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Abstract 

Background: Lung adenocarcinoma (LUAD), largely remains a primary cause of cancer-related death worldwide. The 
molecular mechanisms in LUAD metastasis have not been completely uncovered.

Methods: In this study, we identified differentially expressed genes (DEGs), miRNAs (DEMs) and lncRNAs (DELs) 
underlying metastasis of LUAD from The Cancer Genome Atlas database. Intersection mRNAs were used to perform 
gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and co-expression network analysis. 
In addition, survival analyses of intersection mRNAs were conducted. Finally, intersection mRNAs, miRNAs and lncR-
NAs were subjected to construct miRNA-mRNA-lncRNA network.

Results: A total of 1015 DEGs, 54 DEMs and 22 DELs were identified in LUAD metastasis and non-metastasis samples. 
GO and KEGG pathway analysis had proven that the functions of intersection mRNAs were closely related with many 
important processes in cancer pathogenesis. Among the co-expression interactions network, 22 genes in the co-
expression network were over the degree 20. These genes imply that they have connections with many other gene 
nodes. In addition, 14 target genes (ARHGAP11A, ASPM, HELLS, PRC1, TMPO, ARHGAP30, CD52, IL16, IRF8, P2RY13, 
PRKCB, PTPRC, SASH3 and TRAF3IP3) were found to be associated with survival in patients with LUAD significantly 
(log-rank P < 0.05). Two lncRNAs (LOC96610 and ADAM6) acting as ceRNAs were identified based on the miRNA-
mRNA-lncRNA network.

Conclusions: Taken together, the results may provide a novel perspective to develop a multiple gene diagnostic tool 
for LUAD prognosis, which might also provide potential biomarkers or therapeutic targets for LUAD.
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Background
Lung cancer is the leading cause of cancer-related deaths 
worldwide, despite advances in lung cancer therapy, the 
average 5-year survival rate is only 18% [1, 2]. A major-
ity of the deaths associated with lung cancer are due to 
secondary disease or metastatic progression [3]. Lung 

adenocarcinoma (LUAD) is a major lung cancer that is in 
a locally advanced or metastatic stage at the time of diag-
nosis, which leaves no time for early detection or treat-
ment [4]. An early and accurate diagnosis may warrant 
timely treatment to potentially decrease the mortality. 
Therefore, molecular mechanisms that may help under-
stand metastases of LUAD should be investigated to con-
tribute to early diagnosis, better treatment and better 
overall prognosis of this disease.

Numerous published articles demonstrate that dysregu-
lated genes are essential for initiation and progression of 
lung cancer. In recent years, the development of microarray 
technology has served as an effective measure to identify 
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differentially expressed genes [5], and provides new insight 
into the alteration of gene expression during tumorigenesis 
[6]. Differentially expressed genes can be found through 
different experimental treatments, and their biological 
functions can be speculated via known information. The 
application of high-throughput miRNA profling methods, 
such as RNA sequencing and microarrays, has enabled 
researchers to identify a group of miRNAs as biomarkers 
in cancer diagnosis [7]. MicroRNAs (miRNAs) are a class 
of single stranded, non-coding RNAs of 19–25 nucleotides 
[8], which transcriptionally or post-transcriptionally regu-
late gene expression through binding to targeted mRNAs 
and influence the degradation and translation of mRNA 
[9]. Accumulating evidence suggests that aberrant levels 
of miRNAs are linked to proliferation, angiogenesis, and 
metastasis in various human malignancies [10]. Besides, 
miRNA has incurred broad attention as a targeting choice 
in cancer therapies [11] or as the diagnostic or prognos-
tic markers [12]. Long non-coding RNAs (lncRNAs) are 
non-coding RNAs ranging in length from 200 nucleotides 
to ~ 100  kb [13]. LncRNAs have mechanistically diverse 
functions in the cell, and in the nucleus, LncRNA has been 
shown to regulate gene expression in either cis or trans by 
recruiting a chromatin-modifying complex to the promoter 
of a target gene [14, 15]. Besides, it has been reported that 
lncRNAs are key competing endogenous RNAs (ceRNAs) 
harboring miRNA response elements (MREs) and serve as 
ceRNAs to exchange with mRNAs via competitively bind-
ing to common miRNAs [16].

