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Abstract

its application to clinical practice.

with the initiation and progression of GC again.

tigate the diagnostic value of miR-106.

Background: Recently, accumulating evidences have revealed that microRNA-106 (miR-106) may serve as a non-
invasive and cost-effective biomarker in gastric cancer (GC) detection. However, inconsistent results have prevented

Methods: As a result of this, a comprehensive meta-analysis was conducted to evaluate the diagnostic performance
of miR-106 alone and miR-106-related combination markers for GC detection. Meanwhile, an integrative bioinformat-
ics analysis was performed to explore the function of miR-106 at the systems biology level.

Results: The results in our work showed that sensitivity of 0.71 (95% Cl 0.65-0.76) and specificity of 0.82 (0.72-0.88),
with the under area AUC (area under the curve) value of 0.80 (0.76-0.83) for miR-106 alone. Prospectively, miR-106-re-
lated combination markers improved the combined sensitivity, specificity and AUC, describing the discriminatory
ability of 0.78 (0.65-0.87), 0.83 (0.77-0.89) and 0.88 (0.85-0.90) in the present analysis. Furthermore, targets of miR-106
were obtained and enriched by gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis,
revealing their associations with the occurrence and development of GC. Hub genes and significant modules were
identified from the protein—protein interaction networks constructed by miR-106 targets and found closely associated

Conclusions: Our comprehensive and integrative analysis revealed that miR-106 may be suitable as a diagnostic
biomarker for GC while microRNA combination biomarkers may provide a new alternative for clinical application.
However, it is necessary to conduct large-scale population-based studies and biological experiments to further inves-
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Background

Gastric cancer (GC), a major public health challenge, is
one of the leading causes of cancer death worldwide [1].
There are limited detection methods for early diagnosis
and few effective screening procedures in some coun-
tries. The most reliable program for diagnosis is mainly
based on endoscopy and biopsy [2]. However, this is
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invasive and inconvenient for patients to undergo. Con-
sequently, most patients can only be diagnosed precisely
in advanced stages when the clinical outcomes are poor
[3]. Therefore, there is a great need to explore new accu-
rate and efficient, preferentially non-invasive, markers for
early detection of GC.

In recent time, accumulating evidences have suggested
that microRNAs may serve as novel biomarkers for can-
cer detection. MicroRNAs are a class of small non-coding
RNAs with intermediate posttranscriptional regulation
of the target genes [4]. A large number of studies have
demonstrated that microRNAs play vital roles in a wide
variety of physiological processes including cancer cell
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growth, differentiation, invasion, and metastasis [5].
Moreover, a number of studies have indicated that circu-
lating microRNAs have high degree of stability and toler-
ance even under unfavorable physiochemical conditions
including extreme variations in pH, temperature and
freeze—thaw cycles [6]. It is also promising that microR-
NAs have outstanding stability in multiple clinical sam-
ples including plasma, serum, feces and tissue, which
enables them to be detectable effortlessly [7]. Given their
critical involvement in the vital biological processes and
perfect biomarker features mentioned above, microR-
NAs could be considered as good candidates for using as
non-invasive markers, and the application of them as bio-
markers for early detecting GC is viable [8].

As one of the most representative microRNA bio-
markers, microRNA-106 (miR-106) has been extensively
studied by a great number of researches in several can-
cers. MiR-106 belongs to the miR-17 family, one of the
most common studied onco-microRNA groups, which
includes miRs-17, -20a, -20b, -93, -106a and -106b. MiR-
106a is a member of the miR-106a-92 cluster located on
chromosome Xq26.2 while miR-106b is located at 7q21
[9, 10]. There have been several studies indicating that
both of investigated miR-106 could be expressed in the
same individuals of gastric tumour tissues. Several stud-
ies have previously reported that circulating miR-106
could specifically serve as a pivotal and promising bio-
marker for GC [11]. Nevertheless, the suitability of cir-
culating miR-106 in early detection and diagnosis of
GC remains inconsistent due to different sample sizes,
disease statuses, sample sources, detection methods,
and other uncontrolled factors. Moreover, the potential
molecular mechanism of miR-106 is still poorly under-
stood for the present insufficient knowledge.

