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Comprehensive and integrative analysis 
identifies microRNA-106 as a novel non-invasive 
biomarker for detection of gastric cancer
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Abstract 

Background: Recently, accumulating evidences have revealed that microRNA-106 (miR-106) may serve as a non-
invasive and cost-effective biomarker in gastric cancer (GC) detection. However, inconsistent results have prevented 
its application to clinical practice.

Methods: As a result of this, a comprehensive meta-analysis was conducted to evaluate the diagnostic performance 
of miR-106 alone and miR-106-related combination markers for GC detection. Meanwhile, an integrative bioinformat-
ics analysis was performed to explore the function of miR-106 at the systems biology level.

Results: The results in our work showed that sensitivity of 0.71 (95% CI 0.65–0.76) and specificity of 0.82 (0.72–0.88), 
with the under area AUC (area under the curve) value of 0.80 (0.76–0.83) for miR-106 alone. Prospectively, miR-106-re-
lated combination markers improved the combined sensitivity, specificity and AUC, describing the discriminatory 
ability of 0.78 (0.65–0.87), 0.83 (0.77–0.89) and 0.88 (0.85–0.90) in the present analysis. Furthermore, targets of miR-106 
were obtained and enriched by gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis, 
revealing their associations with the occurrence and development of GC. Hub genes and significant modules were 
identified from the protein–protein interaction networks constructed by miR-106 targets and found closely associated 
with the initiation and progression of GC again.

Conclusions: Our comprehensive and integrative analysis revealed that miR-106 may be suitable as a diagnostic 
biomarker for GC while microRNA combination biomarkers may provide a new alternative for clinical application. 
However, it is necessary to conduct large-scale population-based studies and biological experiments to further inves-
tigate the diagnostic value of miR-106.
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Background
Gastric cancer (GC), a major public health challenge, is 
one of the leading causes of cancer death worldwide [1]. 
There are limited detection methods for early diagnosis 
and few effective screening procedures in some coun-
tries. The most reliable program for diagnosis is mainly 
based on endoscopy and biopsy [2]. However, this is 

invasive and inconvenient for patients to undergo. Con-
sequently, most patients can only be diagnosed precisely 
in advanced stages when the clinical outcomes are poor 
[3]. Therefore, there is a great need to explore new accu-
rate and efficient, preferentially non-invasive, markers for 
early detection of GC.

In recent time, accumulating evidences have suggested 
that microRNAs may serve as novel biomarkers for can-
cer detection. MicroRNAs are a class of small non-coding 
RNAs with intermediate posttranscriptional regulation 
of the target genes [4]. A large number of studies have 
demonstrated that microRNAs play vital roles in a wide 
variety of physiological processes including cancer cell 
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growth, differentiation, invasion, and metastasis [5]. 
Moreover, a number of studies have indicated that circu-
lating microRNAs have high degree of stability and toler-
ance even under unfavorable physiochemical conditions 
including extreme variations in pH, temperature and 
freeze–thaw cycles [6]. It is also promising that microR-
NAs have outstanding stability in multiple clinical sam-
ples including plasma, serum, feces and tissue, which 
enables them to be detectable effortlessly [7]. Given their 
critical involvement in the vital biological processes and 
perfect biomarker features mentioned above, microR-
NAs could be considered as good candidates for using as 
non-invasive markers, and the application of them as bio-
markers for early detecting GC is viable [8].

As one of the most representative microRNA bio-
markers, microRNA-106 (miR-106) has been extensively 
studied by a great number of researches in several can-
cers. MiR-106 belongs to the miR-17 family, one of the 
most common studied onco-microRNA groups, which 
includes miRs-17, -20a, -20b, -93, -106a and -106b. MiR-
106a is a member of the miR-106a-92 cluster located on 
chromosome Xq26.2 while miR-106b is located at 7q21 
[9, 10]. There have been several studies indicating that 
both of investigated miR-106 could be expressed in the 
same individuals of gastric tumour tissues. Several stud-
ies have previously reported that circulating miR-106 
could specifically serve as a pivotal and promising bio-
marker for GC [11]. Nevertheless, the suitability of cir-
culating miR-106 in early detection and diagnosis of 
GC remains inconsistent due to different sample sizes, 
disease statuses, sample sources, detection methods, 
and other uncontrolled factors. Moreover, the potential 
molecular mechanism of miR-106 is still poorly under-
stood for the present insufficient knowledge.

