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A novel CD147 inhibitor, SP-8356, reduces 
neointimal hyperplasia and arterial stiffness 
in a rat model of partial carotid artery ligation
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Abstract 

Background: Neointimal hyperplasia and its related arterial stiffness are the crucial pathophysiological features in 
atherosclerosis and in‑stent restenosis. Cluster of differentiation 147 (CD147), a member of the immunoglobulin super 
family that induces the expression of matrix metalloproteinase‑9 (MMP‑9) by dimerization, may play important roles 
in neointimal hyperplasia and may therefore be an effective target for the treatment of this condition. Here, we inves‑
tigated whether a novel CD147 inhibitor SP‑8356 ((1S,5R)‑4‑(3,4‑dihydroxy‑5‑methoxystyryl)‑6,6‑dimethylbicyclo[3.1.1]
hept‑3‑en‑2‑one) reduces neointimal hyperplasia and arterial stiffness in a rat model of partial carotid artery ligation.

Methods: Neointimal hyperplasia was induced in Sprague–Dawley rats by partial ligation of the right carotid artery 
combined with a high fat diet and vitamin D injection. Rats were subdivided into vehicle, SP‑8356 (50 mg/kg), and 
rosuvastatin (10 mg/kg) groups. The drugs were administrated via intraperitoneal injections for 4 weeks. The elastic‑
ity of blood vessels was assessed by measuring pulse wave velocity using Doppler ultrasonography before sacrifice. 
Histomolecular analysis was carried out on harvested carotid arteries.

Results: SP‑8356 significantly reduced MMP activity by inhibiting CD147 dimerization. SP‑8356 reduced neointimal 
hyperplasia and prevented the deterioration of vascular elasticity. SP‑8356 had a greater inhibitory effect on neointi‑
mal hyperplasia than did rosuvastatin. Furthermore, rosuvastatin did not improve vascular elasticity. SP‑8356 increased 
the expression of smooth muscle myosin heavy chain (SM‑MHC), but decreased the expression of collagen type III 
and MMP‑9 in the neointimal region. In contrast to SP‑8356, rosuvastatin did not alter the expression of SM‑MHC or 
MMP‑9.

Conclusions: The ability of SP‑8356 to reduce neointimal hyperplasia and improve arterial stiffness in affected carotid 
artery suggests that SP‑8356 could be a promising therapeutic drug for vascular remodeling disorders involving 
neointimal hyperplasia and arterial stiffness.
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Background
Neointimal hyperplasia, defined as the thickening of the 
arterial intima with a narrowed arterial lumen space, is 
a key feature of early atherosclerotic lesions and in-stent 
restenosis [1, 2]. The key regulatory mechanism under-
lying neointimal hyperplasia is the phenotypic plasticity 
of vascular smooth muscle cells (VSMCs) [2]. In a nor-
mal physiologic state, most VSMCs in the blood vessels 
show contractile characteristics [2, 3]. However, exposure 
of the vessels to injury or inflammatory stimuli results in 
VSMC switching to a synthetic phenotype. These syn-
thetic VSMCs migrate to the intima from the media and 
contribute to the formation of neointimal hyperplasia [4]. 
Furthermore, synthetic VSMCs in neointima accelerate 
lipid deposition and macrophage chemotaxis, leading to 
the progression of atherosclerosis [1, 5]. Thus, synthetic 
VSMCs not only build up neointima but may also pro-
mote plaque vulnerability.

Neointimal hyperplasia is composed of migrated syn-
thetic VSMCs with lower amounts of contractile pro-
teins and higher amounts of extracellular matrix (ECM) 
components [2]. These changes in vascular smooth mus-
cle tone and ECM components contribute to arterial 
stiffening [6]. Arterial stiffness has been regarded as an 
important predictor of future cardiovascular events and 
all-cause mortality [7]. Therefore, attenuation of neointi-
mal hyperplasia may be an important therapeutic target 
for patients with vascular remodeling disorders, includ-
ing atherosclerosis and in-stent restenosis.