In the present study, a comprehensive meta-analysis
was performed to obtain a better understanding of the
clinical feasibility of miR-106 as promising biomarker for
early detection and diagnosis of GC. By focusing not only
on a single miR-106 marker, we explored whether com-
bination biomarkers based on miR-106 are more effec-
tive than individual miR-106. Furthermore, an integrative
bioinformatics analysis was carried out to evaluate the
functions of miR-106 at the systems biology level.

Methods

Literature search strategy

A comprehensive computerized literature search for arti-
cles (up to December 27, 2017) was carried out based on
several electronic databases including PubMed, EMbase,
Web of Science and the Cochrane Library using the fol-
lowing search terms: (“cancer” OR “tumor” OR “carci-
noma” OR “neoplasm”) AND (“gastric” OR “stomach”
OR “gastrointestinal” OR “digestive” OR “GC”) AND
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(“microRNA-106" OR “miR-106" OR “miR-106a” OR
“miR-106b”). In addition, the references of identified arti-
cles were examined for all relevant studies.

Eligibility criteria

The studies qualified to be included should meet the fol-
lowing criteria: (1) they investigated the potential of cir-
culating (blood, serum, and plasma) or other sources of
miR-106 for detecting GC; (2) they used the gold stand-
ard to make a definitive diagnosis of GC; (3) they pro-
vided adequate data which can be used to calculate the
rates of true positive (TP), false positive (FP), false nega-
tive (FN), and true negative (TN).

In addition, the studies were excluded if (1) they were
obviously not associated with our topic; (2) they pub-
lished in forms of reviews, letters, case reports, or edito-
rials; (3) they were non-English publications; or (4) they
provided unqualified data.

Data extraction

Data were collected independently by two investigators
(Peng and Shen) from the articles based on standard-
ized forms. The following characteristics from each study
were extracted: (1) first author; (2) publication year; (3)
research country; (4) study population; (5) patient char-
acteristics (age, gender, cancer type, etc.); (6) sample
sources; (7) participants numbers; (8) miR-106 measur-
ing methods, (9) diagnostic data including sensitivity,
specificity, true positive (TP), false positive (FP), false
negative (FN) and true negative (TN).

Quality assessment

The quality of each study enrolled in our analysis was
assessed independently by two investigators on the basis
of the QUADAS-2 (Quality Assessment of Diagnostic
Accuracy Studies 2) [12]. The QUADAS-2 assessment
tool contains 4 domains including patient selection,
index test, reference standard, and flow and timing sup-
ported by signaling questions (yes, no, or unclear), risk
of bias (high, low, or unclear) and concerns about appli-
cability (high, low, or unclear). An answer of “yes” gets
a score of 1, which indicates a low risk of bias, while an
answer of “no” or “unclear” gets a score of 0 which means
a potential high risk of bias.

Statistical analysis for meta-analysis

The overall diagnostic results were estimated using the
TP, FP, EN, and TN test results extracted directly from
each study or via recalculation based on sensitivity and
specificity together with other data retrieved from each
study. The bivariate meta-analysis model was applied to
calculate the pooled sensitivity, specificity, positive like-
lihood ratios (PLR), negative likelihood ratios (NLR),
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and diagnostic odds ratio (DOR) along with their corre-
sponding 95% confidence intervals (CIs) [13]. The sum-
mary receiver operator characteristic (SROC) curve was
generated based on the sensitivity and specificity of each
study [14]. In addition, we calculated the corresponding
area under the SROC curve (AUC) for the quantitative
assessment of diagnostic power. Furthermore, the heter-
ogeneity across studies was examined by using Q test and
I? test [15]. A P value<0.1 from Q test and an I>>50%
from I? test suggest the presence of significant hetero-
geneity among eligible study. The heterogeneity caused
by threshold effect was quantified using Spearman cor-
relation analysis. Possible sources of heterogeneity in the
aspect of non-threshold effect were explored by carrying
out subgroup, meta-regression, and sensitivity analyses
[16]. We examined the potential publication bias through
Deeks’ funnel analysis [17]. Statistical analyses were per-
formed in STATA (version 14.0) and Meta-DiSc statis-
tical software (version 1.4) software. Values of P<0.05
were considered to represent statistical significance.