In the present study, a comprehensive meta-analysis 
was performed to obtain a better understanding of the 
clinical feasibility of miR-106 as promising biomarker for 
early detection and diagnosis of GC. By focusing not only 
on a single miR-106 marker, we explored whether com-
bination biomarkers based on miR-106 are more effec-
tive than individual miR-106. Furthermore, an integrative 
bioinformatics analysis was carried out to evaluate the 
functions of miR-106 at the systems biology level.

Methods
Literature search strategy
A comprehensive computerized literature search for arti-
cles (up to December 27, 2017) was carried out based on 
several electronic databases including PubMed, EMbase, 
Web of Science and the Cochrane Library using the fol-
lowing search terms: (“cancer” OR “tumor’’ OR “carci-
noma” OR “neoplasm”) AND (“gastric” OR “stomach’’ 
OR “gastrointestinal’’ OR “digestive” OR “GC”) AND 

(“microRNA-106” OR “miR-106” OR “miR-106a” OR 
“miR-106b”). In addition, the references of identified arti-
cles were examined for all relevant studies.

Eligibility criteria
The studies qualified to be included should meet the fol-
lowing criteria: (1) they investigated the potential of cir-
culating (blood, serum, and plasma) or other sources of 
miR-106 for detecting GC; (2) they used the gold stand-
ard to make a definitive diagnosis of GC; (3) they pro-
vided adequate data which can be used to calculate the 
rates of true positive (TP), false positive (FP), false nega-
tive (FN), and true negative (TN).

In addition, the studies were excluded if (1) they were 
obviously not associated with our topic; (2) they pub-
lished in forms of reviews, letters, case reports, or edito-
rials; (3) they were non-English publications; or (4) they 
provided unqualified data.

Data extraction
Data were collected independently by two investigators 
(Peng and Shen) from the articles based on standard-
ized forms. The following characteristics from each study 
were extracted: (1) first author; (2) publication year; (3) 
research country; (4) study population; (5) patient char-
acteristics (age, gender, cancer type, etc.); (6) sample 
sources; (7) participants numbers; (8) miR-106 measur-
ing methods, (9) diagnostic data including sensitivity, 
specificity, true positive (TP), false positive (FP), false 
negative (FN) and true negative (TN).

Quality assessment
The quality of each study enrolled in our analysis was 
assessed independently by two investigators on the basis 
of the QUADAS-2 (Quality Assessment of Diagnostic 
Accuracy Studies 2) [12]. The QUADAS-2 assessment 
tool contains 4 domains including patient selection, 
index test, reference standard, and flow and timing sup-
ported by signaling questions (yes, no, or unclear), risk 
of bias (high, low, or unclear) and concerns about appli-
cability (high, low, or unclear). An answer of “yes” gets 
a score of 1, which indicates a low risk of bias, while an 
answer of “no” or “unclear” gets a score of 0 which means 
a potential high risk of bias.

Statistical analysis for meta‑analysis
The overall diagnostic results were estimated using the 
TP, FP, FN, and TN test results extracted directly from 
each study or via recalculation based on sensitivity and 
specificity together with other data retrieved from each 
study. The bivariate meta-analysis model was applied to 
calculate the pooled sensitivity, specificity, positive like-
lihood ratios (PLR), negative likelihood ratios (NLR), 
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and diagnostic odds ratio (DOR) along with their corre-
sponding 95% confidence intervals (CIs) [13]. The sum-
mary receiver operator characteristic (SROC) curve was 
generated based on the sensitivity and specificity of each 
study [14]. In addition, we calculated the corresponding 
area under the SROC curve (AUC) for the quantitative 
assessment of diagnostic power. Furthermore, the heter-
ogeneity across studies was examined by using Q test and 
 I2 test [15]. A P value ≤ 0.1 from Q test and an  I2 ≥ 50% 
from  I2 test suggest the presence of significant hetero-
geneity among eligible study. The heterogeneity caused 
by threshold effect was quantified using Spearman cor-
relation analysis. Possible sources of heterogeneity in the 
aspect of non-threshold effect were explored by carrying 
out subgroup, meta-regression, and sensitivity analyses 
[16]. We examined the potential publication bias through 
Deeks’ funnel analysis [17]. Statistical analyses were per-
formed in STATA (version 14.0) and Meta-DiSc statis-
tical software (version 1.4) software. Values of P < 0.05 
were considered to represent statistical significance.

Integrative functional analysis of miR‑106
To further explore the function of miR-106, an inte-
grative functional analysis was performed. Targets of 
miR-106 were obtained from miRTarBase, a resource 
for experimentally validated microRNA-target interac-
tions [18]. Updated in 2018 with plenty of integrative 
improvements, miRTarBase has been a more compre-
hensively annotated microRNA-target interactions data-
base approved by experimental evidence compared 
with its previous versions and other databases in the 
field of microRNA-target prediction research. We con-
ducted GO and KEGG pathway enrichment analysis by 
separately mapping the target mRNAs of miR-106a and 
miR-106b to the online tool DAVID (Database for Anno-
tation, Visualization, and Integrated Discovery) [19–21]. 
P-value < 0.05 and count ≥ 2 were considered as the cut-
off criteria.

