorpo-
rated into the GFR estimation models, instead auxiliary 
variables (demographical variables and other laboratory 
test variables) are used as surrogates. The frequently 
used demographical variables are age, gender and race, 
whereas the frequently used other laboratory test vari-
ables are blood urea nitrogen and albumin.

Table 1 Characteristics of participants in the development and internal validation datasets

Values for continuous variables were reported as mean ± standard deviation, and values for categorical variables as number (percentage). Conversion factor for units: 
serum creatinine in mg/dL to mmol/L × 88.4

GFR glomerular filtration rate

Variable Development dataset (N = 1075) Internal validation dataset (N = 877) P value

Age (year) 55.6 ± 14.5 57.4 ± 13.4 0.008

Male sex, N (%) 616 (57.3) 517 (59.0) 0.5

Body mass index (kg/m2) 24.0 ± 3.6 24.5 ± 3.8 0.005

Serum creatinine (mg/dL)* 1.5 ± 1.3 1.3 ± 0.9 < 0.001

Serum cystatin C (mg/L) 1.5 ± 0.9 1.3 ± 0.7 < 0.001

Blood urea nitrogen (mg/dL) 20.9 ± 13.5 21.5 ± 11.7 0.3

Albumin (g/dL) 3.9 ± 0.5 3.9 ± 0.5 0.3

Uric acid (mg/dL) 6.7 ± 2.1 7.1 ± 2.2 < 0.001

Hemoglobin (g/L) 12.3 ± 2.3 12.7 ± 2.1 < 0.001

Measured GFR (mL/min/1.73 m2) 71.0 ± 27.4 68.8 ± 27.1 0.08

Measured GFR N(%) 0.04

 < 30 mL/min/1.73 m2 70 (6.5) 55 (6.3)

 30–59 mL/min/1.73 m2 310 (28.8) 304 (34.7)

 60–89 mL/min/1.73 m2 420 (39.1) 324 (36.9)

 ≥ 90 mL/min/1.73 m2 275 (25.6) 194 (22.1)
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However, other laboratory test variables in the linear 
equations seem to have limited predictive ability to esti-
mate GFR compared with filtration markers and demo-
graphical variables. The 6-variable MDRD equation has 
two additional variables Serum urea nitrogen and Albu-
min than the simplified 4-variable MDRD equation, but 
the performance of the two equations are nearly the same 
[3–5]. In the development of CKD-EPI equation in 2012, 
no other laboratory test variables or interaction terms 
are incorporated into the final equation as their predic-
tive ability are not statistically significant during variable 
selection [7].

In our study, we developed two revised CKD-EPI equa-
tions. One equation incorporated 4 variables: standard-
ized serum creatinine and cystatin C, age and gender, 
which are the standard variable combination during 
developing the GFR estimation model. We further incor-
porated more auxiliary variables as in theory it is benefi-
cial using more independent variables when developing 
prediction models. Besides blood urea nitrogen and albu-
min, we also incorporated body mass index, uric acid and 
hemoglobin, and finally developed a 9-variable revised 
CKD-EPI equation. However, the two revised equations 
turned out to have similar performance of GFR estima-
tion. The reason behind this phenomenon is the simple 
linear regression cannot sufficiently utilize the poten-
tial predictive power of these auxiliary variables. When 
we used the same 9 variables to develop a ANN model, 
compared with the revised 4-variable CKD-EPI equation, 
the 9-variable ANN model significantly reduce bias and 
improve P30 accuracy.

The mathematical theory of ANN is the universal 
approximation theorem [26, 27], which means that ANN 
is able to approximate any continuous even uncontinuous 

functions. When the network size of ANN increases, 
the capacity of ANN will become more powerful. Fur-
thermore, ANN doesn’t require any assumptions about 
distribution of variables and can handle with the multi-
collinearity among independent variables [28]. Therefore, 
ANN can capture not only the complicated correla-
tions between GFR and independent variables, but also 
any interactions between independent variables, so it 
can make GFR estimations based on these sophisticated 
relationships.