Integrative functional analysis of miR-106

To further explore the function of miR-106, an inte-
grative functional analysis was performed. Targets of
miR-106 were obtained from miRTarBase, a resource
for experimentally validated microRNA-target interac-
tions [18]. Updated in 2018 with plenty of integrative
improvements, miRTarBase has been a more compre-
hensively annotated microRNA-target interactions data-
base approved by experimental evidence compared
with its previous versions and other databases in the
field of microRNA-target prediction research. We con-
ducted GO and KEGG pathway enrichment analysis by
separately mapping the target mRNAs of miR-106a and
miR-106b to the online tool DAVID (Database for Anno-
tation, Visualization, and Integrated Discovery) [19-21].
P-value <0.05 and count>2 were considered as the cut-
off criteria.

PPI network analysis

The target mRNAs regulated by miR-106a and miR-
106b were mapped to the Search Tool for the Retrieval
of Interacting Genes (STRING) database to retrieve
the PPI information, respectively [22]. In the present
study, we only selected the PPI data with the combined
score >0.4. Network visualization was used the power-
ful tool Cytoscape [23]. Meanwhile, we identified several
hub genes of miR-106a and miR-106b targets by using
three different methods including betweenness central-
ity, closeness centrality and degree centrality based on
the plug-in CytoNCA [24]. In addition, the significant
modules in the PPI network were screened by plug-in
Molecular Complex Detection (MCODE) of Cytoscape.
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As for a further comment, KEGG pathway analysis was
performed with the hub genes and genes involved in the
selected modules by DAVID.

Results

Study selection

After initial searches of the databases mentioned above, a
total of 369 articles were retrieved preliminarily, and the
flow diagram of the literature search was shown in Fig. 1.
After careful exclusion of inappropriate ones according
to the inclusion criteria step by step, ten published arti-
cles were finally included in our study, including twelve
studies for miR-106 alone and five for miR-106-related
combination markers [25—34].

Baseline characteristics of included studies

Among the included publications for evaluating miR-106
alone in detecting GC, a total of 10 articles on 12 studies
were analyzed involving 788 cases and 701 healthy peo-
ple as the control group. There were five studies inves-
tigating serum miR-106, five studies assessing plasma
miR-106, one study evaluating tissue miR-106 and one
study involving miR-106 in gastric juice. Among all these
studies, six focused on miR-106a and while 6 studies con-
centrated on miR-106b. None of the studies in Table 1
evaluated both miRNAs (miR-106a and miR-106b). With
respect to value of miR-106-related combination mark-
ers, 4 publications on 5 studies involved 322 patients and
263 controls. Sample sources were all serum (n=5). All
the studies measured the expression level of miR-106
and the related combination markers by using the quan-
titative real-time polymerase chain reaction (qQRT-PCR)
assay. The detailed information was shown in Tables 1
and 2. The quality assessments of the included studies
indicated that overall they were of moderate to high qual-
ity, which enhanced the reliability of our analysis.

Diagnostic value of miR-106 in GC

As indicated in the forest plot (Fig. 2a, b), the existence
of significant heterogeneity among individual studies
was observed as the Q value was 31.46 (P<0.001) and
I value was 65.04% (95% CI 43.54—86.53) for sensitiv-
ity, and the Q value was 94.70 (P<0.001) and I* value
was 88.38% (95% CI 83.04-93.72) for specificity. Thus, a
random-effects model was applied to evaluate the pooled
results. Overall, the pooled assessment outcomes were as
follows: sensitivity, 0.71 (95% CI 0.65-0.76); specificity,
0.82 (0.72-0.88); PLR, 3.86 (2.48-6.01); NLR, 0.36 (0.28—
0.45); and DOR, 10.84 (5.88-20.00), respectively. The
pooled PLR meant that patients with GC had a nearly
four-fold greater chance of being miR-106 positive than
that for patients without GC while the combined NLR
of 0.36 indicated that expected proportion of patients
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having GC is 36% if the miR-106 is negative. The DOR
value suggested that someone who was screened to be
positive for GC with a high expression of miR-106 had
a 10.84-fold higher possibility of actually suffering from
GC than someone with a negative GC result. Finally, the
SROC curve (Fig. 3a) was plotted and the corresponding
AUC was calculated of 0.80 (0.76-0.83), indicating mod-
erate diagnostic accuracy overall.