The Cancer Genome Atlas (TCGA) is one prominent 
example of the renowned public databases which provides 
a platform of RNA sequencing with mRNA, miRNA and 
lncRNA data of various cancers. By integratively analysis 
RNA-Seq and miRNA-Seq data of LUAD samples from 
TCGA database, we successfully corhorted a set of dif-
ferentially expression genes (DEGs), miRNAs (DEMs) 
and lncRNAs (DELs) underlying LUAD metastasis and 
non-metastasis samples. Based on intersection mRNAs, 
gene ontology (GO), Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment and co-expression 
analysis were conducted. Furthermore, we performed a 
receiver operating characteristic (ROC) analysis to inves-
tigate the diagnostic value of intersection mRNAs. Finally, 
miRNA-mRNA-lncRNA network were constructed. Our 
study might provide a meaningful contribution to explor-
ing the mechanisms of LUAD metastasis and candidate 
diagnostic biomarkers and therapeutic targets.

Materials and methods
DEGs, DEMs and DELs of LUAD metastasis 
and non‑metastasis samples from TCGA data
The LUAD metastasis and non-metastasis RNA-Seq 
and miRNA-Seq data were downloaded from the TCGA 

database using The GDC Data Portal (https ://gdc-porta 
l.nci.nih.gov/). The mRNA and lncRNA expression data 
included a total of 372 samples consisting of 25 LUAD 
metastasis and 347 non-metastasis samples. The miRNA 
expression data included a total of 305 samples consist-
ing of 19 LUAD metastasis and 286 non-metastasis sam-
ples. The clinical characteristics of the 384 TCGA patients 
are shown in Table 1 (Additional file 1). No ethical issues 
were involved, because the sequencing data were obtained 
by using TCGA database. The edgeR package in Biocon-
ductor was used to screen the DEGs, DEMs and DELs in 
LUAD metastasis and non-metastasis samples. The genes, 
miRNAs and lncRNAs were considered as DEGs, DEMs 
and DELs if P-value < 0.05 (including up-regulation and 
down-regulation), respectively (Additional file 2).

Intersection lncRNAs and mRNAs
Predicted DEMs targets in this study were determined 
using miRBase targets (http://mirdb .org/miRDB /) to pre-
dict target genes, and using miRanda (http://www.micro 
rna.org/micro rna/home.do) to find the lncRNA-miRNA 
interactions. Then we combined the information of miR-
NAs predicted and differentially expressed data of TCGA 

Table 1 Clinical characteristics of TCGA cohort

All patients (n = 372)

Age at diagnosis (years)

 Mean 65

 Range 38–85

Sex

 Male 183 (49.2%)

 Female 189 (50.8%)

Clinical stage

 I 3 (0.8%)

 Ia 85 (22.9%)

 Ib 101 (27.2%)

 IIa 34 (9.1%)

 IIb 53 (14.2%)

 IIIa 55 (14.8%)

 IIIb 10 (2.7%)

 IV 25 (6.7%)

 NA 6 (1.6%)

Metastasis

 Yes 25 (6.7%)

 No 347 (93.3%)

Overall survival

 Deaths 148 (39.8%)

 Alive 224 (60.2%)

Follow-up (months)

 Mean 30.8

 Range 0–238.3

https://gdc-portal.nci.nih.gov/
https://gdc-portal.nci.nih.gov/
http://mirdb.org/miRDB/
http://www.microrna.org/microrna/home.do
http://www.microrna.org/microrna/home.do
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by using Excel to obtain the repeating part to choose the 
intersection lncRNAs and mRNAs.

