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Abstract

Background: The current BCG vaccine induces only short-term protection against Mycobacterium tuberculosis (Mtb),

suggesting its failure to generate long-lasting memory T cells. Previously, we have demonstrated that a self-adjuvanting
peptide of Mtb (L91), successfully generated enduring memory Th1 cells. Consequently, we investigated if L91 was able
to recuperate BCG potency in perpetuating the generation of memory T cells and protection against Mtb infected mice.

Methods: In the present study, we evaluated the potency of a self adjuvanting Mtb peptide vaccine L91 in invigor-
ating BCG immune response against Mtb in mice. Female BALB/c mice were immunized with BCG. Later, they were
boosted twice with L91 or an antigenically irrelevant lipidated influenza virus hemagglutinin peptide (LH). Further,
PBMCs obtained from BCG vaccinated healthy subjects were cultured in vitro with L91.T cell responses were deter-
mined by surface markers and intracellular cytokine staining. Secretion of cytokines was estimated in the culture
supernatants (SNs) by ELISA.

Results: Compared to the BCG-vaccinated controls, L91 booster significantly enhanced the percentage of memory
Th1 cellsand Th17 cells and reduced the mycobacterial burden in BCG primed and L91-boosted (BCG-L91) group,
even after 229 days of BCG vaccination. Further, substantial augmentation in the central (CD44"CD62L"CD127") and
effector memory (CD44"CD62L°CD127'°) CD4 T cells was detected. Furthermore, greater frequency of polyfunctional
Th1 cells (IFN-yTTNF-a*) and Th17 cells (IFN-y"IL-17A™) was observed. Importantly, BCG-L91 successfully prevented
CDA4T cells from exhaustion by decreasing the expression of PD-1 and Tim-3. Additionally, augmentation in the
frequency of Th1 cells, Th17 cells and memory CD4 T cells was observed in the PBMCs of the BCG-vaccinated healthy
individuals following in vitro stimulation with L91.

Conclusions: Our study demonstrated that L91 robustly reinvigorate BCG potency to invoke enduring protection
against Mtb. This novel vaccination stratagem involving BCG-priming followed by L91-boosting can be a future pro-
phylactic measure to control TB.
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Background annually [1]. Currently, BCG is the only available vac-
Tuberculosis (TB) is a deadly disease infecting 9.6 mil-  cine against TB, which is administered since 1974 under
lion people globally and accounts for 1.5 million deaths immunization program of World Health Organization
(WHO) [2, 3]. Unfortunately, continuous increase in
the number of TB cases raises a question on the protec-
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antigenic repertoire to protect against Mycobacterium
tuberculosis (Mtb). In contrast, it fails to safeguard adults
from TB; which has been suggested to be due to its fail-
ure to generate long-lasting memory T cells [8].

Many studies are in progress to bolster BCG effi-
ciency to impart enduring immunity. Memory induc-
ing cytokines like IL-7 and IL-15 have been shown to
sufficiently augment the BCG induced memory T cells
[8]. Furthermore, booster dose of Mtb antigen Acrl
entrapped in fusogenic-liposomes generated long-term
memory T cells and improved BCG potency [9]. Thus,
it implies that the protective efficacy of BCG can be
boosted through antigen-priming. Recently, we have
synthesized a novel lipopeptide vaccine construct L91,
which comprises of a promiscuous-peptide derived from
Acrl and the TLR2 agonist Pam2Cys [5, 10]. L91 elicited
both innate and adaptive immunity successfully through
its Pam2Cys and peptide component, respectively [5, 10].
TLR-2 promotes the generation of memory T cells, res-
cued Th1 cells from exhaustion and protected mice from
chronic TB [11]. Intriguingly, L91 elicited long-lasting
memory T cells and protected mice and Guinea pigs
from Mtb infection [10].

In the current study, we have demonstrated that the
memory T cell generation and protection efficacy of BCG
vaccine against Mtb could be significantly bolstered with
L91 boosting of the BCG-vaccinated population. Specifi-
cally we observed improvement in the pool of enduring
memory Th1l and Th17 responses, the cells that play cru-
cial role in protection against Mtb. In future, this vacci-
nation strategy may be implemented to protect people
from TB.

