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Abstract 

Background: Increasing studies showed that miR‑200 family (miR‑200s) clusters are aberrantly expressed in multiple 
human cancers, and miR‑200s clusters function as tumor suppressor genes by affecting cell proliferation, self‑renewal, 
differentiation, division and apoptosis. Herein, we aimed to investigate the expression and clinical implication of miR‑
200s clusters in acute myeloid leukemia (AML).

Methods: RT‑qPCR was performed to detect expression of miR‑200s clusters in 19 healthy donors, 98 newly diag‑
nosed AML patients, and 35 AML patients achieved complete remission (CR).

Results: Expression of miR‑200a/200b/429 cluster but not miR‑200c/141 cluster was decreased in newly diagnosed 
AML patients as compared to healthy donors and AML patients achieved CR. Although no significant differences 
were observed between miR‑200s clusters and most of the features, low expression of miR‑200s clusters seems to be 
associated with higher white blood cells especially for miR‑200a/200b. Of the five members of miR‑200s clusters, low 
expression of miR‑200b/429/200c was found to be associated with lower CR rate. Logistic regression analysis further 
revealed that low expression of miR‑429 acted as an independent risk factor for CR in AML. Based on Kaplan–Meier 
analysis, low expression of miR‑200b/429/200c was associated with shorter OS, whereas miR‑200a/141 had a trend. 
Moreover, multivariate analysis of Cox regression models confirmed the independently prognostic value of miR‑200b 
expression for OS in AML.

Conclusions: Expression of miR‑200a/200b/429 cluster was frequently down‑regulated in AML, and low expression 
of miR‑429 as an independent risk factor for CR, whereas low expression of miR‑200b as an independent prognostic 
biomarker for OS.
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Background
Acute myeloid leukemia (AML) is a highly heterogeneous 
malignant hematological disorder with complex molecu-
lar pathophysiology. Although the treatment strategies 
against AML have been updated in the past decades, the 
majority of patients eventually succumb to relapse after 
induction chemotherapy [1]. Clinical outcome of AML 
remains unsatisfactory especially in those with specific 
karyotypes/biomarkers such as inv(3)(q21q26.2), t(6;9)
(p23; q34), 11q abnormalities other than t(9;11), -5/
del(5q), -7, TP53 mutations, FLT3-ITD mutations, C-KIT 
mutations, WT1 overexpression, and BAALC overex-
pression [2–4]. The development of effective therapeutic 
options against AML relies on mechanistic understand-
ing of AML biology, especially in molecular regulators 
of AML pathogenesis and molecular predictor of AML 
prognosis [5].

MicroRNAs, a class of small (19–22 nucleotides) 
single-stranded RNAs, negatively regulate various 
genes by targeting 3′-untranslated region (3′-UTR) 
of mRNAs, thereby facilitating translational silencing 
or degradation of targeted genes [6]. Mounting evi-
dences have implicated that microRNAs play crucial 
roles in regulating many fundamental and biological 
processes including cancer development [7]. Moreover, 
microRNAs have been reported as novel biomarkers 
for diagnosis and prognosis, and regarded as potential 
therapeutic targets in AML [8]. For instance, recent 
studies implicated that several microRNAs such as 
miR-216b, miR-362-5p, miR-217, and miR-193b were 
prognosis-related predictors in AML and may involve 
in AML biology [9–12].

The miR-200 family (miR-200s) clusters includes five 
members (miR-200a, miR-200b, miR-200c, miR-141, 
and miR-429) and can be divided into two clusters 
(miR-200a/b/429 cluster and miR-200c/141 cluster) 
based on chromosomal location (chromosome 1p36 
and chromosome 12p13) [13]. Numerous studies 
showed that miR-200s clusters are aberrantly expressed 
in multiple human cancers, and miR-200s clusters 
function as tumor suppressor genes by affecting cell 
proliferation, self-renewal, differentiation, division and 
apoptosis [14]. Although the tumor-suppressive roles 
of miR-200s clusters have also been reported in solid 
tumors with prognostic value [14, 15], the expression 
and clinical implication of miR-200s clusters in AML 
remains poorly revealed.

In this study, we investigated expression of miR-200s 
clusters in AML patients except for acute promyelocytic 
leukemia (APL), and found that low expression of miR-
200s clusters acted as potential prognostic biomarkers in 
AML.