The threshold effect may result from the differences
between sensitivity and specificity. The representative
way of assessing the threshold effect is estimating Spear-
man’s correlation coefficient of sensitivity and specificity.
According to our results, Spearman’s correlation coeffi-
cient was calculated to be —0.049, with a P value of 0.88
(P>0.05), suggesting that no obvious heterogeneity gen-
erating from the threshold effect.

In the present study, subgroup analysis was applied in
order to identify the potential sources of heterogeneity
(see Table 3). The results implied that plasma miR-106

had relatively high diagnostic accuracy for GC detec-
tion compared with serum miR-106, with sensitivity of
0.77 (95% CI 0.69-0.83) vs. 0.64 (0.56-0.72), specific-
ity of 0.82 (0.67-0.91) vs. 0.82 (0.66—0.91), and AUC of
0.83 (0.80-0.86) vs. 0.73 (0.69-0.77). Among the twelve
studies, ten studies detected the miR-106 in circulating
samples. Hence, subgroup analysis was also performed
by circulating samples. The pooled sensitivity, specificity
and AUC for circulating miR-106 were 0.71 (0.64—0.78),
0.82 (0.72-0.89), and 0.81 (0.77-0.84). We found no sig-
nificant difference in the diagnostic accuracy between
studies with miR-106a and miR-106b, with AUC of
0.78 (95% CI 0.74-0.82) vs. 0.81 (0.77-0.84) although
miR-106b exhibited higher diagnostic sensitivity of 0.74
(0.65-0.81) compared with studies with miR-106a, for
which the value was 0.68 (0.60—0.75) while miR-106a was
associated with specificity of 0.85 (0.74—0.92) compared
with the value for miR-106b of 0.78 (0.63—0.88). Sub-
group analysis by the sample size suggested that a large
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sample size had higher specificity and AUC of 0.85 (0.75—
0.91) and 0.82 (0.78-0.85) compared to a small sample
size with specificity of 0.73 (0.56-0.85) and AUC of 0.75
(0.71-0.78), indicating large sample size had relatively
overall high diagnostic accuracy than small sample size,
although a small sample size exhibited higher sensitivity
of 0.74 (0.66—0.80) compared with a large sample size of
0.70 (0.62—0.77).

Meta-regression analysis was conducted to reveal the
potential sources of the heterogeneity. We considered 5
covariates (publication year, country, sample size, sample
source and miR-106 classification) may contribute to the
heterogeneity. The results showed that neither publica-
tion year, nor sample size or sample source or miR-106
classification was the source of heterogeneity, but the
country has influence in specificity (P <0.05).

The goodness of fit and bivariate normality analy-
ses suggested that the bivariate random-effects model
was robust for the meta-analysis (Fig. 4). Besides that,
one deviated study that may affect the robustness of the
meta-analysis was identified with the method of influ-
ence analysis and outlier detection. After excluding the
deviated study, no significant changes in sensitivity (0.71
vs. 0.69), specificity (0.82 vs. 0.80), PLR (3.86 vs. 3.49),
NLR (0.36 vs. 0.38), DOR (10.84 vs. 9.07), and AUC (0.80
vs. 0.77) were observed between the overall analysis with
and without outliers, which indicated that there was high
robustness in our meta-analysis.

Diagnostic value of miR-106-related combination marker
in GC

As shown in Fig. 2c, d, I? values for sensitivity and speci-
ficity were 76.97% (95% CI 56.57-97.38%, P <0.001) and
49.95% (0.00—100.00%, P<0.001), respectively, indicat-
ing significant heterogeneity for sensitivity and moder-
ate heterogeneity for specificity. The pooled sensitivity,
specificity, PLR, NLR, and DOR are 0.78 (0.65-0.87),
0.83 (0.77-0.89), 4.69 (2.98-7.37), 0.27 (0.15-0.46), and
17.68 (6.78-46.09), respectively. The SROC curve is
shown in Fig. 3d with AUC=0.88 (0.85-0.90), indicating
a relatively higher accuracy in GC detection. Since all the
combination markers were detected in serum, we com-
pared them with serum miR-106 alone (Fig. 3c). Serum
miR-106-related combination marker had a higher level
of predictive power than serum miR-106 alone, with sen-
sitivity of 0.78 (0.65—-0.87) vs. 0.64 (0.56—0.72), specificity
of 0.83 (0.77-0.89) vs. 0.82 (0.66—0.91), and AUC of 0.88
(0.85-0.90) vs. 0.73 (0.69—-0.77).