Matrix metalloproteinases (MMPs) have been regarded 
as a key player in VSMC migration [8, 9]. MMPs are 
proteolytic enzymes that cleave ECM and modulate 
chemokines. Chemokines, in turn, facilitate the easy 
migration of VSMCs to neointima and initiate synthetic 
VSMC activities [8]. Among the various MMPs, par-
ticularly, overexpression of MMP-9 is well known to 
enhance VSMC migration with synthetic properties [8, 
9]. MMP expression can be induced by cluster of differ-
entiation 147 (CD147), which is located on the VSMCs 
[10]. CD147, also known as extracellular MMP inducer 
(EMMPRIN), is a cell surface glycoprotein that induces 
MMP expression [11–13] by homophilic interactions 
such as dimerization [13, 14].

We recently reported that a series of (1S)-(-)-verbenone 
derivatives exhibited cytoprotective activities [15] and 
found that certain (1S)-(-)-verbenone derivatives in an 
in-house chemical library inhibited cerebral hemorrhage 
by inhibiting MMP activity (unpublished results). One 
of these (1S)-(-)-verbenone derivatives, (1S,5R)-4-(3,4-
dihydroxy-5-methoxystyryl)-6,6-dimethylbicyclo[3.1.1]
hept-3-en-2-one (SP-8356), was found most effective in 
reducing MMP activity by inhibiting CD147 dimeriza-
tion. Recently, we and others reported that partial carotid 

artery ligation induced neointimal hyperplasia in rats fed 
a high fat diet [16, 17]. The present study investigated the 
ability of SP-8356 to inhibit VSMC migration and arte-
rial stiffness in this rat model characterized by neointimal 
hyperplasia.

Methods
Non‑denaturing sodium dodecyl sulfate–polyacrylamide 
gel electrophoresis (SDS‑PAGE) assays
Recombinant human CD147 protein (5 μg/mL, ab155636, 
Abcam, Cambridge, MA, USA) was added to vari-
ous concentrations of SP-8356 and mixed with sample 
buffer lacking SDS, followed by resolution by 10% SDS-
PAGE without boiling. Anti-CD147 antibody (ab108317, 
Abcam, Cambridge, MA, USA) was used for immunob-
lotting. The concentration of recombinant human CD147 
protein was determined following the previous study 
which reported the inhibitory effect of AC-73 on CD 147 
dimerization [18].

Surface plasmon resonance (SPR) assays
SPR assays were performed on an SR7500DC instru-
ment (Reichert Inc., Buffalo, NY, USA) at 25 °C. Approxi-
mately 4000 resonance units (RU) of recombinant human 
CD147 (ab155636, Abcam), at a concentration of 3  μg/
mL in 10 mmol/L sodium acetate (pH 4.5), were immo-
bilized on CMDH chips containing gold (Reichert Inc., 
Buffalo, NY, USA), using the amine coupling kit supplied 
by the manufacturer. The analyte (SP-8356; 300.35 kDa) 
was dissolved in running buffer (1X PBS, 2% DMSO, pH 
7.4) and injected over the flow cells at concentrations 
of 6.25, 12.5, 25, 50, 100, 200 and 400 μM, in that order, 
at a flow rate of 30 μL/min. As a control, 1.25–640  nM 
anti-CD147 antibody (ab108317, Abcam), from lowest 
to highest concentration, was injected over the flow cells 
to test its binding to immobilized CD147. The associa-
tion and dissociation times were both 5 min. After each 
round, the surface of the sensor chip was regenerated by 
injection of NaOH (5–50  mM) for 1  min until the RU 
signal returned the baseline. An equilibrium dissociation 
rate constant (Kd) was calculated from the kinetic rate 
constants by a simple 1:1 interaction model using Scrub-
ber 2 software (Biologic Software, Campbell, Australia).

Cell culture
The A10 vascular smooth muscle cell line (ATCC CRL 
1476) was purchased from the American Type Culture 
Collection (ATCC, Manassas, VA, USA). The cells were 
cultured in Dulbecco’s modified eagle medium (DMEM; 
Welgene, Daegu, Korea) supplemented with 10% fetal 
bovine serum (FBS; HyClone, Logan, UT, USA), and 1% 
penicillin/streptomycin (HyClone) at 37  °C in a 5%  CO2 
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humidified atmosphere. The contractile type of VSMC 
was induced by serum deprivation for 6 days [19].

