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Abstract 

Background: Retinitis pigmentosa (RP) is the most common form of inherited retinal dystrophy presenting remarka-
ble genetic heterogeneity. Genetic annotations would help with better clinical assessments and benefit gene therapy, 
and therefore should be recommended for RP patients. This report reveals the disease causing mutations in two RP 
pedigrees with confusing inheritance patterns using whole exome sequencing (WES).

Methods: Twenty-five participants including eight patients from two families were recruited and received compre-
hensive ophthalmic evaluations. WES was applied for mutation identification. Bioinformatics annotations, intrafamilial 
co-segregation tests, and in silico analyses were subsequently conducted for mutation verification.

Results: All patients were clinically diagnosed with RP. The first family included two siblings born to parents with 
consanguineous marriage; however, no potential pathogenic variant was found shared by both patients. Further 
analysis revealed that the female patient carried a recurrent homozygous C8ORF37 p.W185*, while the male patient 
had hemizygous OFD1 p.T120A. The second family was found to segregate mutations in two genes, TULP1 and RP1. 
Two patients born to consanguineous marriage carried homozygous TULP1 p.R419W, while a recurrent heterozygous 
RP1 p.L762Yfs*17 was found in another four patients presenting an autosomal dominant inheritance pattern. Crystal 
structural analysis further indicated that the substitution from arginine to tryptophan at the highly conserved residue 
419 of TULP1 could lead to the elimination of two hydrogen bonds between residue 419 and residues V488 and S534. 
All four genes, including C8ORF37, OFD1, TULP1 and RP1, have been previously implicated in RP etiology.

Conclusions: Our study demonstrates the coexistence of diverse inheritance modes and mutations affecting distinct 
disease causing genes in two RP families with consanguineous marriage. Our data provide novel insights into assess-
ments of complicated pedigrees, reinforce the genetic complexity of RP, and highlight the need for extensive molecu-
lar evaluations in such challenging families with diverse inheritance modes and mutations.
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TULP1, RP1, Consanguinity
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Background
Retinitis pigmentosa (RP, MIM: 268000), the most com-
mon form of inherited retinal degenerations, affects 
over one million individuals globally [1, 2]. Night blind-
ness is usually the initial symptom for RP, followed by 
subsequent visual field constriction, and eventual vision 
loss. RP is featured by great clinical heterogeneities. Its 
onset age ranges from early childhood to mid-adulthood. 
Inter- and intra-familial phenotypic diversities caused by 
the same RP causing mutations have also been revealed 
[3–5]. Thus, clinical diagnose for RP patients are some-
times challenged by its wide phenotypic spectrum and 
under certain conditions, like in a young patient without 
fully onset RP phenotypes. In such situations, molecu-
lar testing could help to address the clinical ambiguity 
in RP diagnosis. RP also shows high genetic heterogene-
ity. To date, 83 RP causing genes involving hundreds of 
mutations have been identified (RetNet). Next-gener-
ation sequencing (NGS), enabling simultaneous paral-
lel sequencing of numerous genes with high efficiency, 
is an efficient tool for molecular diagnosis of RP [2, 4]. 
Genetic annotations with NGS promote better clinical 
assessments and gene therapy, and therefore should be 
recommended for RP patients. However, pedigrees with 
puzzling inheritance patterns could sometimes confuse 
the genetic diagnoses. Herein, we described the geno-
typic and phenotypic findings in two complicated RP 
pedigrees using NGS. Distinct inheritance patterns and 
RP causing genes/mutations were found in both families.

Methods
Sample collection and clinical assessments
Our study, conformed to the Declaration of Helsinki, 
was approved and prospectively reviewed by the local 
ethics committee of People Hospital of Ningxia Hui 
Autonomous Region (No. 10 [2017]). Eleven participants 
from family A (Fig.  1a) and 14 participants from fam-
ily B (Fig. 1b) were recruited from the People’s Hospital 
of Ningxia Hui Autonomous Region. Written informed 
contents were obtained from all participants or their 
legal guardians before their enrollments. Peripheral 
blood samples were collected from all 25 participants 

for genomic DNA extraction. Family history and con-
sanguineous marriages were carefully reviewed. Medical 
records were obtained from all participants. Each par-
ticipant received general ophthalmic evaluations, while 
comprehensive ophthalmic examinations were selectively 
conducted on the eight included patients. Another 150 
Chinese healthy controls free of major ocular problems 
were recruited with their blood samples donated.