PPI network analysis
The target mRNAs regulated by miR-106a and miR-
106b were mapped to the Search Tool for the Retrieval 
of Interacting Genes (STRING) database to retrieve 
the PPI information, respectively [22]. In the present 
study, we only selected the PPI data with the combined 
score > 0.4. Network visualization was used the power-
ful tool Cytoscape [23]. Meanwhile, we identified several 
hub genes of miR-106a and miR-106b targets by using 
three different methods including betweenness central-
ity, closeness centrality and degree centrality based on 
the plug-in CytoNCA [24]. In addition, the significant 
modules in the PPI network were screened by plug-in 
Molecular Complex Detection (MCODE) of Cytoscape. 

As for a further comment, KEGG pathway analysis was 
performed with the hub genes and genes involved in the 
selected modules by DAVID.

Results
Study selection
After initial searches of the databases mentioned above, a 
total of 369 articles were retrieved preliminarily, and the 
flow diagram of the literature search was shown in Fig. 1. 
After careful exclusion of inappropriate ones according 
to the inclusion criteria step by step, ten published arti-
cles were finally included in our study, including twelve 
studies for miR-106 alone and five for miR-106-related 
combination markers [25–34].

Baseline characteristics of included studies
Among the included publications for evaluating miR-106 
alone in detecting GC, a total of 10 articles on 12 studies 
were analyzed involving 788 cases and 701 healthy peo-
ple as the control group. There were five studies inves-
tigating serum miR-106, five studies assessing plasma 
miR-106, one study evaluating tissue miR-106 and one 
study involving miR-106 in gastric juice. Among all these 
studies, six focused on miR-106a and while 6 studies con-
centrated on miR-106b. None of the studies in Table  1 
evaluated both miRNAs (miR-106a and miR-106b). With 
respect to value of miR-106-related combination mark-
ers, 4 publications on 5 studies involved 322 patients and 
263 controls. Sample sources were all serum (n = 5). All 
the studies measured the expression level of miR-106 
and the related combination markers by using the quan-
titative real-time polymerase chain reaction (qRT-PCR) 
assay. The detailed information was shown in Tables  1 
and 2. The quality assessments of the included studies 
indicated that overall they were of moderate to high qual-
ity, which enhanced the reliability of our analysis.

Diagnostic value of miR‑106 in GC
As indicated in the forest plot (Fig. 2a, b), the existence 
of significant heterogeneity among individual studies 
was observed as the Q value was 31.46 (P < 0.001) and 
 I2 value was 65.04% (95% CI 43.54–86.53) for sensitiv-
ity, and the Q value was 94.70 (P < 0.001) and  I2 value 
was 88.38% (95% CI 83.04–93.72) for specificity. Thus, a 
random-effects model was applied to evaluate the pooled 
results. Overall, the pooled assessment outcomes were as 
follows: sensitivity, 0.71 (95% CI 0.65–0.76); specificity, 
0.82 (0.72–0.88); PLR, 3.86 (2.48–6.01); NLR, 0.36 (0.28–
0.45); and DOR, 10.84 (5.88–20.00), respectively. The 
pooled PLR meant that patients with GC had a nearly 
four-fold greater chance of being miR-106 positive than 
that for patients without GC while the combined NLR 
of 0.36 indicated that expected proportion of patients 
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having GC is 36% if the miR-106 is negative. The DOR 
value suggested that someone who was screened to be 
positive for GC with a high expression of miR-106 had 
a 10.84-fold higher possibility of actually suffering from 
GC than someone with a negative GC result. Finally, the 
SROC curve (Fig. 3a) was plotted and the corresponding 
AUC was calculated of 0.80 (0.76–0.83), indicating mod-
erate diagnostic accuracy overall.

The threshold effect may result from the differences 
between sensitivity and specificity. The representative 
way of assessing the threshold effect is estimating Spear-
man’s correlation coefficient of sensitivity and specificity. 
According to our results, Spearman’s correlation coeffi-
cient was calculated to be − 0.049, with a P value of 0.88 
(P > 0.05), suggesting that no obvious heterogeneity gen-
erating from the threshold effect.