Methods

Study design

Female BALB/c mice (6—8 week) were procured from the
Experimental Animal Facility, CSIR-Institute of Micro-
bial Technology, Chandigarh, India. Mice were immu-
nized subcutaneously (sc) at the base of tail with the
Danish strain of BCG (10° CFU/mouse). Twenty-one
days later, BCG-primed mice were boosted twice with
191, at an interval of 14 days apart (BCG-L91). Control
groups were immunized with BCG alone (BCG), pla-
cebo (PBS) or an antigenically irrelevant lipidated influ-
enza virus hemagglutinin peptide (abbreviated as LH
or Pam2Cys). Mice were aerosol challenged with Mtb
(~100 CFU/mouse), 90 days after the last booster. Sub-
sequently, animals were sacrificed after 90 days of Mtb
challenge. Later, immunological (ex vivo), protection
and histopathology studies were performed. To monitor
the antigen specific T cell response, mice were sacrificed
30 days after Mtb infection, and cellular responses were
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examined following in vitro stimulation with L91, Pam-
2Cys and short term culture filtrate of H37Rv (ST-CF). In
all the experiments, changes in the response on vaccina-
tion were compared among BCG-L91 and control BCG
and placebo (PBS) groups or otherwise indicated.

Vaccine constructs used in study

Lipidated synthetic peptides used in the study were pro-
duced by solid phase synthesis method, as described
elsewhere [12]. The lipidated promiscuous peptide of
sequence SEFAYGSFVRTVSLPVGADE was from the
Acrl antigen of Mtb (L91). The control, non-mycobac-
terial, lipidated peptide (LH) sequence ALNNRFQIK-
GVELKS was from influenza virus hemagglutinin light
chain and was shown to be active in BALB/c mice [13].

Mycobacterial strains and BCG

Mtb H37Rv strain was cultured in 7H9 medium contain-
ing Tween-80 (0.05%), supplemented with albumin (10%),
dextrose and catalase (ADC). Glycerol stocks of H37Rv
were prepared and stored at —80 °C, and later used for
infection studies. BCG vaccine (TUBERVAC) used for
immunization was purchased from Serum Institute of
India, Pune, India. TUBERVAC (Bacillus Calmette-
Guerin Vaccine 1.P) is a live freeze-dried vaccine derived
from an attenuated strain of Mycobacterium bovis and
meets the requirements of WHO and LP. when tested
by the methods outlined in WHO, TRS. 745 (1987), 771
(1988) and LP.

Reagents and antibodies

Chemicals and reagents were purchased from Sigma-
Aldrich (St. Louis, MQO). Anti-mouse or anti-human
fluorochrome labeled antibodies (Abs): CD4-PB, CD62L-
APC, CD44-PerCP-Cy5.5, CDI127-PE, FoxP3-FITC,
Tim3-PE, PD1-PECy7, IFN-y-PECy7, TNFa-PerCPCy5.5,
IL-17-PerCPCy5.5, CD25APC-Cy7, CD45RA-PE,
CD45RO-APC, and Abs for ELISA were procured from
BD Pharmingen (San Diego, CA) or otherwise men-
tioned. RPMI-1640 and FBS were purchased from
GIBCO (Grand Island, NY) for cell culture. For cultur-
ing of cells, tissue culture grade plastic-wares were pur-
chased from BD Biosciences (Bedford, MA). Ab against
iNOS used in Western blot was procured from (Abcam,
Cambridge, United Kingdom).

Isolation of lymphocytes from lymph nodes, spleen

and lungs

Spleens and LNs obtained from the immunized mice and
exposed to Mtb, were pooled and single cell suspension
was prepared by gently pressing through frosted slides.
Lungs were perfused with chilled PBS and small pieces
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were prepared and digested with collagenase (2 mg/
ml) for 30 min/37 °C. Later, cells were passed through a
sieve (70 pM). Viability was checked by trypan blue dye-
exclusion method and cells (2 x 10°/well) were added to
96 well U-bottom culture plates and cultured with 1L.91
(1 nmol), Pam2Cys (50 ng/ml), ST-CF (25 pg/ml) and
medium for 72 h.

Proliferation assays

The cells (2 x 107 cells) were incubated with carboxy-
fluoresceinsuccinimidyl ester (CFSE) dye in PBS (1 uM,
4 ml) at 37 °C. Free CFSE was quenched with 2 ml of
FCS and excess was removed by washing with RPMI-
FCS-10%. CFSE-labeled cells were cultured with either
L91 (1 nmol), Pam2Cys (50 ng/ml), ST-CF (25 pug/ml) or
medium for 72 h. The proliferation of CFSE-labeled cells
was analyzed by flow cytometry.