NGS approach and bioinformatics analyses
To reveal the disease causing mutation in the two fami-
lies, we selectively performed whole exome sequencing 
(WES) on three participants in family A (A-IV:3, A-VI:2 
and A-VI:3) and two patients in family B (B-III:4 and 
B-IV:1). WES was conducted with the 44.1 megabases 
SeqCap EZ Human Exome Library v2.0 (Roche Nimble-
Gen, Madison, WI) for enrichment of 23588 genes on 
patients from family A [6], and with SureSelect Human 
All Exon V6 60  Mb Kit (Agilent Technologies, Santa 
Clara, CA) on patients from family B [7]. Briefly, qualified 
genomic DNA samples were randomly sheared by Cova-
ris into 200–250  base pair (bp) fragments. Fragments 
were then ligated with adapters to both ends, amplified 
by ligation-mediated polymerase chain reaction (LM-
PCR), purified, and hybridized. Non-hybridized frag-
ments were then washed out. Quantitative PCR was 
further applied to estimate the magnitude of enrichment 
of both non-captured and captured LM-PCR products. 
Each post-capture library was then loaded on an Illumina 
Hiseq 2000 platform for high-throughput sequencing.

Raw data were initially processed by CASAVA Soft-
ware 1.7 (Illumina) for image analysis and base call-
ing. Sequences were generated as 90  bp pair-end reads. 
Reads were aligned to human h19 genome using SOAPa-
ligner (http://www.soap.genom ics.org.cn) and Burrows-
Wheeler Aligner (BWA; http://www.bio-bwa.sourc eforg 
e.net/). Only mapped reads were included for subsequent 
analysis. Coverage and depth were determined based on 
all mapped reads and the exome region. Atlas-SNP2 and 
Atlas-Indel2 were applied for variant calling [8]. Vari-
ant frequency data were obtained from the following six 
single nucleotide polymorphism databases, including 

Fig. 1 Family pedigrees and genetic annotations of identified mutations. a Pedigree of family A. Included participants are indicated by asterisk. 
b Pedigree of family B. Included participants are indicated by asterisk. c–f Sequence chromatograms of identified mutations, including OFD1 
c.358A>G (c), C8ORF37 c.555G>A (d), TULP1 c.1255C>T (e), and RP1 c.2285_2289delTAAAT (f). g Orthologous protein sequence alignment of TULP1 
from human (H. sapiens), chimpanzees (P. troglodytes), dogs (C. lupus), cows (B. taurus), rats (M. musculus), chickens (G. gallus), zebrafish (D. rerio), 
fruit flies (D. melanogaster), and worms (C. elegans). Conserved residues are shaded. The mutated residue 419 is boxed and indicated. h, i Crystal 
structural analysis of the wild type (h) and mutant (i) TULP1 protein. Hydrogen bonds between residue 419 and residues V488 and S534 were 
eliminated due to the substitution from arginine to tryptophan. j Conservational analysis of residues TULP1 R419, N463, V488 and S534 between 
TULP1 and TUB proteins

(See figure on next page.)

http://www.soap.genomics.org.cn
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dbSNP144 (http://www.hgdow nload .cse.ucsc.edu/golde 
nPath /hg19/datab ase/snp13 5.txt.gz.), HapMap Pro-
ject (ftp://ftp.ncbi.nlm.nih.gov/hapma p), 1000 Genome 
Project (ftp://ftp.1000g enome s.ebi.ac.uk/vol1/ftp), YH 
database (http://yh.genom ics.org.cn/), Exome Vari-
ant Server (http://www.evs.gs.washi ngton .edu/EVS/), 
and Exome Aggregation Consortium (http://exac.broad 
insti tute.org/). Variants with a minor allele frequency of 
over 1% in any of the above databases were discarded. 
Sanger sequencing was employed for mutation valida-
tion and prevalence test in 150 additional controls using 
a previously defined protocol [9]. Primer information 
is detailed in Additional file  1: Table  S1 and Additional 
file 2: Table S2.