GO and KEGG pathway enrichment analysis
Differentially expressed intersection mRNAs were 
obtained from the Database for Annotation, Visualiza-
tion and Integrated Discovery (DAVID), which pro-
vided a comprehensive set of functional annotation tools 
for investigators to understand the biological meaning 
behind large lists of genes (http://david .abcc.ncifc rf.gov/). 
Up and down-regulated genes were analyzed, respec-
tively. Two-side Fisher’s exact test and χ2 test were used 
to classify the GO category, and the false discovery rate 
(FDR) was calculated to correct the P-value,the smaller 
the FDR, the smaller the error in judging the p-value [17]. 
The FDR was defined as FDR = 1−

Nk

T
 , where Nk refers 

to the number of Fisher’s test P-values less than χ2 test 
P-values. We computed P-values for the GOs of all the 
differential genes. Enrichment provides a measure of the 
significance of the function: as the enrichment increases, 
the corresponding function can be more specific, which 
helps us to find those GOs with more concrete function 
description in the experiment. Within the significant cat-
egory, the enrichment Re was given by: Re = (nf/n)/(Nf/N) 
where “nf” is the number of flagged genes within the par-
ticular category, “n” is the total number of genes within 
the same category, “Nf” is the number of flagged genes 
in the entire microarray, and “N” is the total number of 
genes in the microarray [18].

KEGG (http://www.kegg.jp/) was used to analyze the 
potential functions of these genes participated in the 
pathways [19]. Still, we turn to the Fisher’s exact test and 
χ2 test to select the significant pathway, and the thresh-
old of significance was defined by P-value and FDR. 
The enrichment Re was calculated like the equation 
above [20–22]. P < 0.05 was considered as the threshold 
criterion.

Co‑expression analysis
Differentially expressed intersection mRNAs which had 
similar expression profiles were included in the differ-
entially co-expressed genes analysis to investigate the 
potential metastatic mechanism of LUAD. The differen-
tially co-expressed genes in LUAD metastasis samples 
compared to non-metastasis samples were identified 
via the DCGL package in R. In the network analysis, a 
degree is the most important parameter of the centrality 
of a gene within a network that determines the relative 
importance. Up-regulated and down-regulated mRNAs 
were showed in pies with different colors. Then, the dif-
ferential co-expression network was constructed based 
on the Cytoscape software.

Survival analysis
The univariable Cox regression analysis was performed to 
assess the relationship between mRNAs expression levels 
and LUAD patients overall survival (OS) and recurrence 
free survival (RFS) time and identify survival-associated 
genes. The survival curves were plotted and tested using 
the Kaplan–Meier method and log-rank test. According 
to the median risk score, LUAD patients were divided 
into high- and low-risk groups. The mRNAs with log-
rank P < 0.05 between high-risk and low-risk groups were 
considered statistically significant. R software and Bio-
conductor were used for all these analyses. Next, we get 
target genes by combining significant survival-associated 
genes and genes incorporated into the gene co-expres-
sion network.

Receiver operating characteristic (ROC) curve analysis
In order to assess the diagnostic value of target genes in 
LUAD, receiver operating characteristic (ROC) analysis 
were performed using pROC package in R language [23]. 
Diagnostic ability of the prediction model was evaluated, 
by calculating the area under a ROC curve. The ROC 
curve was used for classifier evaluation, and was drawn 
by plotting sensitivity against the false-positive rate. The 
area under the curve (AUC) under binomial exact confi-
dence interval was calculated to generate the ROC curve.

MiRNA‑mRNA‑lncRNA network
According to the relationship among mRNA, miRNA 
and lncRNA, the posttranscriptional regulation of 
mRNA transcripts bound by single-stranded miRNAs is 
basically established. We have established a theory based 
on lncRNA regulating miRNA abundance by isolating 
and binding them, acting as a so-called miRNA sponge 
[24]. Then, according to the theory of ceRNA, we chose 
the miRNA negatively regulated expression of lncRNAs 
and mRNAs to construct the miRNA-mRNA-lncRNA 
network. The miRNA-mRNA-lncRNA network was con-
structed and visualized using Cytoscape v3.0 [25].

Statistical analysis
All data in the present study were analyzed using Graph-
Pad Prism 6.0 software. Mean ± standard deviation and 
independent-samples t-test was used in the statistical 
analysis. A P-value less than 0.05 was considered statisti-
cally significant.