In future GFR estimation studies, it is a major trend to 
incorporated more variables into GFR estimation models, 
such as potential novel filtration markers β-Trace Protein 
(BTP) and β2-Microglobulin (B2M) [29–31], and even 
biomarkers from proteomics and metabolomics [30–32]. 
Our study suggests that it is beneficial to use complicated 
models to fully utilize the predictive ability of these vari-
ables to achieve a good performance of GFR estimation.

There are limitations in our study. First, all study partic-
ipants were from one medical center in China, and most 
are CKD patients. The generalizability of the study may 
be limited to CKD patients, and the performance of the 
developed ANN still requires extra validation on diverse 
populations. Second, the gold standard mGFR was meas-
ured by 99mTc-DTPA renal dynamic imaging, and then 
recalibrated to a dual plasma sample 99mTc-DTPA GFR. 
It is widely accepted that using iohexol or iothalamate 
will achieve a more accurate mGFR compared with 
99mTc-DTPA [33]. Third, the sizes of development data-
set as well as internal validation dataset are relatively 
small, especially there were few participants with mGFR 
≤ 30  mL/min/1.73  m2. Fourth, although ANN model is 
superior in the accuracy, it is difficult to interpret, and 

Table 3 Comparison of  the  performance of  revised 4-variable and  9-variable CKD-EPI equations and  9-variable ANN 
model: internal validation

GFR glomerular filtration rate, CKD-EPI chronic kidney disease epidemiology collaboration, ANN artificial neural network, IQR interquartile range, CI confidence interval

Overall Measured GFR < 60 mL/min/1.73 m2 Measured GFR ≥ 60 mL/min/1.73 m2

Bias—median difference (95% CI)

 4‑variable CKD‑EPI equation 4.67 (3.55 to 5.90) 11.04 (9.47 to 12.32) 0.03 (− 1.73 to 1.18)

 9‑variable CKD‑EPI equation 5.00 (3.82 to 6.54) P = 0.5 10.95 (9.08 to 12.60) P = 0.8 − 0.10 (− 1.54 to 2.09) P = 0.3

 9‑variable ANN 2.77 (1.82 to 4.10) P = 0.007 10.54 (8.40 to 11.78) P = 0.2 − 2.91 (− 4.60 to − 1.32) P = 0.01

Precision – IQR of the difference (95% CI)

 4‑variable CKD‑EPI equation 20.11 (18.46 to 21.80) 15.90 (13.90 to 17.87) 21.08 (19.34 to 23.80)

 9‑variable CKD‑EPI equation 18.91 (17.43 to 20.48) P = 0.05 16.73 (14.67 to 19.05) P = 0.3 21.01 (18.69 to 23.78) P = 0.9

 9‑variable ANN 19.33 (17.77 to 21.17) P = 0.3 16.03 (14.15 to 17.72) P = 0.9 20.80 (19.19 to 22.84) P = 0.7

Accuracy—P30, % (95% CI)

 4‑variable CKD‑EPI equation 75.8 (72.9 to 78.6) 53.2 (47.9 to 58.2) 91.5 (88.8 to 93.6)

 9‑variable CKD‑EPI equation 76.6 (73.7 to 79.5) P = 0.4 54.6 (49.6 to 59.7) P = 0.4 91.9 (89.6 to 94.0) P = 0.7

 9‑variable ANN 80.0 (77.4 to 82.7) P < 0.001 59.9 (54.6 to 64.9) P < 0.001 94.0 (91.5 to 95.9) P = 0.01
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the relationship and interaction between independent 
variables are still unknown.

Conclusions
In conclusion, we introduced up to 9 variables into GFR 
estimation and developed revised CKD-EPI 4-variable 
and 9-variable equations, and a 9-variable ANN model, 
respectively. Compared with the 4-variable equation, 
the 9-variable equation could not achieve superior per-
formance, but the 9-variable ANN model significantly 
reduces bias and improve P30 accuracy. It is suggested 
that using complicated non-linear models like ANN 
could fully utilize the predictive ability of the addi-
tional auxiliary variables. However, the proposed ANN 
model still requires extra and careful validation in more 
diverse cohort data.
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