In the present study, subgroup analysis was applied in 
order to identify the potential sources of heterogeneity 
(see Table  3). The results implied that plasma miR-106 

had relatively high diagnostic accuracy for GC detec-
tion compared with serum miR-106, with sensitivity of 
0.77 (95% CI 0.69–0.83) vs. 0.64 (0.56–0.72), specific-
ity of 0.82 (0.67–0.91) vs. 0.82 (0.66–0.91), and AUC of 
0.83 (0.80–0.86) vs. 0.73 (0.69–0.77). Among the twelve 
studies, ten studies detected the miR-106 in circulating 
samples. Hence, subgroup analysis was also performed 
by circulating samples. The pooled sensitivity, specificity 
and AUC for circulating miR-106 were 0.71 (0.64–0.78), 
0.82 (0.72–0.89), and 0.81 (0.77–0.84). We found no sig-
nificant difference in the diagnostic accuracy between 
studies with miR-106a and miR-106b, with AUC of 
0.78 (95% CI 0.74–0.82) vs. 0.81 (0.77–0.84) although 
miR-106b exhibited higher diagnostic sensitivity of 0.74 
(0.65–0.81) compared with studies with miR-106a, for 
which the value was 0.68 (0.60–0.75) while miR-106a was 
associated with specificity of 0.85 (0.74–0.92) compared 
with the value for miR-106b of 0.78 (0.63–0.88). Sub-
group analysis by the sample size suggested that a large 

Fig. 1 Flow diagram of the study selection process
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sample size had higher specificity and AUC of 0.85 (0.75–
0.91) and 0.82 (0.78–0.85) compared to a small sample 
size with specificity of 0.73 (0.56–0.85) and AUC of 0.75 
(0.71–0.78), indicating large sample size had relatively 
overall high diagnostic accuracy than small sample size, 
although a small sample size exhibited higher sensitivity 
of 0.74 (0.66–0.80) compared with a large sample size of 
0.70 (0.62–0.77).

Meta-regression analysis was conducted to reveal the 
potential sources of the heterogeneity. We considered 5 
covariates (publication year, country, sample size, sample 
source and miR-106 classification) may contribute to the 
heterogeneity. The results showed that neither publica-
tion year, nor sample size or sample source or miR-106 
classification was the source of heterogeneity, but the 
country has influence in specificity (P < 0.05).

The goodness of fit and bivariate normality analy-
ses suggested that the bivariate random-effects model 
was robust for the meta-analysis (Fig.  4). Besides that, 
one deviated study that may affect the robustness of the 
meta-analysis was identified with the method of influ-
ence analysis and outlier detection. After excluding the 
deviated study, no significant changes in sensitivity (0.71 
vs. 0.69), specificity (0.82 vs. 0.80), PLR (3.86 vs. 3.49), 
NLR (0.36 vs. 0.38), DOR (10.84 vs. 9.07), and AUC (0.80 
vs. 0.77) were observed between the overall analysis with 
and without outliers, which indicated that there was high 
robustness in our meta-analysis.

Diagnostic value of miR‑106‑related combination marker 
in GC
As shown in Fig. 2c, d,  I2 values for sensitivity and speci-
ficity were 76.97% (95% CI 56.57–97.38%, P < 0.001) and 
49.95% (0.00–100.00%, P < 0.001), respectively, indicat-
ing significant heterogeneity for sensitivity and moder-
ate heterogeneity for specificity. The pooled sensitivity, 
specificity, PLR, NLR, and DOR are 0.78 (0.65–0.87), 
0.83 (0.77–0.89), 4.69 (2.98–7.37), 0.27 (0.15–0.46), and 
17.68 (6.78–46.09), respectively. The SROC curve is 
shown in Fig. 3d with AUC = 0.88 (0.85–0.90), indicating 
a relatively higher accuracy in GC detection. Since all the 
combination markers were detected in serum, we com-
pared them with serum miR-106 alone (Fig.  3c). Serum 
miR-106-related combination marker had a higher level 
of predictive power than serum miR-106 alone, with sen-
sitivity of 0.78 (0.65–0.87) vs. 0.64 (0.56–0.72), specificity 
of 0.83 (0.77–0.89) vs. 0.82 (0.66–0.91), and AUC of 0.88 
(0.85–0.90) vs. 0.73 (0.69–0.77).

In the present study for combination biomarkers, 
Spearman’s rank correlation was also evaluated to explore 
the potential heterogeneity from threshold effect. It was 
revealed from the results that heterogeneity may generate 

from the threshold effect, from a Spearman’s correlation 
coefficient of − 0.90 with P = 0.037.