In silico analysis
We applied vector NTI Advance™ 2011 software (Invit-
rogen, Carlsbad, CA) to analyze the conservation of the 
mutated reside by aligning protein sequence of human 
TULP1 (ENSP00000229771) with sequences of the fol-
lowing orthologues proteins: P. troglodytes (ENSP-
TRP00000030898), C. lupus (ENSCAFP00000001922), 
B. taurus (ENSBTAP00000055698), M. musculus (ENS-
MUSP00000049070), G. gallus (ENSGALP00000010281), 
D. rerio (ENSDARP00000099556), D. melanogaster 
(FBpp0088961), and C. elegans (F10B5.4). Crystal struc-
tural modeling of the wild type and mutant TULP1 pro-
teins were constructed with SWISS-MODEL online 
server [10, 11], and displayed with PyMol software.

Results
Clinical findings
Two patients from family A, A-VI:2 and A-VI:3, and six 
patients from family B, B-II:4, B-III:3, B-III:5, B-IV:1, 
B-IV:2 and B-IV:4, were included in the present study 
with their clinical details summarized in Table  1. Oph-
thalmic features of patient A-V:2 were obtained accord-
ing to his medical records, and were presented in Table 1. 
All patients from the two families were clinically diag-
nosed with RP. In family A, all three patients had early 
onset nyctalopia and rapid disease progress. Best cor-
rected visual acuity was light perception for both patients 
A-VI:2 and A-VI:3 at their last visit to our hospital at the 
ages of 25 and 24 respectively. Typical RP presentations 
and macular degeneration were detected upon their oph-
thalmic evaluations (Fig. 2A–G and Table 1). In family B, 
RP onset ages ranged from early childhood to 50  years 
old (Table  1). RP progression also varied among the 6 
patients. Patients B-IV:1 and B-IV:2 reported to have 
nyctalopia since early childhood, while the other four 
patients showed RP symptoms elder than 30-year-old. 
On examination, typical RP presentations were detected 
for all 6 patients, while patient B-II:4 also had chronic 

angle closure glaucoma in her right eye (Fig.  2H–S). 
Noteworthy, all 6 patients presented mild to severe cata-
racts (Table 1). Patient B-III:3 received bilateral cataract 
surgeries 2 years ago. No systemic defect was noticed in 
any of the included patients.

Genetic assessments
To identify the pathogenic mutations, WES with high 
quality was selectively performed on individuals A-IV:3, 
A-VI:2, and A-VI:3 from family A (mean coverage: 
98.16%; mean depth: 70.89×), and patients B-III:5 and 
B-IV:1 from family B (mean coverage: 98.32%; mean 
depth: 104.66×). NGS data were summarized in Addi-
tional file  3: Table  S3. Exon-specific coverage report of 
all known RP genes was presented in Additional file  4: 
Table S4. For family A, patients A-VI:2 and A-VI:3 were 
born to parents with consanguineous marriage, sup-
porting potential autosomal recessive inheritance. WES 
identified 10 homozygous variants and 6 compound het-
erozygous variants shared by patients A-VI:2 and A-VI:3 
(Additional file 1: Table S1). However, Sanger sequencing 
revealed no variant co-segregated with the disease phe-
notype. We thus hypothesized that the two patients may 
have distinct RP causing mutations. Based on WES data, 
patient A-VI:2 carried a recurrent homozygous C8ORF37 
mutation c.555G>A (p.W185*; Fig. 1d and Table 2), while 
patient A-VI:3 had a novel hemizygous OFD1 mutation 
c.358A>G (p.T120A; Fig. 1c and Table 2).