Methods
Patients and treatment
A total of 98 de novo AML patients except for APL and 
19 healthy donors were enrolled in this study. Bone mar-
row (BM) was collected from all the patients at diag-
nosis time as well as 35 patients at complete remission 
(CR) time. AML was diagnosed based on the French–
American–British (FAB) and 2016 revised World Health 
Organization (WHO) criteria [16, 17]. All the patients 
received chemotherapy as reported [18]. Induction 
chemotherapy therapy was 1–2 courses of daunorubicin 
combined with cytarabine. Subsequent consolidation 
treatment after CR for younger patients included high-
dose cytarabine, mitoxantrone with cytarabine, and 
homoharringtonine combined with cytarabine, whereas 
for older patients received in an individualized manner 
decided by the physicians, such as CHG protocol (cyta-
rabine, homoharringtonine, and G-CSF). This study was 
approved by the Ethics Committee of the Affiliated Peo-
ple’s Hospital of Jiangsu University, and written informed 
consents were informed and signed by all participants in 
accordance with the Declaration of Helsinki Principles.

Cytogenetic analysis and mutation detection
BM cells were harvested after 1–3 days of unstimulated 
culture in RPMI 1640 medium (BOSTER, Wuhan, China) 
containing 20% fetal calf serum (ExCell Bio, Shanghai, 
China). Cytogenetics for AML patients were analyzed 
at the newly diagnosis time by conventional R-banding 
method and karyotype risk was classified according 
to reported previously [19, 20]. Hotspot mutations in 
NPM1, C-KIT, DNMT3A, N/K-RAS, IDH1/2, U2AF1, 
SRSF2 and SETBP1 were detected by high-resolution 
melting analysis [21–25], whereas mutations in FLT3-
ITD and CEBPA were examined by DNA sequencing 
[26].

RNA isolation and reverse transcription
BM mononuclear cells (BMMNCs) were extracted as 
reported using Lymphocyte Separation Medium (Absin, 
Shanghai, China) [27]. According to the manufacturer’s 
protocols, RNA was extracted from BMMNCs using 
the mirVana miRNA isolation kit (Ambion, Austin, TX, 
USA), and was synthesized to cDNA by reverse tran-
scription using MiScript Reverse Transcription Kit (Qia-
gen, Duesseldorf, Germany).

Real‑time quantitative PCR
The level of miR-200s clusters was detected by real-time 
quantitative PCR (RT-qPCR) using miScript SYBR green 
PCR kit (Qiagen, Duesseldorf, Germany). The primers 
were miR-200s specific (Additional file  1: Table  S1) and 
the manufacturer-provided miScript universal primer 
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(Qiagen, Duesseldorf, Germany). The programs for RT-
qPCR reactions were performed as reported [28]. U6 
small nuclear RNA was selected as the endogenous nor-
malizer detected by RT-qPCR using 2× SYBR Green 
PCR Mix (Multisciences, Hangzhou, China). Relative 
miR-200s level was calculated by  2−ΔΔCT method. The 
healthy donors that possessed the minimal ΔCT between 
miR-200s (each member) and U6 expression was selected 
as control, and was defined as 100% expression.

Statistical analysis
Mann–Whitney’s U test was carried to compare the 
difference of continuous variables between two groups, 
whereas Pearson Chi square analysis/Fisher exact test 
were applied to compare the difference of categori-
cal variables between two groups. The impact of miR-
200s clusters expression on overall survival (OS) was 
analyzed by Kaplan–Meier analysis, and Cox regres-
sion models (univariate and multivariate analyses) were 
further used to determine the independently prognos-
tic value of miR-200s cluster expression. The effect of 
miR-200s clusters expression on CR was determined by 
Logistic regression analysis (univariate and multivari-
ate analyses). All tests were two sided, and P < 0.05 was 

defined as statistically significant. SPSS software 20.0 
and GraphPad Prism 5.0 was used to conduct the statis-
tical analyses in this study.

Results
Expression of miR‑200s in AML
We analyzed miR-200s clusters expression in BM from 
19 healthy donors, 98 AML patients, and 35 AML 
patients achieved CR by RT-qPCR. As presented in 
Fig.  1, expression of miR-200a/200b/429 clusters but 
not miR-200c/141 clusters was significantly decreased 
in AML patients as compared to healthy donors and 
AML patients achieved CR.

