
Eftimie and Hassanein ﻿J Transl Med  (2018) 16:73 
https://doi.org/10.1186/s12967-018-1432-8

RESEARCH

Improving cancer detection 
through combinations of cancer and immune 
biomarkers: a modelling approach
Raluca Eftimie1*   and Esraa Hassanein2

Abstract 

Background:  Early cancer diagnosis is one of the most important challenges of cancer research, since in many can-
cers it can lead to cure for patients with early stage diseases. For epithelial ovarian cancer (which is the leading cause 
of death among gynaecologic malignancies) the classical detection approach is based on measurements of CA-125 
biomarker. However, the poor sensitivity and specificity of this biomarker impacts the detection of early-stage cancers.

Methods:  Here we use a computational approach to investigate the effect of combining multiple biomarkers for 
ovarian cancer (e.g., CA-125 and IL-7), to improve early cancer detection.

Results:  We show that this combined biomarkers approach could lead indeed to earlier cancer detection. However, 
the immune response (which influences the level of secreted IL-7 biomarker) plays an important role in improving 
and/or delaying cancer detection. Moreover, the detection level of IL-7 immune biomarker could be in a range that 
would not allow to distinguish between a healthy state and a cancerous state. In this case, the construction of solu-
tion diagrams in the space generated by the IL-7 and CA-125 biomarkers could allow us predict the long-term evolu-
tion of cancer biomarkers, thus allowing us to make predictions on cancer detection times.

Conclusions:  Combining cancer and immune biomarkers could improve cancer detection times, and any predic-
tions that could be made (at least through the use of CA-125/IL-7 biomarkers) are patient specific.
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Background
Ovarian cancer is the most fatal of all gynecologic malig-
nancies, since it is usually detected in the later stages 
when the 5-year survival is only between 37–44% [1, 
2]. Until an effective treatment is found, early diagnosis 
(when the tumour can be treated more effectively) is the 
only option to improve patient outcome. In fact, early 
cancer detection could increase patients 5-year survival 
rates to even 90% [3–5].

As emphasised in various studies [3, 6], currently there 
are no non-invasive methods that could accurately detect 
early-stage ovarian cancers. The classical approach for 
ovarian cancer diagnosis involves the serum tumour 

biomarker CA-125 (carbohydrate antigen 125), which is 
elevated in the serum of most women with ovarian can-
cer [7]. However, despite its widespread clinical use, this 
biomarker does not seem to lead to significant increase 
in the survival rates of asymptomatic women [3]. Unfor-
tunately, CA-125 lacks both sensitivity and specificity 
required for the efficient screening of ovarian cancers 
(where sensitivity is defined as the proportion of patients 
with ovarian cancer correctly identified by CA-125, while 
specificity is the proportion of patients without ovarian 
cancer correctly identified by CA-125 [8]).

To address this issue related to the CA-125 biomarker, 
the last 10–15 years have seen the development of vari-
ous multimodal strategies that combine multiple diag-
nostic markers/tools [4, 9, 10]. For example, we note the 
combination of CA-125 with transvaginal sonography 
[11], with human epididymal secretory protein 4 (HE4) 
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[12], or with mesothelin [13], to investigate the possi-
bility of improving early cancer detection. An approach 
that has received particular attention in the past years 
focuses on the use of serum cytokine levels as diagnostic 
and prognostic markers in ovarian cancer [14, 15]. Many 
of these cytokines (e.g., IFN-γ, IL-2, IL-7, G-CSF, …) are 
produced by various hematopoietic and non-hemat-
opoietic cell lines, and are involved in inflammation and 
immunity [14]. In addition, some cytokines (such as IL-6 
and IL-8) seem to be produced also by ovarian cancer 
cells [14].

A cytokine that has been investigated in the context 
of ovarian cancer detection is IL-7 (interleukin 7) [14]. 
This cytokine, which is produced mainly by non-hemat-
opoietic cells (e.g., epithelial cells in the thymus, pros-
tatic epithelium and the intestine; see [16]) and by some 
immune cells (e.g., dendritic cells), is important for the 
development of B cells and T cells [17]. Moreover, IL-7 
seems to have anti-tumour effects in tumours such as 
melanoma, prostate cancer or glioblastoma, and poten-
tial pro-tumour effects in bladder cancer by promoting 
cell invasion and migration [17]. Since high IL-7 serum 
levels have been detected in ovarian cancers [18–20], it 
has been suggested that IL-7 can be used in combina-
tion with CA-125 to distinguish between malignant and 
benign ovarian tumours [14]. Moreover [18], suggested 
that the elevated serum IL-7 is the result of host anti-
tumour immunity.

The use of cytokines for cancer detection seems par-
ticularly relevant in the context of recent studies which 
emphasise more and more the importance of immune 
responses in the evolution of ovarian cancer and long-
term patient survival [21–23]. Despite clinical obser-
vations that ovarian cancers can induce spontaneous 
anti-tumour immune responses [23], and that significant 
numbers of tumour-infiltrating lymphocytes have been 
found inside cancerous ovarian tissues (some immune 
cells being associated with improved overall survival 
[22]), the role of the immune system in response to ovar-
ian cancer is still not fully understood. The poor out-
come of this particular type of cancer is also the result 
of immune cells failing to control tumour growth, due to 
the recruitment inside the tumour environment of sup-
pressive immune cells such as Tregs, or the NK cells fail-
ing to recognise tumour antigens [23]. However, there 
are not many studies in the literature that investigate the 
secretion of immune biomarkers (and their use for cancer 
detection) in the context of complex tumour–immune 
interactions.