Intracellular cytokine and surface staining

The cells were stimulated as mentioned in the prolif-
eration assay and then stimulated with PMA (50 ng/
ml) and ionomycin (10 pM) for 4 h followed by incuba-
tion with brefeldin A (5 mg/ml) for an additional 2 h.
The cells were then harvested, washed twice with buffer
(PBS-FCS-2%) and fixed with paraformaldehyde (1X) at
4 °C for 30 min. Fixed cells were perforated with sapo-
nin (0.2%) and incubated with fluorochrome tagged anti-
IEN-y, IL-17A and TNF-a Abs at 4 °C for 90 min. The
cells were washed with saponin (0.2%), followed by wash
buffer. For surface staining, the cells were incubated with
either fluorochrome labeled Abs or biotinylated Abs/
streptavidin-fluorochrome conjugates. Standard proto-
cols of washing/incubation were followed at each stage.

Flow cytometry

Flow cytometry was carried out using a FACS-Aria III
and data was analyzed using the BD FACS DIVA soft-
ware package (BD Biosciences, San Jose, CA). The gating
strategies for FoxP3, PD-1, Tim-3, IFN-y/TNF-a, IFN-y/
IL-17, CD62L/CD44, CD127 (Additional file 1: Figure
S1) and CCR6/CXCR3 expression on IL-17/IFN-y dou-
ble positive cells (Additional file 2: Figure S2) have been
shown in their respective figures.

Cytokine estimation

The cultures were set as mentioned in T cell proliferation
assay. Later, culture supernatants (SNs) were collected
and cytokine concentrations were determined using a
standard sandwich ELISA [14].

Culture of dendritic cells
Monocytes were isolated from the femurs and tibia of
the mice. The cells (2 x 10%/well) were cultured in the
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presence of granulocyte macrophage colony-stimulating
factor (GM-CSF; 2 ng/ml) and interleukin-4 (IL-4; 4 ng/
ml) for the generation of DCs. On day 3, the cultures
were replenished with fresh medium and supplemented
with GM-CSF and IL-4. On day 6, the cells were har-
vested, washed and added to 24 well plates (2 x 10° cells/
well). Bone marrow derived dendritic cells (BMDCs)
were stimulated with either L91 (3 nmol), F91 (3 nmol),
Pam2Cys (50 ng/ml) or LPS (4 pg/ml) for 16 h. SNs
were collected for cytokines estimation by ELISA and
the expression of surface markers was assessed by flow
cytometry.

Western blotting for iNOS

As mentioned above for the cultures of DCs and mac-
rophages, BMDCs were stimulated with L91, F91, Pam-
2Cys and LPS for 16 h in 12 well plate (10° cells/well). The
cells were harvested and lysed in radioimmunoprecipi-
tation assay buffer (RIPA) containing a protease inhibi-
tor cocktail. Protein was estimated and equal amounts
(30 pg) were subjected to SDS-PAGE (10%) followed
by transfer to PVDF membrane. The non-specific sites
were blocked with BSA (5%) and the blot was probed
with anti-iNOS Abs (1:200) (Ab3523) or actin as a con-
trol. Later, the blot was probed with anti-rabbit-HRP Ab
and finally developed using an enhanced chemilumines-
cence method (Lumigen, Inc. Southfield, MI). The blot
was finally scanned using Image Quant LAS 4000 (GE
Healthcare, Pittsburgh, PA).

Demonstration of NF-kB by EMSA

BMDCs were stimulated with L91 (9 nmol), F91 (9 nmol),
Pam2Cys (150 ng/ml) or LPS (4 pg/ml) for 30 min in 12
well plates (10° cells/well). The cells were harvested and
nuclear extract was prepared. Nuclear extracts of each
sample were incubated with [P??] labeled oligonucleo-
tides containing the binding site for NF-«xB at 37 °C for
20 min to allow the formation of DNA-protein com-
plexes, which was then resolved by native gel electropho-
resis using a 6% gel. Later, the gel was dried and exposed
to a blank screen at room temperature for 6—10 h and
scanned by a phosphorimager (Fujifilm, Tokyo, Japan).