Relationship between miR‑200s and clinical features 
in AML
To investigate clinical implication of miR-200s clusters 
expression, the whole-cohort patients were classified 
into two groups (high and low miR-200s clusters expres-
sion) based on the median level of each member of miR-
200s clusters, respectively. We analyzed the association 
between each member of miR-200s clusters expression 
and clinic-pathologic features including gender, age, 

Fig. 1 Expression of miR‑200s clusters in controls, newly diagnosed AML patients and AML patients achieved CR. a For miR‑200a; b For miR‑200b; c 
For miR‑429; d For miR‑200c; e For miR‑141. The distributions of the miR‑200s clusters expression in controls, newly diagnosed AML patients and AML 
patients achieved CR were presented with scatter plots. The median level of miR‑200s clusters expression in each group was shown with horizontal 
line
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white blood cell (WBC) counts, hemoglobin content, 
platelet counts, blasts (%), FAB subtypes, karyotypes, and 
common gene mutations. As shown in Table 1, no signifi-
cant differences were observed between miR-200s clus-
ters expression and most of the features. However, low 
expression of miR-200s clusters seems to be associated 
with higher WBC counts especially for miR-200a/200b 
(P = 0.001 and 0.041, respectively). In addition, low 
expression of miR-200a was related to male, whereas low 
expression of miR-141 was correlated with higher hemo-
globin content (P = 0.013 and 0.024, respectively).

Prognostic value of miR‑200s in AML
To observe the impact of miR-200s clusters expression 
on clinical outcome in AML, we first determined the 
association of each member of miR-200s clusters expres-
sion with CR. Of the five members of miR-200s clusters, 
low expression of miR-200b/429/200c was found to be 
associated with lower CR rate (Table  1, all P = 0.038). 
Additionally, Logistic regression analysis was further 
performed to confirm and verify the effect of miR-200s 
clusters’ expression on CR, and revealed low expression 
of miR-429 as an independent risk factor for CR in AML 
(Table 2, P = 0.023).

We next evaluated the correlation of each member 
of miR-200s clusters expression with survival. Based 
on Kaplan–Meier analysis, low expression of miR-
200b/429/200c was associated with shorter OS, whereas 
miR-200a/141 had a trend (Fig.  2). In addition, we also 
analyzed the impact of composite members of miR-200s 
clusters expression on OS by Kaplan–Meier analysis as 
shown in Fig. 3.

Since miR-200s clusters expression was associated with 
well-established prognostic factor such as WBC counts, 
we further conducted a Cox regression model adjusting 
for prognosis-related factors (age, WBC counts, karyo-
typic classifications, and gene mutations) for OS. Results 
showed that low expression of miR-200b acted as an 
independent prognostic biomarker for OS (P = 0.020, 
Table 2).

Discussion
In the current study, we for the first time investigated 
expression of miR-200s clusters in AML, and revealed 
that most of the members of miR-200s clusters were 
down-regulated in de novo AML patients. Recently, 
Li et  al. revealed that introduction of a pre-miR-200c 
reduced the expression of ZEB2 protein and inhibited 
the proliferation of human leukemia cell lines (HL-60, 

Table 2 Univariate and multivariate analyses of variables for overall survival in AML patients

OR odd ratio, HR hazard ratio, CI confidence interval. Variables including miR-200s cluster expression (Low vs. High), age (≤ 60 vs. > 60 years), WBC (≥ 30 × 109 
vs. < 30 × 109/L), karyotype (favorable vs. intermediate vs. poor), and gene mutations (mutant vs. wild-type). Multivariate analysis includes variables with P < 0.200 in 
univariate analysis

Variables Complete remission Overall survival

Univariate analysis Multivariate analysis Univariate analysis Multivariate analysis

OR (95% CI) P OR (95% CI) P HR (95% CI) P HR (95% CI) P

miR‑200a 0.548 (0.242–1.244) 0.150 1.029 (0.285–3.722) 0.965 0.662 (0.415–1.022) 0.082 1.425 (0.651–3.120) 0.376

miR‑200b 0.384 (0.167–0.885) 0.025 0.823 (0.199–3.401) 0.788 0.511 (0.319–0.819) 0.005 0.524 (0.305–0.902) 0.020

miR‑429 0.384 (0.167–0.885) 0.025 0.331 (0.128–0.858) 0.023 0.558 (0.350–0.891) 0.015 0.820 (0.325–2.073) 0.675

miR‑200c 0.384 (0.167–0.885) 0.025 0.977 (0.149–6.400) 0.981 0.606 (0.380–0.965) 0.035 0.649 (0.190–2.217) 0.491

miR‑141 0.460 (0.201–1.050) 0.065 0.594 (0.192–1.833) 0.364 0.695 (0.437–1.104) 0.123 1.152 (0.582–2.279) 0.684

Age 4.229 (1.742–10.266) 0.001 4.555 (1.715–12.095) 0.002 2.046 (1.282–3.266) 0.003 1.732 (1.033–2.902) 0.037

WBC 2.367 (1.015–5.520) 0.046 1.846 (0.715–4.767) 0.206 2.002 (1.253–3.199) 0.004 1.560 (0.925–2.629) 0.095

Karyotype 3.108 (1.338–7.220) 0.008 2.862 (1.164–7.042) 0.022 1.875 (1.295–2.715) 0.001 1.874 (1.210–2.902) 0.005