Since mathematical approaches have been shown to be 
very useful on shedding light on the biological mecha-
nisms behind various complex immune responses and 
on making further biological predictions [24], in this 

study we consider such an approach to investigate com-
putationally the interactions between tumour cells and 
tumour-infiltrating lymphocytes (i.e., dendritic-cell-acti-
vated CD8+ T cells), and the use of biomarkers associated 
with these different cells to improve cancer detection 
times.

Mathematical modelling and computational 
approaches have recently started being used to asses the 
detection level of cancer biomarkers, and they usually 
focus on one biomarker at a time, e.g., CA-125 [25, 26], 
SEAP [27], uPAR [28], or nanoparticles conjugated with 
protease-cleavable peptides [29]. While many of these 
models are deterministic (usually described by ordinary 
differential equation (ODE) models), the past 10  years 
have seen also a significant increase in the development 
of various stochastic network-based biomarker models 
for the diagnosis and investigation of different cancers 
[30–33]. Generally, these network models incorporate 
a large number of cancer-related proteins and networks 
of proteins, and use them to identify the most likely 
biomarkers for cancer detection. Hence, the two major 
approaches in the literature either (i) start with simple 
mathematical models of basic processes and then add 
more complexity, or (ii) start by considering the complex-
ity of the system, and then try to deconvolute it to iden-
tify the most important processes. Throughout this study, 
we consider only the first approach.

Here, we start with a simple ODE model introduced 
in [25] for tumour growth and CA-125 secretion, and 
generalise it to investigate the use of two different bio-
markers (CA-125 and IL-7) on the overall detection 
time. We chose to focus on these two biomarkers since 
[14] showed that IL-7 levels were strongly associated 
with ovarian cancer, and moreover a combination of 
IL-7 and CA-125 serum levels could accurately predict 
69% of ovarian cancer patients. With the help of this new 
model, we show the importance of the heterogeneity in 
the immune response (which impacts the secretion level 
of IL-7) on the cancer detection times. Thus we show that 
by combining an immune biomarker with a cancer bio-
marker one could help improve tumour detection times 
in some patients, but also might delay tumour detection 
in other patients (depending on the level of anti-tumour 
immune response).

Methods
We start modelling the tumour dynamics by considering 
(as in [25]) a mono-exponential model for early tumour 
growth (the density of tumour cells at time t being 
described by NT(t)). To model an early anti-tumour 
immune response, we then couple the equation for the 
evolution of tumour cells NT(t) with an equation for the 
evolution of immune cells NI(t): 
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Here, kgr is the growth rate of the ovarian cancer cells, 
dt is the rate at which immune cells eliminate the 
detected tumour cells, ai is the activation/prolifera-
tion of immune cells in response to tumour antigens, 
di is the natural half-life of immune cells, and M is the 
carrying capacity for the immune cells (since the body 
cannot support an extremely large number of acti-
vated immune cells, which would trigger a cytokine 
storm [34]). Note that we use the saturated term 
NI(t)/(hi + NI(t)) to describe the immuno-modulating 
effect of ovarian cancer cells on the immune response, 
which leads to reduced anti-tumour immune responses 
(and subsequent cancer growth) [35]. Parameter hi is 
the half-saturation constant of immune cells that gen-
erate an anti-tumour immune response. Note that, for 
simplicity, here we assume that the generic immune cell 
population NI includes both antigen-presenting cells 
(e.g., dendritic cells) and anti-tumour effector cells (e.g., 
CD8+ T cells) activated by these antigen-presenting 
cells upon detection of tumour antigens.

Next, we model the shedding of biomarkers by tumour 
and immune cells. For the CA-125 biomarker, we follow 
the approach in [25] and assume that the equation for 
the change in the amount of tumour plasma biomarkers, 
BT (t), which are shed by both tumour (NT) and healthy 
(Nh) cells, is given as

For simplicity, we assume that the number of healthy 
cells does not vary significantly in time, and thus we take 
Nh =  constant (i.e., the initial number of healthy cells). 
Parameters ft and fht are the fractions of tumour bio-
marker entering the tumour and the healthy vasculatures, 
respectively. Parameters Rt and Rht are the shedding rates 
of tumour biomarker from tumour and healthy cells, 
respectively. Finally, ket is the elimination rate of tumour 
biomarker from plasma.

In regard to the immune biomarkers, [18] showed that 
the ovarian carcinoma cells rarely express IL-7, with 
the authors hypothesising that the elevated level of IL-7 
in the serum and ascites of ovarian cancer patients was 
mainly from the host immune cells. Because the IL-7 bio-
marker can be produced by the immune cells (e.g., den-
dritic cells which activate the CD8+ T cells) and by the 
healthy non-hematopoietic cells (Nh), the equation for 

(1a)
dNT(t)

dt
= kgrNT(t)− dtNT(t)

NI(t)

hi + NI(t)
,

(1b)
dNI(t)

dt
= aiNT(t)

(

1−
NI(t)

M

)

− diNI(t).