In the present study for combination biomarkers,
Spearman’s rank correlation was also evaluated to explore
the potential heterogeneity from threshold effect. It was
revealed from the results that heterogeneity may generate
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from the threshold effect, from a Spearman’s correlation
coefficient of —0.90 with P=0.037.

Publication bias

Begg’s funnel plot and Egger’s test were applied to evalu-
ate the presence of publication bias (Fig. 5). The fun-
nel plots indicated no symmetry for all enrolled studies
and Deeks’ test returned P values of 0.56 and 0.45 for
miR-106 and miR-106-related combination markers,
respectively, revealing no obvious publication bias in the
present study. However, it is difficult for judging publica-
tion bias whether or not exists due to the limited num-
ber of studies enrolled in the analysis for miR-106-related
combination markers.

Integrative functional analysis results of miR-106

Based on the above results, we wondered why miR-106
could serve as a promising biomarker for detecting GC.
We supposed that if the identified miR-106 could be a
biomarker of GC, the genes regulated by miR-106 should
also be involved in the initiation and progression of GC.
Therefore, we performed GO and pathway enrichment
analyses on targets of miR-106a and miR-106b to explore
the function and pathogenesis of them, respectively.

We performed the GO enrichment analysis by sepa-
rately mapping the target genes of miR-106a and miR-
106b to the online software DAVID at three different
levels: molecular function (MF), cell component (CC)
and biological processes (BP). The top 10 items of each
GO level that were significantly enriched by the target
genes were illustrated at Fig. 6. The enriched GO terms
in BP for miR-106a mainly included the regulation of
transcription, apoptotic process while the enriched GO
terms in BP for miR-106b were also associated with regu-
lation of transcription and apoptotic process. For the CC
items, the target genes of miR-106a were enriched in the
hallmarks of a cell such as nucleoplasm, cytosol, cyto-
plasm, nucleus and the target genes of miR-106b were
also enriched in the same components including nucle-
oplasm, cytosol, cytoplasm and nucleus. Most GO MF
items for miR-106a converged on the binding functions
such as protein binding, DNA binding, transcription fac-
tor binding while most GO MF items for miR-106b were
also related to protein binding, DNA binding and tran-
scription factor binding.

The top 20 significantly enriched pathways of miR-106a
and miR-106b were outlined in Fig. 7a, b, respectively. To
our surprise, the enriched KEGG terms of miR-106a and
miR-106b were approximately the same. What’s more,
we identified several pathways from the top 20 enriched
KEGG terms, namely pathways in cancer, p53 signaling
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chromosome, miR-106a and miR-106b may have the
similar functions and could be both used in detecting
GC. Meanwhile, the GO and KEGG pathway enrich-
ment results explained why miR-106 why miR-106 could
serve as a promising biomarker for detecting GC to some

pathway, cell cycle, TGF-beta signaling pathway and Pro-
teoglycans in cancer, which were related to the occur-
rence and development of GC.

The consistent enrichment results of miR-106a and
miR-106b including GO and KEGG pathway analy-