Publication bias
Begg’s funnel plot and Egger’s test were applied to evalu-
ate the presence of publication bias (Fig.  5). The fun-
nel plots indicated no symmetry for all enrolled studies 
and Deeks’ test returned P values of 0.56 and 0.45 for 
miR-106 and miR-106-related combination markers, 
respectively, revealing no obvious publication bias in the 
present study. However, it is difficult for judging publica-
tion bias whether or not exists due to the limited num-
ber of studies enrolled in the analysis for miR-106-related 
combination markers.

Integrative functional analysis results of miR‑106
Based on the above results, we wondered why miR-106 
could serve as a promising biomarker for detecting GC. 
We supposed that if the identified miR-106 could be a 
biomarker of GC, the genes regulated by miR-106 should 
also be involved in the initiation and progression of GC. 
Therefore, we performed GO and pathway enrichment 
analyses on targets of miR-106a and miR-106b to explore 
the function and pathogenesis of them, respectively.

We performed the GO enrichment analysis by sepa-
rately mapping the target genes of miR-106a and miR-
106b to the online software DAVID at three different 
levels: molecular function (MF), cell component (CC) 
and biological processes (BP). The top 10 items of each 
GO level that were significantly enriched by the target 
genes were illustrated at Fig. 6. The enriched GO terms 
in BP for miR-106a mainly included the regulation of 
transcription, apoptotic process while the enriched GO 
terms in BP for miR-106b were also associated with regu-
lation of transcription and apoptotic process. For the CC 
items, the target genes of miR-106a were enriched in the 
hallmarks of a cell such as nucleoplasm, cytosol, cyto-
plasm, nucleus and the target genes of miR-106b were 
also enriched in the same components including nucle-
oplasm, cytosol, cytoplasm and nucleus. Most GO MF 
items for miR-106a converged on the binding functions 
such as protein binding, DNA binding, transcription fac-
tor binding while most GO MF items for miR-106b were 
also related to protein binding, DNA binding and tran-
scription factor binding.

The top 20 significantly enriched pathways of miR-106a 
and miR-106b were outlined in Fig. 7a, b, respectively. To 
our surprise, the enriched KEGG terms of miR-106a and 
miR-106b were approximately the same. What’s more, 
we identified several pathways from the top 20 enriched 
KEGG terms, namely pathways in cancer, p53 signaling 
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Fig. 2 Forest plots of sensitivities and specificities from test accuracy studies in the diagnosis of GC. a, b Forest plots of sensitivities and specificities 
for miR-106 alone; c, d forest plots of sensitivities and specificities for miR-106-related combination markers
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pathway, cell cycle, TGF-beta signaling pathway and Pro-
teoglycans in cancer, which were related to the occur-
rence and development of GC.

The consistent enrichment results of miR-106a and 
miR-106b including GO and KEGG pathway analy-
sis indicated that although the different location on 

chromosome, miR-106a and miR-106b may have the 
similar functions and could be both used in detecting 
GC. Meanwhile, the GO and KEGG pathway enrich-
ment results explained why miR-106 why miR-106 could 
serve as a promising biomarker for detecting GC to some 
extent.

Fig. 3 The SROC curves in the diagnosis of GC. a SROC curve of overall including the outliers for miR-106 alone; b SROC curve of outliers excluded 
for miR-106 alone; c SROC curve for miR-106 alone in serum samples; d SROC curve for miR-106-related combination markers in serum samples. 
SROC summary receiver operator characteristic, GC gastric cancer
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Table 3 Pooled results of diagnostic accuracy of miR-106 and combination biomarkers in gastric cancer

AUC  area under the curve, Se sensitivity, Sp specificity, 95% CI 95% confidence interval

Analysis Number of studies Se (95% CI) Sp (95% CI) AUC (95% CI)

Individual Country

 China 9 0.71 (0.64–0.77) 0.87 (0.79–0.91) 0.83 (0.80–0.86)

 Japan 3 0.70 (0.62–0.76) 0.61 (0.54–0.68) 0.70 (0.67–0.74)

Sample size

 < 100 4 0.74 (0.66–0.80) 0.73 (0.56–0.85) 0.75 (0.71–0.78)

 > 100 8 0.70 (0.62–0.77) 0.85 (0.75–0.91) 0.82 (0.78–0.85)

Sample type

 Plasma 5 0.77 (0.69–0.83) 0.82 (0.67–0.91) 0.83 (0.80–0.86)

 Serum 5 0.64 (0.56–0.72) 0.82 (0.66–0.91) 0.73 (0.69–0.77)

 Circulating 10 0.71 (0.64–0.78) 0.82 (0.72–0.89) 0.81 (0.77–0.84)

 Gastric juice 1 0.74 (0.58–0.86) 0.89 (0.77–0.96) 0.87 (0.80–0.94)