Immunocytochemistry
To assess whether SP-8356 affects VSCM phenotype 
modulation, induced contractile VSMCs were pre-
treated with SP-8356 for 30 min and subsequently treated 
with recombinant human protein CD147 (5  μg/mL, 
ab155636, Abcam, Cambridge, MA, USA). After 24 h of 
incubation, cells were washed with phosphate-buffered 
saline and fixed with 4% paraformaldehyde. Cells were 
then permeabilized with 0.3% Triton X-100 and blocked 
for 30 min with 1% bovine serum albumin in PBST, fol-
lowed by incubated at 4  °C with primary antibody to 
smooth muscle myosin heavy chain (SM-MHC) (1:200 
dilution, ab683, Abcam, Cambridge, MA, USA) for over-
night. Alexa Fluor 488-conjugated goat anti-mouse IgG 
(1:400 dilution, A28175, Invitrogen, Carlsbad, CA, USA) 
was used for secondary antibody and nuclei were stained 
with Hoechst 33,342 solution.

Gelatin zymography
MMP activities of cultured VMSCs were evaluated by 
gelatin zymography. A10 VSMCs were treated for 24  h 
with SP-8356 in the presence of recombinant human 
protein CD147 (5 μg/mL, ab155636, Abcam, Cambridge, 
MA, USA). Conditioned media were collected and cen-
trifuged to remove cellular debris and concentrated by 
Microcon centrifugal filtration (Millipore, Billerica, MA, 
USA). These samples were mixed with a non-reducing 
loading buffer without heating and loaded onto 10% SDS-
PAGE gels containing 1 mg/mL gelatin (JT Baker Chemi-
cal Co., Phillipsburg, NJ, USA). Proteins were separated 
by electrophoresis at 125 V for 90 min. A MMP-9 recom-
binant protein (ab168863, Abcam, Cambridge, MA, 
USA) was loaded as a positive control. Following elec-
trophoresis, the gels were rinsed twice for 30  min with 
Novex zymography renaturing buffer (Invitrogen, Carls-
bad, CA, USA), incubated overnight with Zymogram 
developing buffer (Invitrogen), and stained with a Simply 
Blue Safe Stain (Invitrogen).

Migration assay
VSMC migration assays were performed with 24-well 
Transwell plates and polycarbonate membranes (8-μm 
pore size, Costar, Corning, NY, USA) coated with 
Matrigel (Sigma, St Louis, MO, USA). The upper cham-
bers were seeded with 1.5 × 105 VSMCs in 200  μL 
serum-free DMEM. The Transwells were placed in 
24-well culture dishes in 800  μL serum-free DMEM. 
After incubation for 12  h with SP-8356 in the presence 
of recombinant human CD147 (5 μg/mL, ab155636), the 
membranes were fixed and stained with a Hemacolor 

rapid staining kit (Merck, Darmstadt, Germany). The 
number of cells that had migrated to the lower cham-
bers was counted (5 random fields/membrane) using an 
inverted microscope (Leica DM IL, Leica Microsystems, 
Wetzlar, Germany).

Animals
Male Sprague–Dawley rats (7 weeks old, 200–250 g body 
weight) were purchased from Orient-Bio (Seongnam, 
Korea). All rats were housed under a 12-h light/dark 
cycle with ad libitum access to water and food.

Induction of neointimal hyperplasia
After the rats were acclimated for 1 week, they were sub-
jected to partial right carotid artery ligation, as described 
[17, 20]. In brief, anesthesia was initiated with 3.5% iso-
flurane in a 2:1  N2O/O2 mixture in a vented anesthesia 
chamber and sustained by inhalation through a nasal 
cone of 2 to 2.5% isoflurane in a 2:1  N2O/O2 mixture. The 
right external carotid artery, occipital artery and right 
internal carotid artery were ligated with 6-0 silk sutures, 
followed by intraperitoneal injection of vitamin D3 
(6 × 105 IU/kg) once daily for 2 days. Vitamin D3 is often 
used to stimulate VSMC proliferation and migration [21, 
22]. All rats were fed with a commercially available high 
fat diet (D12336, Research Diets, NJ, USA) for 1 month 
(28 days).