sis indicated that although the different location on extent.
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Table 3 Pooled results of diagnostic accuracy of miR-106 and combination biomarkers in gastric cancer
Analysis Number of studies  Se (95% Cl) Sp (95% CI) AUC (95% Cl)
Individual Country
China 9 0.71(0.64-0.77) 0.87 (0.79-0.91) 0.83 (0.80-0.86)
Japan 3 0.70 (0.62-0.76) 0.61 (0.54-0.68) 0.70 (0.67-0.74)
Sample size
<100 4 0.74 (0.66-0.80) 0.73 (0.56-0.85) 0.75(0.71-0.78)
>100 8 0.70(0.62-0.77) 0.85(0.75-0.91) 0.82(0.78-0.85)
Sample type
Plasma 5 0.77 (0.69-0.83) 0.82 (0.67-0.91) 0.83 (0.80-0.86)
Serum 5 0.64 (0.56-0.72) 0.82 (0.66-0.91) 0.73 (0.69-0.77)
Circulating 10 0.71 (0.64-0.78) 0.82 (0.72-0.89) 0.81(0.77-0.84)
Gastric juice 1 0.74 (0.58-0.86) 0.89 (0.77-0.96) 0.87 (0.80-0.94)
Tissue 1 0.63 0.64 0.67 (0.53-0.80)
miRNA profiling
miR-106a 6 0.68 (0.60-0.75) 0.85(0.74-0.92) 0.78 (0.74-0.82)
miR-106b 6 0.74 (0.65-0.81) 0.78 (0.63-0.88) 0.81(0.77-0.84)
Overall 12 0.71 (0.65-0.76) 0.82(0.72-0.88) 0.80 (0.76-0.83)
Outliers excluded 11 0.69 (0.64-0.74) 0.80 (0.70-0.87) 0.77 (0.73-0.80)
Combination Overall 5 0.78 (0.65-0.87) 0.83(0.77-0.89) 0.88 (0.85-0.90)
AUC area under the curve, Se sensitivity, Sp specificity, 95% Cl 95% confidence interval
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PPI network construction and identification of key target
nodes

The information retrieved by STRING was integrated
and set up the PPI network of miR-106a and miR-
106b targets, respectively. As a result, a PPI network
with statistical significance made up of 639 nodes was
identified with the set of 896 target genes of miR-106a.
Meanwhile, with the set of 1156 target genes of miR-
106b, a statistically significant network consisting of
960 nodes were screened. We estimated three network
parameters including degree centrality, betweenness
centrality, and closeness centrality of the constructed
network to explore the relationships between micro-
RNA targets. Each method screened the hub genes in
the network. Top 50 genes evaluated by the three meth-
ods in the PPI network were screened and intersected.
Finally, 30 and 29 genes which could be screened by
all the three methods were identified as hub genes for
miR-106a and miR-106b, respectively. The regulatory
networks were reconstructed with miR-106a and miR-
106b and their identified hub nodes, plotted in Fig. 8.
Furthermore, we evaluated the biological function of
the selected key miR-106 targets, we found that these
key target nodes regulated by miR-106a and miR-106b
both played a role in FoxO signaling pathway, pathways
in cancer, PI3K-Akt signaling pathway, cell cycle, and
p53 signaling pathway (Fig. 8).

Next, active modules were identified (Fig. 9). Accord-
ing to KEGG pathway enrichment analysis, the genes
involved in the significant module of miR-106a targets
network were mainly associated with p53 signaling
pathway, pathways in cancer, FoxO signaling pathway,
microRNAs in cancer, PI3K-Akt signaling pathway and
cell cycle while the genes involved in the significant
module of miR-106b targets network were related to
pathways in cancer, p53 signaling pathway, FoxO sign-
aling pathway, microRNAs in cancer and cell cycle.

Discussion

Over the decades, microRNAs have gained great atten-
tion in scientific researches for cancer detection, diag-
nosis, and treatment as they possess perfect biomarker
characteristics and are highly involved in the occur-
rence and development of a variety of cancers [35]. As
one of the most researched microRNAs, miR-106 has
been suggested by emerging evidences that it could be
a novel potential biomarker for GC detection. However,
the detection accuracy was inconsistent among a series
of quantitative analyses. These conflicting conclusions
prompted us to employ this comprehensive and up-
to-date research so that a conclusion on the diagnos-
tic power of miR-106 for monitoring GC can be drawn.
Meanwhile, we conducted an integrative functional anal-
ysis of miR-106 to understand the question why it could
help distinguish GC patients from normal controls.
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In the present study, we found that miR-106 achieved
the overall pooled sensitivity of 0.71, specificity of 0.82,
and AUC of 0.80, indicating a moderate overall accu-
racy. Circulating miR-106 as a more researched diagnos-
tic marker in GC detection compared with other sample
sources yielded a pooled sensitivity of 0.71, specificity of
0.82, and AUC of 0.81. Subgroup analysis indicated that
sample type and sample size may influence the diagnos-
tic accuracy. Specifically, it was revealed that plasma-
based assays and miR-106 assays with a large sample size
had significantly better overall diagnostic accuracy than
serum-based ones and miR-106 assays with a small sam-
ple size, respectively. Meanwhile, although located in
different chromosomes, miR-106a yielded a similar diag-
nostic accuracy compared with miR-106b.