Results
Workflow
The present study consists of several processes sequen-
tially (Fig. 1), that is TCGA-based RNA-seq data aggrega-
tion, and multiple bioinformatics analyses.

http://david.abcc.ncifcrf.gov/
http://www.kegg.jp/
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DEGs, DEMs and DELs in LUAD metastasis 
and non‑metastasis samples based on TCGA data
A total of 1019 genes were considered as DEGs in LUAD 
metastasis samples compared to non-metastasis sam-
ples, including 581 (57.0%) up-regulated and 438 (43.0%) 
down-regulated genes. And the top 20 DEGs in LUAD 
metastasis samples compared with non-metastasis sam-
ples were shown in Table  2. 54 miRNAs were consid-
ered as DEMs, including 12 (22.2%) up-regulated and 42 
(77.8%) down-regulated miRNAs. 21 lncRNA s were con-
sidered as DELs, including 8 (38.1%) up-regulated and 13 
(61.9%) down-regulated lncRNAs (Fig. 2).

Intersection lncRNAs and mRNAs
The mRBase targets method was used to analyse the tar-
get mRNAs of DEMs and obtained the 915 miRNA tar-
geted mRNAs. The miRanda method was used to analyse 
the target lncRNAs of DEM and obtained the 22 miRNA-
targeted lncRNAs. Then the study combined the infor-
mation of miRNAs predicted and differentially expressed 
data of TCGA, and obtain 915 intersection mRNAs and 
20 intersection lncRNAs.

GO and KEGG analysis
Predicted functions of DEGs in this study were deter-
mined by intersection mRNAs. The 915 intersection 

Fig. 1 Flow chart of bioinformatics analysis
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mRNAs were further analyzed by GO analysis. We ana-
lyzed the enrichment of these genes. Enrichment pro-
vides a measure of the significance of the function, and 
as the enrichment increases, the corresponding function 
is more specific, which helped us to identify GO with a 
more definitive functional description [26]. The results 
showed that the up-regulated genes were significantly 
associated with signal transduction, innate immune 
response, immune response, blood coagulation, and cell 
adhesion, while the down-regulated genes were mainly 
involved in mitotic cell cycle, DNA repairment, mitotic 
prometaphase, S phase of mitotic cell cycle and M phase 
of mitotic cell cycle (Fig. 3a, b).

Pathway analysis indicated that 87 pathways corre-
sponded to up-regulated transcripts and up-regulated 
genes were mainly related to cytokine–cytokine receptor 
interaction, osteoclast differentiation, cell adhesion mol-
ecules (CAMs), PI3K-Akt signaling pathway and focal 
adhesion, while down-regulated DEGs were associated 
with Fanconi anemia pathway, mismatch repair, spliceo-
some, DNA replication and cell cycle (Fig. 3c, d).

Co‑expression network
The intersection genes were used to construct a gene co-
expression network. According to the node connectiv-
ity, genes can be further classified into hub genes. Hub 
genes are very important nodes and represent a small 

proportion of nodes with maximal information exchange 
with other nodes in the gene co-expression network. The 
entire network consisted of 145 nodes and 658 connec-
tions. Solid lines present positive correlation and dotted 
lines present negative correlation. The networks indicate 
that one gene is correlated with several genes and vice 
versa. A higher degree for one gene meant that the gene 
played a more important role in this network. Among 
the co-expression interactions network, there are 22 
genes in the co-expression network with the degree over 
20, including SASH3, WAS, CD53, NCKAP1L, PTPRC, 
PTPN7, CD4, CYTH4, ARHGAP9, FERMT3, TRAF3IP3, 
EVI2B, SNX20, LAPTM5, BTK, IKZF1, ARHGAP30, 
CCR5, IL10RA, IL16, LCP2 and PSTPIP1. These genes 
imply that they have connections with many other gene 
nodes (Fig. 4).

Survival analysis
In the survival analysis, 114 genes were found to be signif-
icant in LUAD patients (log-rank test, P < 0.05). While we 
choose 14 target genes which were obtained by combin-
ing significant survival associated genes and genes incor-
porated into the gene co-expression network. In order to 
reveal association between the 14 target genes expression 
levels and LUAD prognosis, we performed Kaplan–Meier 
survival curves. The results show that patients with lower 
expression levels of five genes including ARHGAP11A, 

Table 2 The top 20 DEGs in LUAD metastasis samples compared with non-metastasis samples