Drug treatment
The day after their last vitamin D injection, the rats were 
subdivided into three groups. The rats were injected 
intraperitoneally with vehicle (0.9% normal saline), rosu-
vastatin (10  mg/kg in saline, used as a reference drug) 
or SP-8356 (50  mg/kg in saline) once daily for 4  weeks. 
Rosuvastatin is a hydroxymethylglutaryl coenzyme A 
reductase inhibitor that has been well known to reduce 
neointima formation in animal models [23–25]. Statins 
also reduce restenosis characterized by neointimal hyper-
plasia after coronary stent implantation in clinical studies 
[26, 27]. At doses of 1, 10, and 20 mg/kg, rosuvastatin was 
reported to inhibit neointimal hyperplasia [23–25]. At a 
dose of 80 mg/kg, simvastatin has been known to be toxic 
to VSMCs [28], and recently it was reported that 20 mg/
kg of rosuvastatin is equivalent to 80 mg/kg of simavas-
tatin [29]. Therefore, we treated rats with 10  mg/kg of 
rosuvastatin. The in  vivo therapeutic dose of SP-8356 
corresponding to in vitro dose was determined based on 
our previous pharmacokinetic-pharmacodynamic rela-
tionship study [30].

Pulse wave velocity (PWV) measurement
After 4 weeks of drug administration, PWV was meas-
ured using an ultrasound Doppler system (iU22, Philips 
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Ultrasound, Bothell, WA, USA). Electrocardiography 
limb electrodes were placed and the Doppler probe was 
located parallel to the blood flow of the right carotid 
and left iliac arteries. The electrocardiography and 
Doppler signals were recorded simultaneously; the dis-
tance and time were defined as described previously 
[31]. Distance was measured between the site probe 
points over the carotid and iliac arteries, and the time 
was measured between the R peak waves of the elec-
trocardiogram to the foot of the carotid or iliac wave 
signals. The times were averaged over three consecutive 
electrocardiography cycles. PWV (m/s) was calculated 
as:

Blood pressure
Blood pressure was measured using a tail-cuff method 
(ML125, Powerlab, AD Instruments, Castle Hill, NSW, 
Australia). Rats were placed in a chamber pre-heated 
to 35  °C for 10  min and moved to plastic restrainers. 
To obtain accurate and reliable blood pressure result, 
rats were handled gently and not forced to enter plastic 
restrainer. Rats remained stable and unperturbed during 
the measurement period. A cuff with a pneumatic sensor 
was applied onto the tail and blood pressure was meas-
ured, with the results averaged from three consecutive 
recordings.

Histopathology
All rats survived during the study period and were sacri-
ficed by carbon dioxide inhalation after 4 weeks of drug 
administration. The common carotid arteries were fixed 
with 4% paraformaldehyde and preserved in 30% sucrose 
solution. The tissue was embedded in optimal cutting 
temperature compound (Scigen Scientific, Gardena, CA, 
USA). Axial sections of 4 μm thickness were cut with a 
cryostat microtome (Leica CM 3050 S, Leica Microsys-
tems). Serial sections were obtained down-stream of the 
bifurcation of the external and internal carotid arteries. 
In accordance with the guidelines for experimental study 
of vessel by the American Heart Association [32], lesions 
were analyzed in a blinded manner and quantified as an 
average of 6 serial sections, each 100 μm apart from each 
other. The sections were stained with hematoxylin and 
eosin and evaluated using an upright light microscope 
(BX51, Olympus, Tokyo, Japan). The neointimal area 
was defined as the area between the luminal circumfer-
ence and the internal elastic lamina. The media area was 
defined as the area between the internal and external 
elastic lamina. The neointima/media ratio was defined 

PWV (m/s) =
Distance from carotid to iliac artery

Time (R peak point to iliac foot− R peak point to carotid foot)

as the area of the neointima divided by the area of the 
media.