(2)
dBT(t)

dt
= fhtRhtNh + ftRtNT(t)− ketBT(t).

the change in the amount of the immune biomarker BI is 
given by

Here fi and fhi are the fractions of immune biomark-
ers (shed by immune and healthy cells) that enter the 
vasculatures, while Ri and Rhi are the shedding rates of 
the immune biomarker from immune and healthy cells. 
Finally, kei is the elimination rate of immune biomarker 
from the plasma. As before, we assume that the popula-
tion of healthy cells is constant: Nh = constant.

These tumour–immune interactions and biomarker 
secretion dynamics are summarised in Fig. 1.

Model parametrisation
Table  1 contains the baseline values and ranges for the 
parameters associated with the tumour biomarker (CA-
125), as estimated by [25]. Table 2 contains the baseline 
values and ranges for the parameters associated with the 
immune response, which are estimated in the present 
study as follows:

1.	 Immune cells turnover [36] calculated the dou-
bling time for CD8+ T cells to about 8 h, and their 
half-life during the contraction phase to about 
41 h. This translates into the following param-
eter values: ai = ln(2.0)/8  h = 2.0794/day, and 
di = ln(2.0)/41 h = 0.4/day.

	 However, since our variable NI accounts for a combi-
nation of effector CD8+ T cells and antigen-present-
ing dendritic cells (which detect the tumour antigens, 

(3)
dBI(t)

dt
= fhiRhiNh + fiRiNI(t)− keiBI(t).
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Fig. 1  A schematic representation of the interactions between 
tumour cells and immune effector cells, as described by model (1)–(3)
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and further induce the activation and proliferation of 
CD8+ T cells), we need to discuss also the turnover 
of dendritic cells—which can influence the overall 
dynamics of NI population in Eq. (1b), as suggested 
by [37]. In fact, [37] showed that different subsets of 
dendritic cells have different turnover rates, with the 
myeloid dendritic cells having a faster turnover than 
the plasmacytoid dendritic cells. However, the plas-
macytoid dendritic cells have turnover rates similar 
to the CD8+ T cells [37]. For this reason, throughout 
this study we consider the baseline ai and di values 
defined above. Nevertheless, to describe the hetero-
geneity of NI population, throughout this study we 
will vary the rates ai and di over the following param-
eter ranges: ai ∈ (0.2, 3), and di ∈ (0.2, 0.6).

2.	 IL-7 half life The IL-7 half-life can range between 
6.46 and 9.8 h, depending on the dose [38]. This half-
life corresponds to an elimination rate between 2.575 
and 1.6975/day. Throughout this study we choose a 
baseline value of kei = 2.14/day.

3.	 Immune production of IL-7 Since to our knowledge 
the fraction of IL-7 entering immune vasculature 
( fi ) has not been measured separately, we decided 
to focus on the overall shedding influx ( fiRi). To this 
end, we note that [18] have estimated that the shed-
ding influx of serum IL-7 in the healthy patients is 
10.64 (pg/ml)/106cells/48 h, while the shedding influx 
of serum IL-7 in ovarian cancer patients is 32.49 (pg/
ml)/106 cells/48  h. Moreover, the authors hypoth-
esised that the elevated level of IL-7 in the serum 

Table 1  Description of parameter values involved in the CA-125 dynamics, as given in [25]

Parameter Description (units) Baseline value

fhtRhtNh Healthy cells shedding influx (U/day) 4.56× 10
3

ft Fraction of tumour biomarker entering tumour vasculature 0.1

Rt Biomarker shedding rate per tumour cell (U/day/cell) 4.5× 10
−5

Nh The constant level of healthy cells (which shed the CA-125 biomarker) (cell) –

kgr Growth rate of tumour cell population (day−1) 5.78× 10
−3

ket Elimination rate of tumour biomarker from plasma (day−1) 0.11

cCA125 Cut-off limit of CA-125 assay (for healthy vs. disease states), when the biomarker is produced by both tumour and 
healthy cells (U/ml)

34.11

dCA125 Detection limit of CA-125 assay (i.e., min concentration of biomarker detectable in plasma), when the biomarker is 
produced by the tumour cells alone (U/ml)

1.5

Vpl Mean plasma volume in a 70-year female patient (ml) 3150

DT Tumour detection time (day) To be determined

Table 2  Description of parameter values involved in the IL-7 dynamics

Parameter Description (units) Baseline values

ai CD8+ T cells doubling time (day−1) 2.0794

di CD8+ T cells half-life (day−1) 0.4

dt Killing rate of tumour cells by immune effector cells (day−1) 10
−6

kei IL-7 half life (day−1) 2.14

M Carrying capacity of immune cells 10
9

fiRi Influx of IL-7 secreted by immune cells, into the vasculature ((pg/ml)/cell/
day)

10.925× 10
−6

fhiRhiNh Healthy cells shedding influx of IL-7 (pg/day) 1.9548× 10
4 (low shedding); or 7.1724× 10