CEBPA mutations 0.526 (0.160–1.731) 0.290 0.870 (0.413–1.829) 0.713

NPM1 mutations 0.833 (0.207–3.358) 0.798 1.200 (0.516–2.793) 0.672

FLT3‑ITD mutations 0.833 (0.207–3.358) 0.798 0.935 (0.403–2.170) 0.876

C‑KIT mutations 0.673 (0.041–11.150) 0.783 0.479 (0.066–3.458) 0.465

N/K‑RAS mutations 3.048 (0.605–15.343) 0.177 1.311 (0.621–2.770) 0.478

IDH1/2 mutations Undetermined 0.999 4.671 (1.637–13.326) 0.004 6.662 (1.757–25.268) 0.005

DNMT3A mutations 1.391 (0.240–8.057) 0.712 1.590 (0.634–3.987) 0.323

U2AF1 mutations Undetermined 0.999 2.791 (0.987–7.890) 0.053 5.130 (1.714–15.355) 0.003

SRSF2 mutations Undetermined 0.999 1.934 (0.693–5.400) 0.208

SETBP1 mutations 0.673 (0.041–11.150) 0.783 0.637 (0.088–4.613) 0.656
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MOLM-13, and THP-1), and mouse miR-200c signifi-
cantly impaired the proliferation of mouse leukemia cells 
[29]. Taken together, these results emphasized the crucial 
role of miR-200s clusters in leukemogenesis. Although 
the biological role of miR-200s clusters in AML was less 
studied, tumor suppressor roles of miR-200s clusters 
have been identified in a variety of human solid cancers, 
such as bladder cancer, gastric cancer, colorectal cancer, 
breast cancer, ovarian cancer, endometrial cancer, pan-
creatic cancer, gliomas, hepatocellular carcinoma, and 
lung cancer [14, 30]. The miR-200s clusters were reported 
as key inhibitors of epithelial-to-mesenchymal transition 
by directly targeting transcriptional repressors of E-cad-
herin, ZEB1, and ZEB2 [13]. Moreover, miR-200s clusters 
also played crucial roles in the repression of cancer stem 
cells self-renewal and differentiation, modulation of cell 
division and apoptosis, and reversal of chemoresistance 
[14, 30]. Notably, in some other hematological malignan-
cies, expression or biological role of miR-200s clusters 
has been preliminary studied. For instance, Choi et  al. 
reported that miR-200c was decreased in patients with 
myelodysplastic syndrome (MDS) [31]. González-Gugel 

et  al. revealed that down-regulation of mmu-miR-30a 
and mmu-miR-141 as well as hsa-miR-193b clearly con-
tributed to enhance the expression of Smoothened (SMO) 
gene in mouse and human lymphomas and, subsequently, 
to activate the GLI/Hh signalling [32].

In addition to basic research before, it has been noted 
that low expression of miR-200s clusters could correlate 
with adverse clinical outcome and serve as a prognos-
tic biomarker for various cancer patients [15]. Although 
the potential prognostic value of miR-200s clusters in 
several human cancers remains controversial, a recent 
meta-analysis demonstrated that lower tissue expres-
sion of miR-200s clusters’ members were associated with 
poor OS and progression-free survival, whereas lower 
expression of circulating miR-200s clusters’ members 
were correlated with favorable prognosis [15]. From our 
study, we showed the negative effect of low expression of 
miR-200s clusters on AML chemotherapy response and 
survival. Moreover, multivariate analysis showed that low 
expression of miR-429 as an independent risk factor for 
CR, whereas low expression of miR-200b as an independ-
ent prognostic biomarker for OS in AML. Due to some 

Fig. 2 Prognostic value of each member of miR‑200s clusters expression in AML. a For miR‑200a. b For miR‑200b. c For miR‑429. d For miR‑200c. e 
For miR‑141. Overall survival analyzed between two groups based on median level of each member of miR‑200s clusters, and performed by Kaplan–
Meier methods
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limitations in this study (such as patients numbers, treat-
ment regimens, and single center), prospective studies 
are needed to verify our results before miR-200s clusters 
expression could be used routinely as a promising bio-
marker for risk stratification in AML.

Conclusion
Expression of miR-200a/200b/429 cluster was frequently 
down-regulated in AML, and low expression of miR-
429 as an independent risk factor for CR, whereas low 
expression of miR-200b as an independent prognostic 
biomarker for OS.

Additional file

Additional file 1: Table S1. The primer sequences for miR‑200s clusters.
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