Immunohistochemistry
Sections were blocked for 60  min with 5% goat serum 
in phosphate-buffered saline containing 0.1% Triton 
X-100, and incubated at 4 °C with primary antibodies to 
α-smooth muscle-actin (α-SMA) (1:200 dilution, ab7817, 
Abcam, Cambridge, MA, USA), SM-MHC (1:200 dilu-
tion, ab683, Abcam, Cambridge, MA, USA), MMP-9 
(1:200 dilution, AB19016, Merck Millipore, Billerica, 
MA, USA), and collagen type III (1:200 dilution, ab7778, 

Abcam, Cambridge, MA, USA). The sections were 
washed and incubated with the appropriate secondary 
antibody, Alexa Fluor 555-conjugated goat anti-mouse 
IgG (1:400 dilution, A21424, Invitrogen, Carlsbad, CA, 
USA) or Alexa Fluor 488-conjugated goat anti-rabbit 
IgG (1:400 dilution, A11034, Invitrogen, Carlsbad, CA, 
USA), followed by counterstaining of the nuclei with 4′, 
6-diamidino-2-phenylindole (DAPI). All images were 
obtained using a confocal microscope (LSM800, Carl 
Zeiss, Oberkochen, Germany).

Molecular expression intensity in the neointimal area 
was analyzed using Image J version 1.45  s open-source 
software (NIH Image, Bethesda, MD, USA). A region of 
interest (ROI) was drawn on the neointimal area and the 
integrated density of pixels in the ROI was calculated. 
The intensity/area ratio was calculated as the integrated 
density divided by the area of the neointima. Unstained 
and secondary antibody stained control images of neoin-
timal hyperplasia were shown in Additional file 1: Figure 
S1.

Statistical analysis
All data were presented as the mean ± standard devia-
tion of at least three independent experiments. Multiple 
groups were compared by one-way analysis of variance 
(ANOVA) followed by post hoc Tukey’s test and two 
groups were compared by Student’s t test. All statistical 
analyses were performed using SPSS version 17.0 soft-
ware (SPSS Inc, Chicago, IL, USA), with a p-value < 0.05 
considered statistically significant.

Results
SP‑8356 disrupts the dimerization of CD147
Dimerization of CD147 induces MMP expression and 
activation [14]. To identify compounds that could disrupt 
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CD147 dimerization, we screened our in-house chemical 
library [15], finding that SP-8356 inhibited CD147 dimer-
ization in a concentration-dependent manner (Fig. 1a–c).

SP‑8356 binds to CD147
Surface plasmon resonance (SPR) is an optical technique 
utilized for detecting molecular interactions [33]. We 
have utilized SPR to study the specific binding of SP-8356 
with CD147. As shown in Fig.  1d, SP-8356 exhibited 
3 times lower equilibrium dissociation constant (i.e., 
higher affinity) than that of AC-73, a previously described 
CD147 inhibitor [18].

SP‑8356 enhances the contractile phenotype expression 
in cultured VSMCs
As shown in Fig.  2a, b, VSMCs cultured in serum-
deprived condition showed increased expression of 
SM-MHC, which was reduced by treatment with recom-
binant CD147. SP-8356 reversed the recombinant 
CD147-induced reduction of SM-MHC expression.

SP‑8356 reduces CD147‑evoked MMP and migratory 
activity in cultured VSMCs
A10 cells are undifferentiated VSMCs that differ from 
neonatal but show significant similarity to neointimal 
cells [34]. Thus, A10 cells have been commonly used as 
a model of synthetic VSMCs in neointimal hyperpla-
sia. Gelatin zymography showed that treatment with 
recombinant CD147 increased MMP-9 activity in cul-
tured VSMCs (Fig. 2c), which was inhibited by SP-8356 
in a concentration dependent manner. Matrigel that is 
composed of basement membrane extracts has wide-
spread use in cell migration assays [35]. Thus, as MMP-9 
up-regulation is well known to promote VSMC migra-
tion [8, 9], we further performed Matrigel assays to test 
whether SP-8356 inhibits VSMC migration. In Matrigel 
assays, treatment with recombinant CD147 stimulated 
the migration of VSMCs (Fig. 2d), which was inhibited by 
SP-8356 in a concentration dependent manner.