As to family B, WES revealed one homozygous vari-
ant and 18 compound heterozygous variants shared by 
patients B-III:4 and IV:2 (Additional file  2: Table  S2), 
while no variant was validated co-segregated with the 
disease phenotype. According to the family pedigree, 
patients B-IV:1 and B-IV:2 were born to unaffected par-
ents with consanguineous marriage, indicating a poten-
tial autosomal recessive inheritance pattern. However, 
the RP phenotypes of patients B-III:3 and B-III:4 were 
likely inherited from the affected mother B-II:4, suggest-
ing a dominant inheritance mode. Upon this hypoth-
esis, a novel homozygous TULP1 mutation c.1255C>T 
(p.R419W; Fig.  1e and Table  2) was revealed as RP 
causative for patients B-IV:1 and B-IV:2, and a recur-
rent heterozygous RP1 mutation c.2285_2289delTAAAT 
(p.L762Yfs*17; Fig.  1f; Table  2) was found in patients 
B-II:4, B-III:3 and B-III:4. The mutated residue R419 in 
TULP1 was highly conserved among all tested species 
(Fig. 1g). Crystal structures of the wild type and mutant 
TULP1 proteins were obtained based on human TUB 
protein (Protein Data Bank ID: 1S31) with a sequence 
identify of 75.19 and a sequence similarity of 0.54. Our 
data suggested that the substitution from arginine to 
tryptophan at residue 419 would lead to the elimination 
of two hydrogen bonds between residue 419 and residues 

http://www.hgdownload.cse.ucsc.edu/goldenPath/hg19/database/snp135.txt.gz
http://www.hgdownload.cse.ucsc.edu/goldenPath/hg19/database/snp135.txt.gz
ftp://ftp.ncbi.nlm.nih.gov/hapmap
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp
http://yh.genomics.org.cn/
http://www.evs.gs.washington.edu/EVS/
http://exac.broadinstitute.org/
http://exac.broadinstitute.org/
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V488 and S534 (Fig.  1h, i), further supporting that this 
mutation would disturb the tertiary structure of TULP1 
and interrupt its function. Residues R419, N463, V488 

and S534 were conserved between TULP1 and TUB pro-
teins (Fig.  1j). All four mutations identified in the two 
families segregated with the disease phenotype (Fig.  1a, 

Fig. 2 Ophthalmic presentations of included patients. A, B Fundus presentations of patient A-VI:3 (age 24, carrying OFD1 c.358A>G) indicate waxy 
optic disc, attenuated retinal arterioles, macular degeneration, bone spicule-like pigments and atrophy of RPE and choroid in the peripheral retina. 
C Fundus fluorescein angiography (FFA) of patient A-VI:3 notices a combination of speckled hypofluorescent and hyperfluorescent changes in 
both macular and peripheral retina. D Fundus photos of patient A-VI:2 (age 27, carrying C8ORF37 c.555G>A) show similar presentations to patient 
A-VI:3, but with more intensive pigmentations. E FFA of patient A-VI:2 also demonstrates intensive speckled changes of both hypofluorescence 
and hyperfluorescence. F OCT results of patient A-VI:3 indicate attenuated outer nuclear layer (ONL) and RPE with remarkable loss of inner 
segments (IS) and outer segments (OS). G OCT results of patient A-VI:2 show complete loss of IS and OS. H Patient B-III:3 (age 59, carrying RP1 
c.2285_2289delTAAAT) has a waxy optic disc, attenuated retinal arterioles, mild macular degeneration, and intensive bone spicule-like pigment 
deposits in the mid-peripheral retina of both eyes. I Patient B-III:5 (age 54, carrying RP1 c.2285_2289delTAAAT) shows typical RP fundus similar 
to patient B-III:3, including intensive pigmentations and macular degeneration. J Fundus of patient B-IV:1 (age 27, carrying TULP1 c.1255C>T) 
demonstrates attenuated retinal vessels, a waxy optic disc, remarkable macular degeneration, and diffuse pigment deposits in the periphery retina 
of both eyes. K Patient B-IV:2 (age 24, carrying TULP1 c.1255C>T) shows similar fundus presentation to patient B-IV:1, presenting maculopathy and 
diffused pigmentations. L Slight waxy pallor of the optic disc and diffuse pigment deposits in the peripheral retina are revealed in the fundus of 
patient IV:4 (age 31, carrying RP1 c.2285_2289delTAAAT). M Patient II:4 (age 80, carrying RP1 c.2285_2289delTAAAT) shows typical RP fundus with 
intensive pigment deposits. N OCT results of patient B-III:3 indicate attenuated ONL and RPE with loss of IS and OS. O Thickened ONL with cystic 
cavities in the macular region were noticed by OCT in patient B-III:5. P OCT examinations of patient B-IV:1 demonstrate attenuated ONL and RPE 
with complete loss of IS and OS. Q Patient B-IV:2 shows similar OCT results to patient B-IV:1, including attenuated ONL and RPE, and loss of IS/OS. R 
Slightly attenuated ONL is presented in patient B-IV:4. S Typical RP presentations are revealed in patient B-II:4, demonstrating attenuated ONL and 
RPE with loss of IS and OS
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Table 3 List of mutations reported in C8ORF37, OFD1 and TULP1 associated retinopathies