4 (high shedding)

cIL7 Cut-off limit of IL-7 assay (for healthy vs. disease states), when the bio-
marker is produced by both immune and healthy cells (pg/ml)

3.8 (low threshold) or 18 (high threshold)

dIL7 Detection limit of IL-7 assay (i.e., min concentration of IL-7 detectable in 
plasma), when the biomarker is produced by the immune cells alone 
(pg/ml)

1.0

Vpl Mean plasma volume in a 70-year female patient (ml) 3150

Dt
T

Tumour detection time based on the CA-125 biomarker (days) To be determined

Di
T

Tumour detection time based on the IL-7 biomarker (days) To be determined
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and ascites of ovarian cancer patients is mainly from 
the host immune cells. Thus, we can assume that the 
shedding influx of IL-7 produced by the immune 
cells ( fiRi) in ovarian cancer patients is equal to the 
difference between the shedding influx of IL-7 in the 
serum of ovarian cancer patients (32.49 pg/ml per 106 
cells per 48 h) and that in healthy patients (10.64 pg/
ml per 106 cells per 48 h), which equals 21.85 pg/ml 
per 106 cells per 48 h. Thus, we use a baseline value of 
fiRi = 10.925× 10−6 (pg/ml)/cell/day.

4.	 Healthy cell production of IL-7 Assuming that the 
immune cells shed the immune biomarker (IL-7) as 
a response to tumour formation, then the produc-
tion of IL-7 in healthy patients (in the absence of 
any immune responses) can be determined using the 
steady state mass (B∗

I ) of the biomarker: 

 
The median concentration of IL-7 in healthy con-
trol subjects seems to vary between different studies. 
For example, [18] detected a median concentration of 
serum IL-7 in healthy patients of 10.64 pg/ml. In con-
trast, [14] detected a much lower serum median con-
centration of IL-7 in healthy patients: 2.9 pg/ml. In the 
following we consider these high and low serum IL-7 
levels for the biomarker steady state B∗

I , and calculate 
the IL-7 influx as a result of production by the healthy 
cells:

•	 High median serum IL-7 concentration Knowing 
that the mean plasma volume in a 70-kg female 
patient is Vpl = 3150 ml [25], we can obtain a 
baseline value for B∗

I = 10.64 × Vpl = 33516  pg. 
For kei = 2.14, we obtain a baseline influx value 
of fhiRhiNh = 7.16× 104 pg/day. Moreover, since 
kei ∈ (1.6975, 2.575/day), we obtain that the IL-7 
production by healthy cells can vary within the 
range (5.69× 104, 8.63× 104) pg/day.

• 	 Low median serum IL-7 concentration In 
this case we obtain a baseline value for 
B∗

I = 2.9× Vpl = 9135  pg. For kei = 2.14 , 
we obtain a baseline influx value of 
fhiRhiNh = 1.9548× 104  pg/day. Moreover, since 
kei ∈ (1.6975, 2.575/day), we obtain that the IL-7 
production by healthy cells can vary within the 
range (1.55× 104, 2.3522× 104) pg/day.

5.	 Detection and cut-off limits for the immune bio-
marker assay In [25] the authors considered two 
threshold values for the detection of CA-125 bio-

fhiRhiNh = keiB
∗

I

markers: the detection limit dCA125 (defined as the 
minimum concentration of biomarker detectable in 
plasma) and the cut-off limit cCA125 (defined as the 
biomarker level that distinguishes a healthy from a 
disease state). For the detection of median serum 
IL-7 levels in ovarian cancer patients, [18] used a 
detection range of 0–2000 pg/ml with a sensitivity of 
10 pg/ml. On the other hand, Mengus et al. [39] used 
a detection limit of 1 pg/ml for IL-7 in prostate can-
cer. Throughout this study, we use a baseline value of 
dIL7 = 1 pg/ml. In regard to the cut-off limit of IL-7, 
[14] used a cut-off point of 3.8 pg/ml for IL-7 to 
distinguish between malignant and benign ovarian 
tumours (this corresponds to the case of low median 
IL-7 concentration). On the other hand, for the case 
of high median IL-7 concentration, [18] showed that 
the 25–75‰ for the serum IL-7 levels in patients 
with ovarian carcinoma are given by the range 
(13.56–54.60)  pg/ml, the 25–75‰ in healthy con-
trol patients are given by (1.62–21.38) pg/ml, while 
the 25–75‰ in benign control patients are given 
by (0.07–25.73)  pg/ml. Although the authors did 
not discuss a possible cut-off point, we can assume 
that this is between 13.5–25 pg/ml, with an average 
of 18 pg/ml. Thus, in this study we will investigate 
the effect of low and high cut-off points (cIL7 = 3.8, 
cIL7 = 18), corresponding to both low and high IL-7 
serum levels.

6.	 Tumor killing rate We assume that the immune sys-
tem fails to control tumour growth (due to limited 
anti-tumour response—see [19]) and so we use a 
tumour-killing baseline value of dt = 10−6 cells/
day. However, to test the sensitivity of the model 
to this parameter, we perform simulations for 
dt ∈ (10−12, 10−3)—see also Figs. 5 and 6.