SP‑8356 attenuates neointimal hyperplasia and improves 
arterial stiffness
While the normal artery presented little intima, the 
affected right carotid artery presented prominent lumi-
nal narrowing with neointimal hyperplasia (Fig.  3a). 
Both SP-8356 and rosuvastatin reduced neointimal 
hyperplasia (Fig.  3a). When neointimal hyperplasia was 
measured as the ratio of neointima to media, however, 
we found that SP-8356 reduced neointimal hyperplasia 
to a greater extent than rosuvastatin (Fig.  3b). Arterial 
stiffness assessed by measuring PWV was higher in rats 
with neointimal hyperplasia than in normal rats (Fig. 3c). 
SP-8356 reduced the aggravated arterial stiffness in rats 

fed a high fat/vitamin D diet (Fig.  3c). Despite its sup-
pression of neointimal hyperplasia, however, rosuvastatin 
did not reduce the PWV elevated by neointimal hyper-
plasia (Fig. 3c).

There were no statistically significant differences 
among the normal, vehicle, and SP-8356 groups in sys-
tolic (128.39 ± 8.38  mmHg vs. 137.29 ± 8.38  mmHg 
vs. 134.33 ± 11.17  mmHg, p = 0.091) and dias-
tolic (81.85 ± 8.46  mmHg vs. 87.17 ± 9.68  mmHg vs. 
87.58 ± 10.92  mmHg, p = 0.448) blood pressure. These 
findings indicate that arterial stiffness was not influenced 
by blood pressure during or after SP-8356 treatment or 
experimental procedures.

SP‑8356 reduces MMP‑9 expression and synthetic VSMC 
activity in neointima
MMP-9 was abundantly expressed in proliferative 
neointima, which was significantly reduced by SP-8356 
(Fig.  4a, b). In contrast, rosuvastatin treatment had no 
effect on MMP-9 expression (Fig. 4a, b). Because MMP-9 
promotes synthetic VSMC characteristics [8], we studied 
the effects of SP-8356 treatment on VSMC characteris-
tics. SP-8356 significantly increased the expression of 
SM-MHC (Fig. 4c, d) and reduced the expression of col-
lagen type III (Fig.  5a, b), but did not significantly alter 
the expression of α-SMA (Fig.  5c, d). In contrast, rosu-
vastatin did not increase the expression of SM-MHC in 
affected carotid arteries (Fig. 4c, d).

Discussion
CD147 is expressed in normal blood vessels, but its 
expression is higher under pathological conditions, dur-
ing which CD147 may contribute to ECM remodeling 
by up-regulating MMP expression. The present study 
showed that a novel drug SP-8356 directly inhibited 
CD147 dimerization, suggesting that inhibition of the 
CD147-MMP pathway by SP-8356 may reduce neointi-
mal hyperplasia in injured arteries and improve arterial 
stiffness.

MMP has been shown to promote VSMC migration, 
thereby contributing to neointimal hyperplasia [36]. Inhi-
bition of MMP-9 expression by gene modulation was 
reported to reduce both VSMC migration and neoin-
tima formation [37, 38]. MMP also promotes synthetic 
properties of VSMCs [8], resulting in the deterioration of 
arterial stiffness [6]. In the present study, we found that 
SP-8356 elevated the level of SM-MHC and suppressed 
that of collagen type III, both of which could contribute 
to an improvement in arterial stiffness [6]. Similar to 
SP-8356, rosuvastatin was reported to reduce VSMC pro-
liferation [23–25]. Unlike SP-8356, however, rosuvastatin 
did not improve arterial stiffness. The differing effects of 
SP-8356 and rosuvastatin on arterial stiffness may be due 
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Fig. 1 Discovery and activity of SP‑8356. a Screening strategy. b Structure of SP‑8356. c Representative image and quantitative analysis of CD147 
dimerization. Data are presented as the mean ± standard deviation (SD) of three independent experiments. *p < 0.05 vs. vehicle. d Surface plasmon 
resonance (SPR) assay of anti‑CD147 antibody, AC‑73, and SP‑8356 with CD147
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to differences in their regulation of MMP and SM-MHC 
expression. Our findings are in agreement with results 
showing that rosuvastatin inhibited neointimal hyper-
plasia via an MMP-9 independent mechanism [25, 39]. 
Furthermore, a high dose (80 mg/kg) of simvastatin was 
found to induce VSMC contractile dysfunction and to be 
toxic to VSMCs in rat models [28].