Isolation and culture of human PBMCs

Blood was obtained from BCG vaccinated healthy vol-
unteers in sterile vacutainers. Blood was diluted with
PBS in 1:1 ratio and overlaid on histopaque. Periph-
eral blood mononuclear cells (PBMCs) were separated
by centrifugation at 400 g for 30 min at 25 °C. PBMCs
were washed 3 times with PBS + 2% FCS and in vitro
cultured with L91 (1 nmol), F91 (1 nmol) or Pam2Cys
(50 ng/ml) for 96 h. During culture, IL-2 (100U) was
added after 24 h.
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Statistical analysis

The data are presented as mean =+ standard error. Sta-
tistical analysis was performed using Graph Pad Prism
employing an unpaired Student’s ‘t'test.

Results

L91 administration limits the generation of regulatory T
cells

One of the main reasons associated with BCG failure is
the generation of regulatory T cells (Tregs) following
vaccination, which hampers its protective efficacy [5].
Consequently, we examined ex vivo generation of regu-
latory T cells (Tregs) in the cells isolated from the lungs
of the immunized mice after 90 days of Mtb infection.
We observed significantly (p < 0.005) higher percentage
of FoxP3™ CD4 Tregs from the BCG vaccinated mice, as
compared to the control (placebo) group (Fig. 1a, b). On
the other hand, a significant reduction of the FoxP3* CD4
Tregs (p < 0.0001) was observed in the group of mice that
was primed with BCG followed boosting with L91 (BCG-
191), as compared to BCG. Thus, indicating that L91
boosting restricted BCG-mediated induction of Tregs and
thereby may be augmenting immunity against Mtb.

L91 rescues CD4 T cells from exhaustion

Mycobacterium tuberculosis is known to induce exhaus-
tion of T cells [11]. Recently, we have demonstrated that
signaling via TLR-2 rescues CD4 T cells from exhaustion
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[11]. L91 comprises of TLR-2 agonist Pam2Cys and a
MHC-II binding promiscuous peptide of Acrl [10].
Therefore, we monitored whether BCG-L91 vaccina-
tion could rescue CD4 T cells from exhaustion against
Mtb infection. The results showed a substantial reduc-
tion of the exhaustion markers PD-1 (p < 0.05) (Fig. 1c,
d) and Tim-3 (p < 0.05) (Fig. le, f) on the CD4 gated T
cells obtained from BCG-L91 group, compared to those
of BCG group (Fig. 1c—f). There was no difference in
the expression of these two markers on the cells isolated
from BCG and the placebo group. These results demon-
strate that L91-boosting prevented T cell exhaustion in
Mtb infected mice.

BCG-L91 elicits predominantly Th1 and Th17 immunity

Thl cells and Th17 cells are two major arms of adap-
tive immunity that play a cardinal role in safeguarding
against Mtb [15]. Thl cells are known to mediate protec-
tion against Mtb through the release of IFN-y and TNF-«a
[7, 10, 16]. Th17 cells confer protection by chemokine
mediated recruitment of the cells of innate and adap-
tive immunity [17, 18]. BCG has shown to elicit a mixed
Thl and Th2 response and also a weak Th1l7 response
[19, 20]. Our results show that L91 booster significantly
augmented Thl and Thl7 immunity, as evidenced by
a greater release of IFN-y following in vitro stimulation
with L91 (p < 0.005) or ST-CF (p < 0.05) and IL-17A (in
vitro stimulation with L91: p < 0.005; ST-CF: p < 0.0005)
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Fig. 1 BCG-L91 limits the generation of Tregs and rescues CD4 T cells from exhaustion. The mice primed and boosted with BCG-L91 and infected
with Mtb were sacrificed. The control animals were immunized with either BCG or placebo. A single cell suspension was prepared from lungs and
ex vivo examined for the expression of a FoxP3; € PD-1; e Tim-3 by flow cytometry. b Scatter dot plot depicts percent population of FoxP31 CD4
T cells. The figures (Mean = SE) in the inset the percentage of positive cells. Each dot in the scatter plot signifies one mouse. The bar diagrams
correspond to the iMFI for d PD-1; f Tim-3. Data are pooled from 2 independent experiments and shown as Mean = SEM. *p < 0.05, **p < 0.005,
***p < 0.0001, ns not significant
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by lung cells (Fig. 2a, b) than the control groups. Thus,
BCG-primed and antigen-boost strategy generated better
immunity than BCG alone against Mtb [17, 21].