 Tissue 1 0.63 0.64 0.67 (0.53–0.80)

miRNA profiling

 miR-106a 6 0.68 (0.60–0.75) 0.85 (0.74–0.92) 0.78 (0.74–0.82)

 miR-106b 6 0.74 (0.65–0.81) 0.78 (0.63–0.88) 0.81 (0.77–0.84)

Overall 12 0.71 (0.65–0.76) 0.82 (0.72–0.88) 0.80 (0.76–0.83)

Outliers excluded 11 0.69 (0.64–0.74) 0.80 (0.70–0.87) 0.77 (0.73–0.80)

Combination Overall 5 0.78 (0.65–0.87) 0.83 (0.77–0.89) 0.88 (0.85–0.90)

Fig. 4 Sensitivity analysis results. a Goodness of fit; b bivariate normality; c influence analysis; d outlier detection
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PPI network construction and identification of key target 
nodes
The information retrieved by STRING was integrated 
and set up the PPI network of miR-106a and miR-
106b targets, respectively. As a result, a PPI network 
with statistical significance made up of 639 nodes was 
identified with the set of 896 target genes of miR-106a. 
Meanwhile, with the set of 1156 target genes of miR-
106b, a statistically significant network consisting of 
960 nodes were screened. We estimated three network 
parameters including degree centrality, betweenness 
centrality, and closeness centrality of the constructed 
network to explore the relationships between micro-
RNA targets. Each method screened the hub genes in 
the network. Top 50 genes evaluated by the three meth-
ods in the PPI network were screened and intersected. 
Finally, 30 and 29 genes which could be screened by 
all the three methods were identified as hub genes for 
miR-106a and miR-106b, respectively. The regulatory 
networks were reconstructed with miR-106a and miR-
106b and their identified hub nodes, plotted in Fig.  8. 
Furthermore, we evaluated the biological function of 
the selected key miR-106 targets, we found that these 
key target nodes regulated by miR-106a and miR-106b 
both played a role in FoxO signaling pathway, pathways 
in cancer, PI3K-Akt signaling pathway, cell cycle, and 
p53 signaling pathway (Fig. 8).

Next, active modules were identified (Fig. 9). Accord-
ing to KEGG pathway enrichment analysis, the genes 
involved in the significant module of miR-106a targets 
network were mainly associated with p53 signaling 
pathway, pathways in cancer, FoxO signaling pathway, 
microRNAs in cancer, PI3K-Akt signaling pathway and 
cell cycle while the genes involved in the significant 
module of miR-106b targets network were related to 
pathways in cancer, p53 signaling pathway, FoxO sign-
aling pathway, microRNAs in cancer and cell cycle.

Discussion
Over the decades, microRNAs have gained great atten-
tion in scientific researches for cancer detection, diag-
nosis, and treatment as they possess perfect biomarker 
characteristics and are highly involved in the occur-
rence and development of a variety of cancers [35]. As 
one of the most researched microRNAs, miR-106 has 
been suggested by emerging evidences that it could be 
a novel potential biomarker for GC detection. However, 
the detection accuracy was inconsistent among a series 
of quantitative analyses. These conflicting conclusions 
prompted us to employ this comprehensive and up-
to-date research so that a conclusion on the diagnos-
tic power of miR-106 for monitoring GC can be drawn. 
Meanwhile, we conducted an integrative functional anal-
ysis of miR-106 to understand the question why it could 
help distinguish GC patients from normal controls.

Fig. 5 Deeks’ funnel plots for the assessment of potential bias in the meta-analysis for diagnosis. a Funnel plot of the studies on miR-106 alone; b 
funnel plot of the studies on miR-106-related combination markers
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Fig. 6 GO annotation of miR-106 target genes. a Top 10 GO items for target genes of miR-106a; b top 10 GO items for target genes of miR-106b. GO 
gene ontology, BP biological processes, CC cell component, MF molecular function
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In the present study, we found that miR-106 achieved 
the overall pooled sensitivity of 0.71, specificity of 0.82, 
and AUC of 0.80, indicating a moderate overall accu-
racy. Circulating miR-106 as a more researched diagnos-
tic marker in GC detection compared with other sample 
sources yielded a pooled sensitivity of 0.71, specificity of 
0.82, and AUC of 0.81. Subgroup analysis indicated that 
sample type and sample size may influence the diagnos-
tic accuracy. Specifically, it was revealed that plasma-
based assays and miR-106 assays with a large sample size 
had significantly better overall diagnostic accuracy than 
serum-based ones and miR-106 assays with a small sam-
ple size, respectively. Meanwhile, although located in 
different chromosomes, miR-106a yielded a similar diag-
nostic accuracy compared with miR-106b.