Calculating tumour diameters
To calculate tumour diameters, we assume that a 
tumour with diameter d = 1  cm contains approxi-
mately 109 cells (as suggested in [40]). The volume of 
such a tumour, assumed to be perfectly spherical, is 
V1 = (4/3)π(d/2)3 = π/6 (for d = 1  cm). The vol-
ume of a tumour with diameter dx, which contains x 
cells, is Vdx = (4/3)π(dx/2)

3. Using the simple rule of 
three, we have Vdx = x · V1/10

9, from which we can 
obtain the diameter dx of a tumour containing x cells: 
dx = (x/109)1/3. We will use this formula in Fig.  9b, to 
calculate the tumour diameters at the biomarker detec-
tion times.
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Results
To compare our results for the combined use of two can-
cer biomarkers (i.e., CA-125 and IL-7) with the results 
in [25] for the use of only one cancer biomarker (CA-
125), we start in Fig. 2 by showing the time-evolution of 
tumour cells and the CA-125 biomarker in the absence of 
any immune response or immune biomarker, under the 
assumptions that CA-125 can be produced by (b) tumour 
cells alone, or (c) tumour and healthy cells. (These results 
are obtained by considering only model (1a), (2), as in 
[25].) In panels (b) and (c) we also show the detection 
time (DT) of the tumour, as calculated by determining 
the intersection point between the BT(t)-curve and the 
CA-125 detection level dCA125 (see panel b), or by deter-
mining the intersection point between the BT(t)-curve 
and the CA-125 cut-off level cCA125 (see panel c). Note 

that in panel (a′) we also show the size of the tumour at 
the detection times DT corresponding to the two cases 
shown in panels (b) and (c).

In Fig.  3 we show the time evolution of tumour cells, 
immune cells, and tumour and immune biomark-
ers for the baseline parameter values listed in Table  2, 
corresponding to low IL-7 serum baseline levels (i.e., 
fhiRhiNh = 1.9548× 104, cIL7 = 3.8). We note that when 
the immune response is included, but we assume that 
IL-7 is produced only by the immune cells and CA-125 
is produced only by tumour cells, then the tumour 
detection time based on CA-125 (Dt

T = 8.8 years) is 
lower than the tumour detection time based on IL-7 
(Di

T = 9.27  years); see panels a′, b′. However, when we 
assume that the tumour and immune biomarkers are 
produced also by the healthy cells in the environment, 
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then Dt
T = 10.07 > Di

T = 9.15. Hence, the inclusion of 
the serum cytokine concentration in the detection tests 
for ovarian cancer, could lead to earlier detection of the 
tumour mass (i.e., almost 1 year earlier).

In Fig. 4 we have also briefly investigated the effect of 
having higher baseline serum IL-7 levels (as in [18]). The 
results show that for lower immune carrying capacity 
values (i.e., M = 109), the level of immune cells in the 
system does not produce enough IL-7 to be detected 
above the cut-off threshold of 18  pg/ml. (Since there 

are no changes in the evolution of NT(t), NI(t) or BT(t) 
compared to Fig.  3, we do not show here the dynamics 
of these variables.) To be able to detect between healthy 
and cancerous states it is necessary to either assume that 
there are more immune cells in the system (i.e., higher 
carrying capacity: M = 1010; see panel b) or higher secre-
tion rate of IL-7 by the existent immune cells (i.e., higher 
fiRi—but we do not have any data to suggest these higher 
secretion values).
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Since the heterogeneity of the immune response [41] 
can lead to small variations in the immune parameters, in 
the following we investigate how changes in the param-
eters associated with the immune response affect the 
tumour detection time. To this end, we focus only on the 
case of low baseline serum IL-7 (corresponding to the 
clinical data in [14]).

Tumour detection times as we vary immune and tumour 
parameters
Figure  5 shows the detection times Dt

T and Di
T for the 

tumour and immune biomarkers, as we vary: (a) the 
tumour elimination rate dt; (b) the immune activation/
proliferation rate ai; (c) the half-life of immune cells 
di ; (d) the carrying capacity of immune cells M; (e) the 
half-saturation constant for the anti-tumour immune 
response hi; (f ) the degradation rate kei of the immune 
biomarker; (g) the influx rate fiRi of IL-7 that is secreted 
by immune cells. First, we note that variations in the half-
saturation constant hi does not have any effect on the 
detection times (see Fig. 5e). Second, we note that varia-
tions in almost all other parameters can lead to an inter-
change between the time Dt

T when the tumour biomarker 
reaches its cut-off threshold cCA125 and the time Di

T the 
immune biomarker reaches its cut-off threshold cIL7 (see 
Fig. 5b, d, f, g). For the baseline parameter values listed 
in Tables 1 and 2, we have Di

T < Dt
T, suggesting that the 

immune response could be used to improve the overall 
tumour detection time. Some of these interchanges in the 
tumour/immune biomarkers detection times occur out-
side realistic parameter ranges (e.g., kei ∈ (1.6975, 2.575) 
as in [38], but in Fig.  5f we investigated the range 
kei ∈ (1, 3.5)). However, they can inform us of pos-
sible dynamics in perturbed system (e.g., following 

immunotherapies for different diseases—other than can-
cer, which might affect also the immune response to can-
cer and the cancer detection times).