Gene Variation Disease References

Nucleotide Amino acid Domain

C8ORF37 c.155+2T>C – – CRD [56]

C8ORF37 c.156−2A>G – – CRD [15, 18]

C8ORF37 c.243+2T>C – – RP [21]

C8ORF37 c.244−2A>C – – RP [17]

C8ORF37 c.374+2T>C – – EORD [20]

C8ORF37 c.497>A p.L166* – RP [15, 18]

C8ORF37 c.529C>T p.R177W – CRD, BBS [15, 18, 19, 22]

C8ORF37 c.545A>G p.Q182R – RP [15, 18]

C8ORF37 c.555G>A p.W185* – RP [17], this study

C8ORF37 c.575delC p.T192Mfs*28 – EORD [20]

OFD1 p.T120A – RP This study

OFD1 IVS9+706A>G p.N313fs*330 Coiled coil domain RP [13]

TULP1 c.3G>A p.M1I – RP [25]

TULP1 c.99+1G>A – – LCA, RP [23, 26]

TULP1 c.280G>T p.D94Y – LCA [27]

TULP1 c.286_287delGA p.E96Gfs*77 – RP [57]

TULP1 c.350−2delAGA – – RP [28]

TULP1 c.394_417del p.E120_D127del – RP [29]

TULP1 c.539G>A p.R180H – LCA [30]

TULP1 c.627delC p.S210Qfs*27 – LCA [31]

TULP1 c.629C>G p.S210* – RP [32]

TULP1 c.718+2T>C – – LCA, RP [33]

TULP1 c.725_728delCCAA p.P242Qfs*16 – LCA [34]

TULP1 c.901C>T p.Q301* Tubby domain LCA, CRD [35, 36]

TULP1 c.937delC p.Q301fs*9 Tubby domain RP [28]

TULP1 c.932G>A p.R311Q Tubby domain RP [37]

TULP1 c.956G>A p.G319D Tubby domain RP [38]

TULP1 c.961T>G p.Y321D Tubby domain LCA [34]

TULP1 c.999+5G>C – Tubby domain LCA, RP [33]

TULP1 c.1025G>A p.R342Q Tubby domain RP [37]

TULP1 c.1047T>G p.N349K Tubby domain RP [39]

TULP1 c.1064A>T p.D355V Tubby domain LCA [34]

TULP1 c.1087G>A p.G363R Tubby domain CRD [40]

TULP1 c.1081C>T p.R361* Tubby domain LCA [41]

TULP1 c.1102G>T p.G368W Tubby domain LCA [26]

TULP1 c.1112+2T>C – Tubby domain RP [42]

TULP1 c.1113–2A>C – Tubby domain LCA [34]

TULP1 c.1138A>G p.T380A Tubby domain LCA, RP [43, 45, 46]

TULP1 c.1145T>C p.F382S Tubby domain RP [47]

TULP1 c.1198C>T p.R400W Tubby domain LCA, RP, CRD [26, 48, 49]

TULP1 c.1199G>A p.A400Q Tubby domain RP [50]

TULP1 c.1204G>T p.E402* Tubby domain LCA [26]

TULP1 c.1224+4A>G – Tubby domain RP [29]

TULP1 c.1246C > T p.R416C Tubby domain RP [25]

TULP1 c.1255C>T p.R419W Tubby domain RP This study

TULP1 c.1258C>A p.R420S Tubby domain RCD [51]

TULP1 c.1259G>C p.R420P Tubby domain RP [23]

TULP1 c.1318C>T p.R440* Tubby domain LCA [31]
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b), and were confirmed absent in 150 Chinese controls 
free of major ocular problems.