Up to now, most attention on biomarker prediction in
GC has been absorbed in single biomarkers. Actually,
single biomarker is hard to reveal GC evolutionary pro-
cess at the systems biology level as GC is a highly hetero-
geneous disease. On the contrary, combination markers
may be more reliable with greater power for explaining
the internal mechanisms of GC [36]. Therefore, we per-
formed an analysis for miR-106-related combination
markers in GC to investigate whether they were more
powerful than miR-106 alone in detecting GC. It is worth
noting that serum miR-106-related combination markers
had a higher level of predictive power than serum miR-
106 alone. However, it is difficult for us to conduct fur-
ther investigations due to the limited number of studies

enrolled in the analysis for miR-106-related combination
markers.

We also performed integrative and comprehensive bio-
informatics analysis to explore the function of miR-106
at the systems biology level. Most GO terms enriched
by miR-106a and miR-106b target genes were both sig-
nificantly associated with the regulation of transcription,
apoptotic process at the BP level, basic cell structures at
CC level along with the binding functions such as pro-
tein binding, DNA binding, transcription factor binding
at MF level. Furthermore, the enriched KEGG pathways
of miR-106a and miR-106b target genes were approxi-
mately the same, including pathways in cancer, p53 sign-
aling pathway, cell cycle, TGF-beta signaling pathway and
proteoglycans in cancer, which were highly associated
with the occurrence and development of GC. Interest-
ingly, although the different locations on chromosome,
the targets of miR-106a and miR-106b fall into the simi-
lar functional modules, pathways or networks and then
become more consistent when enriched to systems biol-
ogy levels. In general, functionally concerned genes often
emerge a coordinated expression to exert their roles in
the same functional modules, indicating that miR-106a
and miR-106b may have a synergistic effect in the initia-
tion and progression of GC. The above results not only
demonstrated the robustness of our study but explained
why miR-106 could serve as a promising biomarker for
detecting GC to some extent.
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To further reveal the correlations among the target
genes of miR-106a and miR-106b, we performed the PPI
network analysis. Through PPI network construction,
a series of hub genes were screened by three different

network analysis methods. In our study, it was revealed
that these key target nodes regulated by miR-106a and
miR-106b both participated in FoxO signaling pathway,
pathways in cancer, PI3K-Akt signaling pathway, cell
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cycle, and p53 signaling pathway. What’s more, module
analysis of the PPI network revealed that the most signifi-
cant modules of miR-106a and miR-106b targets network
were both associated with p53 signaling pathway, path-
ways in cancer, FoxO signaling pathway, microRNAs in
cancer, PI3K-Akt signaling pathway and cell cycle. PPI
network analysis including hub genes identification and
module analysis revealed the function of miR-106 again.
Based on above results, we found that several pathways
were repeatedly mentioned in KEGG pathway analysis
enriched by all the miR-106a and miR-106b targets, key
hub targets and network modules, including p53 signal-
ing pathway, pathways in cancer, FoxO signaling pathway,
PI3 K-Akt signaling pathway and cell cycle. Pathways
in cancer consist of several well-known signaling path-
ways including TGF-f, MAPK, Wnt and p53, which
play important roles in cell apoptosis, proliferation, dif-
ferentiation, invasion and metastasis. The well-studied
p53 pathway, perhaps the most vital determinant of