We note in Fig. 5 that with the exception of changes in 
dt, changes in all other immune-related parameters do 
not seem to affect the tumour detection time Dt

T based 
on the CA-125 biomarker (such changes affect only Di

T ). 
The reason for this result is the very low tumour killing 
rate dt (which was assumed at a baseline value of 10−6/
day—to explain the failure in the immune response to 
control tumour growth). Increasing this tumour killing 
rate could lead to small changes in Dt

T , as shown in Fig. 6 
(for different ai and di values). However, higher dt values 
also mean that tumours can be detected much later.

Finally, in Fig. 7 we show the effects of varying tumour-
related parameters on tumour detection times Dt

T and 
Di
T . We remark in panel (a) that changes in tumour pro-

liferation rate kgr affect both tumour and immune bio-
marker levels, which subsequently affect the tumour 
detection times. In contrast, changes in all other tumour-
related parameters affect only the tumour biomarkers.

Tumour size at detection time
To investigate the size of the tumour at the detection 
time, in Fig.  8 we show NT(t) at times t = Dt

T (blue 
circles) and t = Di

T (red diamonds). We note that for 
the majority of parameters the tumour size increases/
decreases as we vary the parameters, in the same manner 
as the tumour detection times increase/decrease as we 
vary these parameters—see also Figs. 5 and 7. It is worth 
mentioning here that by varying some immune param-
eters, one could detect even very small tumours (e.g., 
tumours less than 107 cells—see Fig. 8f, g).

T

019
M=10

i

M=10

D  =10.1

c   =18
c   =18

)t(B)t(B
II

IL7

IL7

a b

Fig. 4  The time-evolution of immune biomarker concentration, for higher baseline IL-7 serum levels (i.e. cIL7 = 18), as we increase the carrying 
capacity of immune cells (to allow the cells to reach higher numbers); a M = 10

9; b M = 10
10
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There is one particular aspect that we need to empha-
sise in Fig. 8: changes in parameters dt and kgr do not lead 
to changes in tumour size at detection times (for either 
Dt
T or Di

T). This is in contrast with the effects of dt and kgr 
on the detection times (see Figs. 5a, 7a).

Predictions of tumour evolution in the (IL‑7, CA‑125) phase 
space
Finally, we discuss our results in the context of diagnos-
ing ovarian cancer in the (IL-7, CA-125) variables space. 

We note that [14] investigated the levels of IL-7 and 
CA-125 that can be used to predict benign versus malig-
nant ovarian tumours—see also Fig.  9a. In this figure 
we observe that for low CA-125 (< 40), a reduced IL-7 
level (< 3.8) predicted 22% of malignant cases, while an 
increased IL-7 level (> 3.8) predicted only 9% of malig-
nant cases (despite the fact that malignant ovarian can-
cers are usually associated with higher IL-7 levels); see 
[14]. This discrepancy in the predictions could be the 
effect of low specificity and sensitivity of IL-7 [14], which 
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is related to the multiple roles of IL-7 in the homeostasis 
of the immune system [42]. We will discuss this aspect in 
more detail in the next section.

Since our mathematical model does not distinguish 
between malignant and benign tumours, but rather the 

healthy from the cancerous states, in Fig. 9b(i) we graph 
BI(t) versus BT(t) and their cut-off thresholds. First we 
note that the “healthy” state is characterised by CA-125 
< 15 U/ml, which is consistent with clinical data on 
healthy control patients—see Table  2 in [14]. Second, 
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for t > Dt
T the tumour is detected through elevated 

tumour biomarkers and the “cancerous” state is charac-
terised by CA-125 > 35 U/ml. The region with CA-125 
< 35 and IL-7 > 3.8 could be characterised by either a 
“healthy” or “cancerous” state, since up to 22% of cancer-
ous patients have shown to exhibit lower CA-125 values 
[9] (and in fact, more recent CA-125 assays now accept 
a cut-off limit of 20 U/ml [2, 43]). For the parameter val-
ues used in this study (see Table 1), the dynamics of sys-
tem (1)–(3) did not enter the space region characterised 
by BI(t) < 3.8 and BT(t) > 35; although [14] showed 
that there are clinical cases of malignant cancer in this 
region, as seen in panel (a). Such numerical results could 
be obtained for example for very low ai, M or fiRi values, 
when Dt

T < Di
T (as shown in Fig. 5).

Because the aim of this study is to investigate whether 
the addition of an immune biomarker could be used to 
improve early cancer detection, in Fig. 9b(ii), (iii) we graph 
tumour size versus the two biomarkers (IL-7 and CA-125), 
together with the tumour diameters at the detection 
times. (We explained how we calculated these diameters 
in “Methods” section.) Overall, these results suggest that 
by considering also immune biomarkers, we could detect 
tumours that have much smaller sizes: e.g., diameters 
of ≈ 0.62  cm, as showed in Fig.  9b(ii). Moreover, lower 
tumours could be detected if different immune-related 
model parameters are varied (as shown in Figs. 5, 7a; and 
as supported by the heterogeneity of the immune response 
[41]). As we will discuss in more detail in the next sec-
tion, this result could fall within the remits of the study in 
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[44], which suggested that the detection sensitivity could 
increase to ≈ 80% for tumours of ≈ 0.5 cm diameters.