Although both SM-MHC and α-SMA reflect con-
tractile properties of VSMCs [3], α-SMA is expressed 

by both synthetic and contractile VSMCs, whereas 
SM-MHC is expressed only by contractile VSMCs [2]. 
Thus, SM-MHC may be a more reliable marker of con-
tractile VSMCs. Although SM-MHC expression in inti-
mal VSMCs was found to be reduced during neointimal 
hyperplasia, α-SMA expression was preserved [2, 17, 
40, 41]. Our experimental model also showed that SM-
MHC expression was reduced, whereas α-SMA was unal-
tered, in neointima. Thus, the up-regulation of SM-MHC 

Fig. 3 SP‑8356 inhibits neointimal hyperplasia and prevents arterial stiffness. a Representative cross‑sections of carotid arteries stained with 
hematoxylin–eosin (H&E). Scale bar, 100 μm. Magnification, × 100. b Ratios of neointima and media areas. Vehicle (n = 9), rosuvastatin (n = 6), 
and SP‑8356 (n = 9). Data are presented as a box plot ± range. **p < 0.01, ***p < 0.001. c Arterial stiffness was assessed by measuring pulse wave 
velocity (PWV). Normal (n = 15), vehicle (n = 9), rosuvastatin (n = 6), and SP‑8356 (n = 6). Data are presented as box plot ± range. *p < 0.05, **p < 0.01, 
***p < 0.001

Fig. 2 SP‑8356 enhances the contractile phenotype expression and attenuates CD147‑stimulated matrix metalloproteinase‑9 (MMP‑9) activation in 
vascular smooth muscle cells (VSMCs) and CD147‑induced VSMC migration. a Representative images of immunocytochemistry and b quantitative 
analysis of relative smooth muscle myosin heavy chain (SM‑MHC) expression. Scale bar, 100 μm. Magnification, × 100. Data are presented as the 
mean ± SD of three independent experiments. ### p < 0.001 vs. control without CD147 treatment. *p < 0.05, ***p < 0.001 vs. CD147 treatment alone. 
c Representative images of gelatin zymography and quantitative analysis of active MMP‑9 level. Data are presented as the mean ± SD of three 
independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001 vs. control. d Representative image of VSMC migration and quantitative analysis. Scale 
bar, 100 μm. Magnification, × 100. Data are presented as the mean ± SD of three independent experiments. ## p < 0.01 vs. control without CD147 
stimulation. *p < 0.05, **p < 0.01, ***p < 0.001 vs. CD147 stimulation alone

(See figure on previous page.)
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Fig. 5 Down‑regulation of collagen type III by SP‑8356. a Representative image of collagen type III expression. Vehicle (n = 9) and SP‑8356 (n = 9). 
Scale bars, 100 μm. Magnification, × 100. b Quantification of collagen type III expression. Data are presented as box plot ± range. **p < 0.01. c 
Representative image of α‑smooth muscle‑actin (α‑SMA) expression. Vehicle (n = 9) and SP‑8356 (n = 9). The nuclei were stained with DAPI. Scale 
bars, 100 μm. Magnification, × 100. (D) Quantification of α‑SMA expression. Data are presented as box plot ± range. n.s.: not significant