Up to now, most attention on biomarker prediction in 
GC has been absorbed in single biomarkers. Actually, 
single biomarker is hard to reveal GC evolutionary pro-
cess at the systems biology level as GC is a highly hetero-
geneous disease. On the contrary, combination markers 
may be more reliable with greater power for explaining 
the internal mechanisms of GC [36]. Therefore, we per-
formed an analysis for miR-106-related combination 
markers in GC to investigate whether they were more 
powerful than miR-106 alone in detecting GC. It is worth 
noting that serum miR-106-related combination markers 
had a higher level of predictive power than serum miR-
106 alone. However, it is difficult for us to conduct fur-
ther investigations due to the limited number of studies 

enrolled in the analysis for miR-106-related combination 
markers.

We also performed integrative and comprehensive bio-
informatics analysis to explore the function of miR-106 
at the systems biology level. Most GO terms enriched 
by miR-106a and miR-106b target genes were both sig-
nificantly associated with the regulation of transcription, 
apoptotic process at the BP level, basic cell structures at 
CC level along with the binding functions such as pro-
tein binding, DNA binding, transcription factor binding 
at MF level. Furthermore, the enriched KEGG pathways 
of miR-106a and miR-106b target genes were approxi-
mately the same, including pathways in cancer, p53 sign-
aling pathway, cell cycle, TGF-beta signaling pathway and 
proteoglycans in cancer, which were highly associated 
with the occurrence and development of GC. Interest-
ingly, although the different locations on chromosome, 
the targets of miR-106a and miR-106b fall into the simi-
lar functional modules, pathways or networks and then 
become more consistent when enriched to systems biol-
ogy levels. In general, functionally concerned genes often 
emerge a coordinated expression to exert their roles in 
the same functional modules, indicating that miR-106a 
and miR-106b may have a synergistic effect in the initia-
tion and progression of GC. The above results not only 
demonstrated the robustness of our study but explained 
why miR-106 could serve as a promising biomarker for 
detecting GC to some extent.

Fig. 7 Pathway enrichment results for miR-106 target genes. a Top 20 pathways enriched by target genes of miR-106a; b top 20 pathways enriched 
by target genes of miR-106
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To further reveal the correlations among the target 
genes of miR-106a and miR-106b, we performed the PPI 
network analysis. Through PPI network construction, 
a series of hub genes were screened by three different 

network analysis methods. In our study, it was revealed 
that these key target nodes regulated by miR-106a and 
miR-106b both participated in FoxO signaling pathway, 
pathways in cancer, PI3K-Akt signaling pathway, cell 

Fig. 8 PPI network construction results. a Degree distributions of nodes for network constructed with miR-106a targets; b degree distributions 
of nodes for network set up with miR-106b targets; c hub genes of network for miR-106a targets; d hub genes of network for miR-106b targets; e 
pathway enrichment results for the selected hub genes of miR-106a targets network; f pathway enrichment results for the selected hub genes of 
miR-106b targets network. PPI protein–protein interaction
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cycle, and p53 signaling pathway. What’s more, module 
analysis of the PPI network revealed that the most signifi-
cant modules of miR-106a and miR-106b targets network 
were both associated with p53 signaling pathway, path-
ways in cancer, FoxO signaling pathway, microRNAs in 
cancer, PI3K-Akt signaling pathway and cell cycle. PPI 
network analysis including hub genes identification and 
module analysis revealed the function of miR-106 again.

Based on above results, we found that several pathways 
were repeatedly mentioned in KEGG pathway analysis 
enriched by all the miR-106a and miR-106b targets, key 
hub targets and network modules, including p53 signal-
ing pathway, pathways in cancer, FoxO signaling pathway, 
PI3  K-Akt signaling pathway and cell cycle. Pathways 
in cancer consist of several well-known signaling path-
ways including TGF-β, MAPK, Wnt and p53, which 
play important roles in cell apoptosis, proliferation, dif-
ferentiation, invasion and metastasis. The well-studied 
p53 pathway, perhaps the most vital determinant of 

carcinogenesis, has been inextricably linked to estab-
lishment and progression of almost all types of cancer 
including GC [37, 38]. Cell cycle, another very important 
signaling pathway, contributes to the malignant progres-
sion of various human cancers including GC due to the 
involvement in cell growth, differentiation and apopto-
sis, as well as cancer development and metastasis [39]. 
Recent studies have proposed that the activation of the 
PI3K/Akt pathway may be responsible for the tumorigen-
esis by playing a pivotal role in control of cell cycle and 
survival of cell [40]. The information gathered so far indi-
cates that FoxO signaling pathway could play vital roles in 
mediating apoptosis and thus determines cell death and 
survival [41]. In short, all the above pathways have been 
verified by the published literatures involved in the tumo-
rigenesis and progression of GC, which may provide new 
ideas for the molecular mechanisms of miR-106 in GC.