Discussion
Improving the current methods of tumour detection is 
a critical question in tumour research. A few years ago, 
[25] proposed a simple mathematical model to predict 
tumour detection times based on the level of tumour bio-
markers. Applying the model to ovarian tumours and the 
CA-125 biomarkers, the authors concluded that this type 
of tumour could grow undetected at least 8.8–10.1 years 
(from the moment the tumour starts forming). How-
ever, what the authors did not consider in their study is 
the immunogenicity of the tumours, especially since the 
epithelial ovarian cancers have been shown to be quite 
immunogenic [19, 22].

In this study we proposed a new mathematical model 
that described the interactions between tumour and 
immune cells, and the secretion of tumour biomarkers 
(CA-125) and immune biomarkers (IL-7) that could be 
both used to predict the presence of ovarian tumours.

Using this model, we showed that by combining 
tumour and immune biomarkers one can either increase 
or reduce the time for tumour detection, depend-
ing on whether the biomarkers are produced also by 
healthy cells. For example, assuming that CA-125 is pro-
duced only by cancer cells and IL-7 is produced only by 
immune cells lead to detection times Dt

T = 8.8 years and 
Di
T = 9.27  years (see Fig.  3a′, b′). In contrast, assum-

ing that CA-125 can be produced also by healthy cells 
lead to an increase in tumour biomarker detection time 
to Dt

T = 10.07 years; see Fig.  3a″. However, assuming 

Numerical predictions with our model:
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that IL-7 can be produced also by healthy cells lead 
to a decrease in immune biomarker detection time to 
Di
T = 9.15; see Fig.  3b″. This unexpected result is likely 

linked to the low cut-off value of IL-7 (as determined 
in [14]). Choosing higher cut-off IL-7 values (as in [18]) 
could delay the tumour detection time based on the 
immune biomarker; see Fig. 4. Hence, the results of this 
study depend strongly on data we used from the pub-
lished literature.

Various clinical studies that investigated the relation 
between tumour size in early versus advanced cancers, 
have emphasised that early stage cancers grow locally 
to relatively large sizes (i.e., < 6  cm) before they are 
detected and/or spread [45, 46]. Moreover, in the con-
text of preclinical ovarian tumour sizes, [44] suggested 
that achieving a 50% sensitivity in tumour detection 
before tumours reached advanced stages would require 
the detection of tumours of 1.3  cm diameter, while a 
80% detection sensitivity would require the detection 
of tumour of 0.5 cm diameter. Assuming as in [40], that 
tumours with diameters of 1  cm are formed of approx-
imately 109 cells (see Fig.  1B in [40]), then a tumour of 
0.5 cm diameter would contain approximately 1.25× 108 
cells (see also the calculation of tumour diameters at the 
end of “Methods” section). Note that the tumour sizes 
calculated in Fig. 3c′, c″, in the context of immune bio-
marker detection, contain between 1× 108 − 5× 108 
cells (corresponding to tumours with diameters between 
0.464–0.79 cm). Hence, we suggest that the inclusion of 
immune biomarkers could increase also the detection 
sensitivity of ovarian cancers. Nevertheless, for a more 
detailed investigation of tumour detection sensitivity, we 
would need to fit model (1)–(3) to patient data (an exer-
cise that would also give us better information on the 
variability of different immune-related parameters).

With the help of this mathematical model we also 
investigated the dependance of tumour detection times 
on the parameters controlling the immune response. In 
Fig. 5 we showed that changes in the majority of immune-
related parameters (e.g., dt, ai, M, kei, fiRi)—which could 
be the result of the heterogeneity in immune responses 
[41]—have significant impacts on the time when ovar-
ian tumours are detected, and on the size of the tumour 
at detection time as shown in Fig.  8b–g. Also changes 
in tumour-related parameters impact the time when the 
tumour is detected; see Fig. 7.

In regard to tumour size at detection, we have seen that 
two parameters, dt and kgr, do not seem to have any effect 
on tumour size when the tumour is detected. However, 
these two parameters do impact both biomarker detec-
tion times Dt

T and Di
T (see Figs.  5a, 7a). This suggests 

that the change in these parameters (e.g., an increase in 
kgr in Fig. 7a) leads to a change in detection times (e.g., 

a decrease in both Dt
T and Di

T) which is opposite but of 
the same magnitude as the change in tumour size (e.g., 
increase in tumour size), so that there is no overall vari-
ation in tumour size at the new detection times. The 
interesting aspect is that this particular behaviour can be 
found only in the two parameters that affect both Dt

T and 
Di
T at the same time (all other immune-related param-

eters affect only Di
T , and all tumour-related parameters 

affect only Dt
T). We believe that this is the effect of linear 

tumour growth and decay [although the decay term in Eq. 
(1a) has the tumour variable NT multiplied by a saturated 
term which depends on the immune response NI; but for 
large NI this saturated term behaves as a constant].