Gene name P‑value Geom mean of intensities in LUAD 
non‑metastasis

Geom mean of intensities 
in LUAD metastasis

log2 (FC) Style

ADRA2A 2.77E−03 138.17 57.40 1.27 Up

SFTPB 3.64E−02 57,876.78 24,815.46 1.22 Up

IGJ 1.94E−03 6335.86 2744.20 1.21 Up

CD79A 2.31E−03 365.56 160.15 1.19 Up

CPZ 2.26E−05 264.00 119.83 1.14 Up

CH25H 4.05E−03 140.60 68.34 1.04 Up

LRRC15 1.60E−02 271.70 133.16 1.03 Up

UCHL1 4.55E−02 380.51 784.12 − 1.03 Down

SFRP2 1.63E−02 1526.84 757.42 1.01 Up

SKAP1 1.25E−03 138.21 69.33 0.99 Up

RNASE1 2.25E−03 7830.26 3995.57 0.97 Up

CILP2 9.77E−03 146.06 74.91 0.96 Up

LTB 1.57E−03 264.47 139.19 0.93 Up

COL10A1 1.65E−02 682.85 363.03 0.91 Up

TRIM16L 9.68E−03 184.04 342.52 − 0.89 Down

DERL3 1.83E−03 602.72 327.93 0.88 Up

CPXM1 2.46E−03 209.17 113.48 0.88 Up

APBA2 1.29E−02 220.67 121.83 0.86 Up

PODN 7.01E−04 746.37 414.51 0.85 Up

FMO3 1.62E−03 165.01 92.10 0.84 Up
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ASPM, HELLS, PRC1 and TMPO have better survival 
prognoses than those with higher expression levels of 
these five genes in LUAD. Patients with higher expression 
levels of the rest nine genes (ARHGAP30, CD52, IL16, 
IRF8, P2RY13, PRKCB, PTPRC, SASH3, TRAF3IP3) 
were associated with poor survival in patients with 
LUAD (all log-rank P < 0.05) (Fig. 5).

ROC curve analysis
In order to assess the discriminatory ability of the 14 
target genes among LUAD metastasis and non-metasta-
sis samples generated from TCGA database, ROC curve 
analyses were conducted and AUC were calculated. 

As Fig.  6 shown, the AUC of 11 target genes (ARH-
GAP11A, ARHGAP30, ASPM, IL16, IRF8, P2RY13, 
PRC1, PRKCB, PTPRC, SASH3, and TRAF3IP3) were 
more than 0.6. The AUC of CD52, HELLS and TMPO 
was respective 0.578, 0.57 and 0.577, less than 0.6. IL16 
had the largest AUC in those 14 target genes.

MiRNA‑mRNA‑lncRNA network
Besides the 14 target genes which were obtained by 
combining significant survival associated genes and 
genes incorporated into the gene co-expression net-
work, we also performed miRNA-mRNA-lncRNA to 
identify lncRNAs which acted as ceRNAs in LUAD 

Fig. 2 Heatmap for hierarchical cluster analysis of DEGs, DEMs and DELs expression levels change between LUAD metastasis and non-metastasis 
tissues (a–c). Colors ranged from green (low expression) to red (high expression), representing the relative expression levels of DEGs, DEMs and DELs
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pathogenesis. The miRNA-mRNA-lncRNA relation-
ship was integrated into the ceRNA network through 
negative regulation. Based on the interaction network of 
miRNA-mRNA, miRNA-lncRNA and lncRNA-mRNA, 
we obtained 37 feed-forward loop networks and con-
structed general miRNA-lncRNA-mRNA feed-forward 
loop network (data not shown). In our study, the results 
identified that 2 lncRNAs (LOC96610 and ADAM6), 
22 miRNAs and 4 mRNAs (LAX1, DERL3, MEI1 and 
CPNE5) were involved in the ceRNA network. The func-
tions of LOC96610 and ADAM6 acting as ceRNAs were 

predicted through pathway analysis of 4 mRNAs (LAX1, 
DERL3, MEI1 and CPNE5) in the miRNA-lncRNA-
mRNA interaction network. The results indicated that 
four mRNAs participated in three upregulated path-
ways which involved in immune response, endoplasmic 
reticulum unfolded protein response and male meiosis 
I. As a consequence, it was believed that compared with 
the other lncRNAs, these two lncRNAs (LOC96610 and 
ADAM6) might played more significant functions in the 
whole ceRNA network (Fig. 7).