carcinogenesis, has been inextricably linked to estab-
lishment and progression of almost all types of cancer
including GC [37, 38]. Cell cycle, another very important
signaling pathway, contributes to the malignant progres-
sion of various human cancers including GC due to the
involvement in cell growth, differentiation and apopto-
sis, as well as cancer development and metastasis [39].
Recent studies have proposed that the activation of the
PI3K/Akt pathway may be responsible for the tumorigen-
esis by playing a pivotal role in control of cell cycle and
survival of cell [40]. The information gathered so far indi-
cates that FoxO signaling pathway could play vital roles in
mediating apoptosis and thus determines cell death and
survival [41]. In short, all the above pathways have been
verified by the published literatures involved in the tumo-
rigenesis and progression of GC, which may provide new
ideas for the molecular mechanisms of miR-106 in GC.
Although mounting evidence from diagnostic tests
indicated miR-106 as a promising GC marker, difficulty
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still remains for its application to clinical practice. There
are several points we can do to optimize the miR-106
assay. Firstly, an appropriate standard cut-off value, con-
sistent detection and normalization methods for miR-106
expression are required. Secondly, it was revealed from
our results that plasma miR-106 may be a more power-
ful marker for detecting GC compared with serum miR-
106. So plasma could be selected as the suitable sample
source for further detection. Thirdly, as indicated in our
study, sample size influenced the sensitivity and speci-
ficity. Larger sample size exhibited higher diagnostic
accuracy. Thus, further large-scale prospective studies
are warranted to develop integrative diagnostic models
with more appropriate and better prediction capacity.
Fourthly, although miR-106a and miR-106b are mem-
bers of different paralogous clusters and located on dif-
ferent chromosomes, there has been some evidence in
the literature, that both these two microRNAs can co-
expressed in gastric tumor tissues. Based on our results,
both miR-106a and miR-106b could be evaluated in diag-
nostic samples for diagnostic purposes of gastric cancer.
In addition, combination biomarkers, which are combi-
nations of several markers, have been shown to improve
the prediction accuracy compared with single biomarker.
According to our findings, single miR-106 was signifi-
cant but not strong enough to undertake early diagnosis,
while miR-106-related combination markers improved
the diagnostic accuracy. The combination of miR-106 and
other microRNAs may be the right way to solve the lim-
ited accuracy. Moreover, it has been reported that combi-
nation of protein-biomarkers and microRNAs may be an
effective way to improve the diagnostic accuracy [42]. So
more attempts are required for evaluating the combina-
tion biomarkers in the further study.

Our study had several important strengths. First, we
carried out a relatively thorough systematic search and
applied a comprehensive analytic approach to investi-
gate the diagnostic power of miR-106 in patients with
GC. Next, we evaluated the diagnostic value of miR-
106-related combination markers in GC for the first
time. It was suggested that the combination of miR-106
with other microRNAs improved the diagnostic accu-
racy, which may provide a novel potential tool for pro-
gress in a clinical context. Moreover, we performed
integrative and comprehensive bioinformatics analysis to
explore the function of miR-106 at the systems biology
level, explaining the reason why miR-106 could be used
in the diagnosis of GC. However, the power of our study
was limited by a few factors. Firstly, most studies in the
diagnostic tests enrolled healthy participants as controls
and were not blind in design, which limits the diagnos-
tic performance. Secondly, some key information includ-
ing stage of cancer, sex proportions and age distributions
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was not known, so further analysis could not be carried
out. Thirdly, there were no studies investigating the non-
Asian population, which may cause potential heterogene-
ity from ethnicity. Fourthly, the sources of sample were
inconsistent including plasma (n=5), serum (n=»5),
gastric juice (n=1) and tissue (n=1). Accordingly, sub-
group analysis by specimen could not be performed for
the limited individual sample size. In addition, the num-
ber of studies and sample sizes enrolled in the analysis for
miR-106-related combination markers are limited, which
make it difficult for us to conduct further investigations.
As the miR-106 combination markers are all different in
all six studies, it still remains an open question which
should be combined with miR-106 for improving the
diagnostic power.

Conclusion

Taken together, in this study, it is concluded that miR-
106 is a useful biomarker for GC detection. Prospec-
tively, combining miR-106 and other microRNAs may be
considered as more powerful diagnostic tools for clini-
cal application than individual miR-106. Integrative and
comprehensive bioinformatics analysis was performed to
explore the function of miR-106 at the systems biology
level. Nonetheless, further large-scale prospective studies
are needed to create integrative diagnostic models with
more pronounced accuracy.
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