Finally, we showed in Fig. 9b that by creating a (BI,BT ) 
phase space diagram (corresponding to model dynam-
ics for patient-specific immune and cancer parameters), 
we could predict the evolution of the tumour detection 
based on the solution trajectory crossing the cut-off lim-
its cCA125 and cIL7. We note here that the levels of CA-125 
and IL-7 biomarkers could be in a space region that 
would not allow to distinguish between a healthy from 
a cancerous state (as observed clinically by [14] for IL-7 
> 3.8 and CA-125 < 40, in the case of benign vs. malig-
nant tumour; see also Fig. 9a). However, the construction 
of a (BI,BT) diagram—for patient-specific parameters—
could allow us to make predictions regarding the long-
term evolution of the biomarker levels in individual 
patients.

Given the simplicity of the mathematical model (1)–
(3), this study could not be applied to make predictions 
regarding benign versus malignant tumours (and thus 
we discuss our results in terms of “healthy” versus “can-
cerous” states). Future work on this topic would see a 
generalisation of model (1)–(3) to include also a benign 
tumour—to test the predictions of this particular model 
for the detection of either malignant or benign tumours 
(based on the CA-125/IL-7 classification of [14]). 
Another restriction of this study is related to the multi-
faceted role of IL-7: on boosting the immune response 
[16, 18], and on the possibility of IL-7 to act as a growth 
factor for ovarian cancer cells [14]. In addition, the 
CA-125 marker seems to have a (less understood) role in 
the immune response, for example by inhibiting the cyto-
toxic responses of NK cells [47], which requires further 
investigation.

Finally, given the complexity of the ovarian cancer 
evolution (which is evident from the heterogeneity of 
these cancers [48–50]), one could say that such simple 
mathematical models could be useless for understand-
ing the disease. However, the goal of these simple models 
is not to reproduce all the details of the disease. Rather, 
these models could be used to identify common bio-
logical characteristics that can be further investigated 
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experimentally [24]. The model introduced in this study 
(which focused on two very general cancer and immune 
biomarkers) can be easily generalised (see the discussion 
in [24]) to incorporate more complex aspects of ovarian 
cancer evolution: different cancer clone populations with 
different growth rates and different surface markers [51], 
or changes in the core molecules of different canonical 
pathways (such as PTEN, notch, PI3K/AKT, etc.) [51], or 
multiple cancer/immune biomarkers that might be asso-
ciated also with different subtypes of ovarian carcinoma 
[52]. Moreover, the interaction rates between the differ-
ent components of the system, as well as the cells pro-
liferation/death rates and the biomarker secretion rates, 
could be made probabilistic. Such generalisations can 
transform the simple differential equations model (1)–(3) 
into more complex deterministic and stochastic network 
models [53, 54], which can include more biological real-
ism. In the future, we will consider also a generalisation 
of model (1)–(3) to investigate multiple biomarker detec-
tion in the context of heterogeneous ovarian cancers. 
The relevant cancer biomarkers to be used in this model 
could be identified with the help of network models (see, 
for example, [31]).

Conclusions
Using a new mathematical model, we investigated the 
dynamics of cancer-immune interactions and biomarker 
secretion by both immune and cancer cells, and showed 
that variations in immune-related parameters can affect 
the tumour detection times. Since in addition to tumour 
immune modulation there are many other factors that 
affect the level of immune responses—e.g., unrelated 
infections which lead to an active immune response and 
increased secretion of IL-7 (as in HIV infections [55] or A. 
benhamiae infections [56]), making accurate predictions 
regarding tumour detection times (based on both tumour 
and immune biomarkers) might depend significantly on 
the status of immune response in each patient. This idea is 
consistent with many other recent studies that discussed 
the promises and pitfalls of immune biomarkers as per-
sonalised medicines [57, 58]. However, the mathematical 
framework presented here could take the research one 
step further by incorporating patient-specific parameters 
(e.g., different levels of immune activation or biomarker 
secretion), and through the use of mathematical tools 
(e.g., sensitivity analysis or bifurcation diagrams) one 
could get a better understanding of the time-evolution of 
the tumour–immune-biomarker system.

To be able to use this model for predictive clinical pur-
poses, one needs to have accurate data (at multiple time 
points) on the level of immune responses, as well as the 
levels of tumour and immune biomarkers and their cut-
off values. We showed in Fig. 4 that changes in the cut-off 

values of IL-7 (corresponding to the values published in 
different clinical studies; see [14] vs. [18]) leads to differ-
ent predictions regarding the detection of cancer based 
on immune biomarkers. However, once this data is avail-
able, such a mathematical model could be applied to indi-
vidual patients.

We conclude by mentioning that since high levels of 
CA-125 are not exclusive to ovarian cancers (being found 
also in patients with breast, lung or gastrointestinal can-
cers [2]), and since IL-7 is a cytokine that characterises an 
active immune response, we hypothesise that a combined 
use of CA-125 and IL-7 could be employed to detect pos-
sible early signs of other types of cancers. In this case, 
other tumour/immune biomarkers need to be used in 
combination with CA-125/IL-7, to increase the specific-
ity towards ovarian cancers [9], or towards other cancers.
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