Although mounting evidence from diagnostic tests 
indicated miR-106 as a promising GC marker, difficulty 

Fig. 9 The significant modules from the PPI network. a The significant module in the PPI network for miR-106a targets; b the significant module in 
the PPI network for miR-106b targets; c pathways enriched by all the nodes involved in the identified module for miR-106a; d pathways enriched by 
all the nodes involved in the identified module for miR-106a. PPI protein–protein interaction



Page 16 of 17Peng et al. J Transl Med  (2018) 16:127 

still remains for its application to clinical practice. There 
are several points we can do to optimize the miR-106 
assay. Firstly, an appropriate standard cut-off value, con-
sistent detection and normalization methods for miR-106 
expression are required. Secondly, it was revealed from 
our results that plasma miR-106 may be a more power-
ful marker for detecting GC compared with serum miR-
106. So plasma could be selected as the suitable sample 
source for further detection. Thirdly, as indicated in our 
study, sample size influenced the sensitivity and speci-
ficity. Larger sample size exhibited higher diagnostic 
accuracy. Thus, further large-scale prospective studies 
are warranted to develop integrative diagnostic models 
with more appropriate and better prediction capacity. 
Fourthly, although miR-106a and miR-106b are mem-
bers of different paralogous clusters and located on dif-
ferent chromosomes, there has been some evidence in 
the literature, that both these two microRNAs can co-
expressed in gastric tumor tissues. Based on our results, 
both miR-106a and miR-106b could be evaluated in diag-
nostic samples for diagnostic purposes of gastric cancer. 
In addition, combination biomarkers, which are combi-
nations of several markers, have been shown to improve 
the prediction accuracy compared with single biomarker. 
According to our findings, single miR-106 was signifi-
cant but not strong enough to undertake early diagnosis, 
while miR-106-related combination markers improved 
the diagnostic accuracy. The combination of miR-106 and 
other microRNAs may be the right way to solve the lim-
ited accuracy. Moreover, it has been reported that combi-
nation of protein-biomarkers and microRNAs may be an 
effective way to improve the diagnostic accuracy [42]. So 
more attempts are required for evaluating the combina-
tion biomarkers in the further study.

Our study had several important strengths. First, we 
carried out a relatively thorough systematic search and 
applied a comprehensive analytic approach to investi-
gate the diagnostic power of miR-106 in patients with 
GC. Next, we evaluated the diagnostic value of miR-
106-related combination markers in GC for the first 
time. It was suggested that the combination of miR-106 
with other microRNAs improved the diagnostic accu-
racy, which may provide a novel potential tool for pro-
gress in a clinical context. Moreover, we performed 
integrative and comprehensive bioinformatics analysis to 
explore the function of miR-106 at the systems biology 
level, explaining the reason why miR-106 could be used 
in the diagnosis of GC. However, the power of our study 
was limited by a few factors. Firstly, most studies in the 
diagnostic tests enrolled healthy participants as controls 
and were not blind in design, which limits the diagnos-
tic performance. Secondly, some key information includ-
ing stage of cancer, sex proportions and age distributions 

was not known, so further analysis could not be carried 
out. Thirdly, there were no studies investigating the non-
Asian population, which may cause potential heterogene-
ity from ethnicity. Fourthly, the sources of sample were 
inconsistent including plasma (n = 5), serum (n = 5), 
gastric juice (n = 1) and tissue (n = 1). Accordingly, sub-
group analysis by specimen could not be performed for 
the limited individual sample size. In addition, the num-
ber of studies and sample sizes enrolled in the analysis for 
miR-106-related combination markers are limited, which 
make it difficult for us to conduct further investigations. 
As the miR-106 combination markers are all different in 
all six studies, it still remains an open question which 
should be combined with miR-106 for improving the 
diagnostic power.

Conclusion
Taken together, in this study, it is concluded that miR-
106 is a useful biomarker for GC detection. Prospec-
tively, combining miR-106 and other microRNAs may be 
considered as more powerful diagnostic tools for clini-
cal application than individual miR-106. Integrative and 
comprehensive bioinformatics analysis was performed to 
explore the function of miR-106 at the systems biology 
level. Nonetheless, further large-scale prospective studies 
are needed to create integrative diagnostic models with 
more pronounced accuracy.
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