Fig. 3 a, b Top 20 enrichment of GO terms for differentially expressed intersection genes (the bar plot shows the enrichment scores of the 
significant enrichment GO terms). c, d Top 20 enrichment of pathways for differentially expressed intersection genes (the bar plot shows the 
enrichment scores of the significant enrichment pathways)
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Discussion
Even though there was a new development of immuno-
therapy and targeted therapy of tumors, once the system-
atic metastasis of cancer cell occurred, the 5-year survival 
rate would decrease at less by 10% [27], and the survival 
of LUAD is far from satisfactory. Early diagnosis plays a 
critical role in the prevention and treatment of cancer, 
including LUAD. And researchers are continuously seek-
ing for new biomarkers or targets for LUAD prevention, 
diagnose and treatment.

RNA-seq data and microarray-based expression pro-
filing data provide a more comprehensive and accurate 
understanding of carcinogenesis and cancer progression 
at the molecular level. In our study, we analyzed the dif-
ferences in the mRNAs, miRNAs, lncRNAs expression 
according to raw sequencing data of LUAD metasta-
sis and non-metastasis samples from TCGA. We found 

that 1019 DEGs, 54 DEMs and 21 DELs are differently 
expressed in LUAD metastasis samples compared to 
non-metastasis samples. Combined with DEMs targeted 
mRNAs, we obtained 915 intersection mRNAs which 
were used to conduct GO and KEGG pathway analysis. 
According to the results of GO enrichment, the most 
significantly up-regulated genes were associated with 
signal transduction, while the most significantly down-
regulated genes were mainly involved in mitotic cell 
cycle. KEGG pathway analysis showed that pathways 
corresponded to up-regulated transcripts were mainly 
related to cytokine–cytokine receptor interaction, path-
ways corresponded to down-regulated transcripts were 
mainly related to fanconi anemia pathway.

Generally, the common influence of interaction in 
interacting genes could not only decrease the complex-
ity of biological network, but also benefit to explore 

Fig. 4 The co-expression network constructed by Cytoscape software. Proteins are represented with color nodes, and interactions are represented 
with edges. Red color indicated up-regulation; blue color indicated down-regulation

Fig. 5 Kaplan-Meier (KM) survival curves for 14 target genes. KM survival curves show significant OS or RFS survival differences between 
higher-expression levels and lower-expression levels of LUAD patients

(See figure on next page.)
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meaningful biological information for the researchers, 
providing further scientific basis for therapy and study 
of disease [28]. In our study, the co-expression gene net-
work based on the intersection genes provided an insight 
of correlation between genes. Here, we found that some 
genes, such as SASH3, WAS and CD53, had connec-
tions with many other gene nodes in LUAD. They might 
be considered as important biomarkers which account 
for the metastasis mechanism of LUAD. In addition, 
survival analysis determined that 114 genes increased 
or decreased expression is significantly associated with 
LUAD patients shorter OS or RFS, suggesting that these 
genes may be valuable predictive factors for LUAD 
patient’s survival. Finally, 14 target genes were obtained 
by combining significant survival associated genes and 
were incorporated into the gene co-expression network.

(See figure on previous page.)
Fig. 6 The receiver operating characteristic (ROC) curves for 14 target genes. The area under the curve (AUC) under binomial exact confidence 
interval was calculated to generate the ROC curve

In the target genes, five genes (ARHGAP30, IL16, 
PTPRC, SASH3 and TRAF3IP3) were with the degree 
over 20, which implied the five genes not only had 
better important regulatory value for the network, 
but also had diagnostic value of LUAD metastasis. 
ARHGAP30, a previously uncharacterized RhoGAP 
domain-containing protein, as a candidate Wrch-
1-binding protein. ARHGAP30 is closely related to the 
Cdc42-specific RhoGAP CdGAP [29], and together 
they form a subgroup of the RhoGAP proteins. Wang 
et al. [30] identified ARHGAP30 served as a key regu-
lator for p53 acetylation, and suggested ArhGAP30 as 
both prognostic marker and potential therapeutic tar-
get for colorectal cancer. Besides, ARHGAP30 was 
found had significantly improved OS of pancreatic 
ductal adenocarcinoma [31]. Interleukin-16 (IL-16) is 