Discussion
RP is a genetically heterogeneous disease with 83 dis-
ease causative genes and hundreds of mutations. In 
this report, molecular test reveals the coexistence of 
mutations affecting distinct RP causing genes in two 
RP families, thus providing novel insights into genetic 
assessments in complicated pedigrees. Among the four 
mutations identified in the two families, two were novel 
(OFD1 p.T120A and TULP1 p.R419W) and two were 
recurrent (C8ORF37 p.W185* and RP1 p.L762Yfs*17 
[Human Gene Mutation Database ID: CD991855]).

OFD1 mutations have been reported to cause X-linked 
recessive Joubert syndrome, orofaciodigital syndrome 
and isolated RP (Table 3) [12, 13]. OFD1, protein encoded 
by the OFD1 gene, is a crucial component of the cen-
trioles. OFD1 is involved in ciliogenesis regulation and 
exhibits neuroprotective roles [14]. Herein, a hemizygous 
OFD1 missense mutation is associated with a severe form 
of RP presenting early onset age and fast disease progres-
sion. C8ORF37 mutations correlate with a wide spectrum 
of autosomal recessive retinopathies ranging from RP to 
Bardet-Biedl syndrome (Table  3) [15–22]. The encoded 
C8ORF37 protein is a ciliary protein located at the base 
of the photoreceptor connecting cilia [16], while its role 

in modulating retinal function is not fully elucidated. In 
this study, the patient carrying homozygous nonsense 
C8ORF37 mutation presents early onset RP with macular 
involvement, which is similar to previous reports [15, 17]. 
TULP1 mutations are implicated in autosomal recessive 
RP and LCA etiologies (Table  3) [22–57]. TULP1 pro-
tein plays crucial roles in maintaining retinal homeosta-
sis. According to previous reports, TULP1 interacts and 
co-localizes with F-actin in photoreceptor cells of bovine 
retina [58], and RPE phagocytosis ability was remarkably 
reduced in TULP1−/− mice [59]. Thus, TULP1 is required 
for maintaining regular functions of photoreceptors and 
RPE cells. We herein identified TULP1 mutations in two 
siblings demonstrating RP with early onset and quick 
progression. Further confirmatory functional studies are 
still needed to better illustrated pathogenesis of the iden-
tified novel mutations.

Conclusions
In summary, we demonstrate the coexistence of diverse 
inheritance modes and mutations affecting distinct 
disease causing genes in two RP families. Our findings 
reinforce the genetic complexity of RP, provide novel 
insights into the assessments of complicated pedigrees 
with consanguinity, and highlight the need for exten-
sive molecular evaluations in such challenging families 
involving diverse inheritance modes and mutations.

CRD cone-rod dystrophy, RP retinitis pigmentosa, EORD early-onset retinal dystrophy, BBS Bardet–Biedl syndrome, LCA Leber congenital amaurosis

Table 3 (continued)

Gene Variation Disease References

Nucleotide Amino acid Domain

TULP1 c.1349G>A p.W450* Tubby domain LCA [27]

TULP1 c.1376T>A p.I459K Tubby domain RP [23, 24]

TULP1 c.1376T>C p.I459T Tubby domain RP [42]

TULP1 c.1376_1377delTA p.I459Rfs*12 Tubby domain LCA [34]

TULP1 c.1381C>G p.L461V Tubby domain LCA, RP [33]

TULP1 c.1444C > T p.R482W Tubby domain RP [44, 48]

TULP1 c.1445G>A p.A482Q Tubby domain RP [46]

TULP1 c.1466A>G p.K489R Tubby domain RP [29, 43, 52, 57]

TULP1 c.1472T>C p.F491L Tubby domain RP [23]

TULP1 c.1495+1G>A – Tubby domain RP [24]

TULP1 c.1495+2_1495+3insT – Tubby domain RP [53]

TULP1 c.1495+4A>C – Tubby domain RP [57]

TULP1 c.1496−6C>A – Tubby domain RP [23, 29]

TULP1 c.1511_1521del p.L504fs*140 Tubby domain RP [44]

TULP1 c.1518C>A p.F506L Tubby domain LCA [31]

TULP1 c.1561C>T p.P521S Tubby domain RP [57]

TULP1 c.1582_1587dup p.F528_A529dup Tubby domain LCA, RP [54]

TULP1 c.1604T>C p.F535S Tubby domain LCA [55]
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