Fig. 4 SP‑8356 reduces MMP‑9 expression and enhances SM‑MHC. a Representative image of MMP‑9 expression. Vehicle (n = 9), rosuvastatin 
(n = 6) and SP‑8356 (n = 9). The nuclei were stained with DAPI. Scale bars, 100 μm. Magnification, × 100. b Quantification of MMP‑9 expression. Data 
are presented as box plot ± range. *p < 0.05. c Representative image of SM‑MHC expression. Vehicle (n = 9), rosuvastatin (n = 6) and SP‑8356 (n = 9). 
The nuclei were stained with DAPI. Scale bars, 100 µm. Magnification, × 100. d Quantification of SM‑MHC expression. Data are presented as box 
plot ± range. **p < 0.01, ***p < 0.001

(See figure on previous page.)
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expression may contribute to the preservation of arterial 
elasticity in rats treated with SP-8356.

VSMC plasticity plays crucial roles in in-stent reste-
nosis as well as atherosclerosis [4]. Revascularization by 
angioplasty/stenting is a common and effective treatment 
to restore blood flow in narrowed or blocked atheroscle-
rotic lesions. In-stent restenosis, however, is a frequent 
complication of stent implantation, occurring in 15–60% 
of patients [42], and is thought to result from neointimal 
hyperplasia caused by synthetic VSMC activation. Thus, 
synthetic VSMCs are attractive therapeutic targets to 
inhibit neointimal proliferation after tenting [4]. In-stent 
restenosis may be prevented by implantation of drug-
eluting-stents (DES) containing anti-proliferative drugs 
such as sirolimus and paclitaxel. These drugs inhibit the 
proliferation of VSMCs by targeting the mechanistic tar-
get of rapamycin (mTOR) or microtubule assembly [43, 
44]. However, these DESs can elicit late thrombosis by the 
attenuation of re-endothelization through endothelial tox-
icity [22, 45] and even increase the long-term risk of death 
compared with bare-metal stents after 6  months [45]. 
There is a pressing need for new drugs that inhibit reste-
nosis for successful revascularization without late throm-
bosis. The results of the present study suggest that SP-8356 
may be a promising new drug to inhibit in-stent restenosis.

Neointimal hyperplasia with VSMC activation involves 
complex multifactorial pathophysiology including inflam-
mation and oxidative stress [46, 47]. MMP-9 modulation 
via its interaction with CD147 may not be the sole expla-
nation for the vasoprotective effect of SP-8356. SP-8356 
was designed to function as a multi-target directed drug 
with anti-inflammatory and anti-oxidative properties 
[15, 48]. Thus, the pleiotropic effects of SP-8356 may also 
contribute to the vasoprotective effects of SP-8356.

This study used a rat model of partial carotid artery 
ligation to evaluate the arteries with pathological remod-
eling. This model closely resembles the pathophysiologic 
hemodynamic features of atherosclerosis in humans, 
including low shear stress, which contribute to the for-
mation of neointimal hyperplasia [20]. This model is 
therefore suitable for the evaluation of vascular remod-
eling disorders, in which synthetic VSMC migration is 
the main pathologic feature. This rat model, however, has 
limitations, including its inability to mimic the plaque 
vulnerability, rupture, and thrombosis found in advanced 
atherosclerotic lesions [20]. Other models of advanced 
atherosclerotic lesions, such as apolipoprotein E knock-
out mice, are needed to fully assess the anti-atheroscle-
rotic activities of SP-8356.

Although SP-8356 effectively reduced MMP activity by 
inhibiting CD147 dimerization in in  vitro experimental 
methods, it may also have other off-target binding effects 
in addition to CD147. For example, CD147 increases 

MMP activity through binding with cyclophilin A [10], 
which may also be inhibited by SP-8356. Therefore, fur-
ther studies on the target profile of SP-8356 are needed.

Conclusions
This study provides strong evidence that SP-8356 can 
inhibit neointimal hyperplasia and improve arterial 
stiffness in a rat model of partial carotid artery ligation. 
Although its full mechanism remains to be determined, 
SP-8356 exhibits vasoprotective effects, probably by dis-
rupting CD147 dimerization and thereby suppressing 
MMP-9 expression. SP-8356 may be a promising thera-
peutic drug for the treatment of vascular remodeling 
disorders.
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