Fig. 7 The miRNA-mRNA-lncRNA ceRNA network. Red balls represent up-regulated mRNAs, blue diamonds, down-regulated miRNAs, and red balls 
surrounded by yellow rings, up-regulated lncRNAs
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a pro-inflammatory cytokine [32] and chemo attract-
ant for a broad variety of immune cell types with CD4 
co-receptors [33]. Serum IL-16 levels have been asso-
ciated with other cancers, such as multiple myeloma 
[34], gastric cancer [35], and colorectal cancer. Besides, 
IL-16 was reported to may act as a key mediator in pre 
metastatic niches that drives the establishment of lung 
metastasis and may represent a suitable therapeutic tar-
get [36]. PTPRC, also known as CD45, encodes a mem-
ber of the protein tyrosine phosphatase (PTP) family, 
which comprises proteins commonly activated in 
tumors [37]. A previous report suggested that up-regu-
lation of PTPRC resulted in high levels of inflammatory 
cytokines [38]. It is reported that PTPRC was predicted 
to interact with CXCR4, and PTPRC might also play a 
role in colon cancer metastasis [39]. SASH3 encodes 
a signaling adapter protein, containing a SLY motif in 
the N-terminal region, a SH3 motif and a SAM motif in 
the C-terminal region [40]. SAM families of receptors 
are known to play a role in many developmental pro-
cesses including cell migration, neuronal formation and 
angiogenesis [40]. Schieffer et  al. [41] revealed SASH3 
as a hub gene was highly correlated with diverticuli-
tis patients compared to non-diverticulosis controls. 
TRAF3IP3, also known as TRAF3-interacting JNK 
Activating Modulator (T3JAM), was originally identi-
fied as a protein that interacts specifically with Tumor 
necrosis factor receptor-associated factor 3 (TRAF3) 
to activate JNK in human kidney cells [42]. TRAF3IP3 
is expressed in the immune system and participates 
in cell maturation, tissue development, and immune 
response. Nasarre et al. [43] identified new functions of 
TRAF3IP3 in melanoma and angiogenesis, emphasiz-
ing its physiological relevance as a potential target for 
cancer therapy.

Moreover, our study identified that 2 lncRNAs 
(LOC96610 and ADAM6), 22 miRNAs and 4 mRNAs 
(LAX1, DERL3, MEI1 and CPNE5) were involved in 
the miRNA-lncRNA-mRNA interaction network. 
LOC96610, located at 22q11.22, the official symbol is 
BMS1P20 (BMS1, ribosome biogenesis factor pseudo-
gene 20). As a survival-related lncRNA, BMS1P20 was 
found significantly correlated with the pathogenesis, 
development and metastasis of liver hepatocellular car-
cinoma [44]. Furthermore, Sui et  al. [45] reported that 
BMS1P20 positively correlated with overall survival of 
LUAD. ADAM6 (ADAM metallopeptidase domain 6), 
located at 14q32.33. ADAM is a family of membrane 
proteins involved in cell–cell adhesion and cell–matrix 
adhesion. It is characterized by a disintegrin and metal-
loprotease domain with an epidermal growth factor-
like region and harbors both adhesion and proteolytic 
domains implicated in integrin function and matrix 

degradation [46, 47]. It is reported that an exploratory 
biomarker panel derived from ADAM6 conferred prog-
nostic utility for melanoma recurrence and death [48].

Conclusions
In summary, our findings documented that 1019 DEGs, 
54 DEMs and 21 DELs were differently expressed in 
LUAD metastatic samples compared with non-meta-
static samples. Among these altered mRNAs, many are 
significantly associated with LUAD patient’s survival 
time, and might play critical roles in LUAD metastasis. 
Our study highlights the important roles of mRNAs, 
miRNAs and lncRNAs in LUAD metastasis and may 
provide useful candidates as diagnostic markers and 
potential targets for LUAD therapy. The present study 
also has a few limitations, for example, the data used 
were obtained from TCGA, rather than directly from 
LUAD patients, thus a series of verification experiments 
must be performed to confirm our results. Overall, our 
findings will improve our understanding of the molecu-
lar mechanisms of LUAD and aid in finding potential 
targets for diagnostic and therapeutic usage.
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