Induction of multifunctional Th1 cells and Th17 cells

by BCG-L91

Polyfunctional Thl cells and Th17 cells are considered
better in protecting against Mtb, compared to their coun-
ter parts secreting single cytokine [22, 23]. In our study
here, the cells isolated from the lungs of the BCG-L91
group showed significantly greater expansion in the per-
centage of multifunctional Thl cells (IFN-y"TNF-a*)
(L91: p < 0.005, ST-CF: p < 0.005) and Th17 cells
(IL-171TFN-y*) (L91: p < 0.005, ST-CF: p < 0.05) follow-
ing in vitro stimulation with either L91 or ST-CF, com-
pared to the BCG group (Fig. 2c—f).

Multifunctional Th17 cells express CCR6"CXCR3M
phenotype

Multifunctional Th17 cells (IFN-ytIL-17A™) co-express-
ing CXCR3/CCR6 are known to upregulate the ligands
for CXCR3 (CXCL9/CXCL10/CXCL11) on the lung
parenchymal cells, which helps to recruit Th1 cells to the
site of infection [17, 18]. The results of our study showed
that significantly more CXCR3TCCR6"' co-expressing
polyfunctional Th17 cells (IFN-ytIL-17A%) had been
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observed in the lungs of the BCG-L91 group following
culturing with L91 (p < 0.0005) and ST-CF (p < 0.05)
(Fig. 2g, h).

BCG-L91 enhances the frequency of T cell memory
response

One of the main reasons for BCG’s inability to evoke
long-term protection against Mtb is its failure to generate
enduring memory T cells [5, 10]. The results of this study
show that L91 induced significantly greater expansion in
the pool of both central (CD44MCD62LM; 1.91: p < 0.05;
ST-CEF: p < 0.005) and effector memory (CD44MCD62LY;
L91: p < 0.05; ST-CF: p < 0.05) CD4 T cells in the BCG-
L91 administered mice than the control group follow-
ing in vivo stimulation of L91 and ST-CF (Fig. 3a—c).
These results were further substantiated by significantly
(p < 0.005) higher display of CD127, another marker for
memory CD4 T cells (Fig. 3d, e). No discernible change
was detected in the case of BCG group. The CD127 has
been established to be an important marker for the suste-
nance of memory CD4 T cells [24].

L91 reduces the suppression of antigen presenting cells

by enhancing NF-kB and iNOS expression

The Acrl antigen of Mtb is known to tolerize dendritic
cells by upregulating the inhibitory molecule Tim-3 and
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consequently suppresses the host immunity [25]. L91 is
derived from Acrl. Hence, it was worth to examine the
influence of L91 on Tim-3 expression on dendritic cells.
Our results show that in vitro stimulation with L91 sig-
nificantly (p < 0.0005) downregulated the expression of
Tim-3 compared to unstimulated cultures (Fig. 4a). L91
comprises of the components that are capable of induc-
ing both innate and adaptive immunity [10]. Innate
immunity is the first line of defense to combat against
any pathogen [26]. Nitric oxide (NO) mediated killing
of Mtb is one of the well-established protection mech-
anism [27]. Hence, we thought it would be worth to
check the impact of L91 on DCs in inducing the release

of NO. Interestingly, we observed a dose-dependent
increase in iNOS, the enzyme responsible for NO syn-
thesis (Fig. 4b) upon stimulation with L91. Additionally,
L91 considerably (p < 0.0005) augmented TNF-« secre-
tion (Fig. 4c). TNF-a is a major factor in restricting the
intracellular survival of Mtb [7, 25]. Further, the aug-
mentation in the expression of NF-kB was also detected
with L91 stimulation (Fig. 4d). NF-«B is a key transcrip-
tion factor responsible for the propagation of cells and
pro-inflammatory responses [28]. Besides L91, consid-
erably higher NF-kB expression was detected following
stimulation with the Pam2Cys control but not un-lipi-
dated peptide (F91). These results together demonstrate
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the role of Pam2Cys as a component of L91 in promot-
ing the release of molecules of innate immunity respon-
sible for protection.

L91 boosting enhances protective efficacy of BCG vaccine
After establishing the role of L91 in inducing the long-
lasting memory T cell response, we next evaluated the
protective efficacy of BCG-L91 against Mtb. To generate
bona fide memory T cell response, BCG-L91 vaccinated
mice were aerosol challenged with Mtb 90 days after the
last immunization. Bacterial burden in the lungs and
spleen was enumerated 90 days following the challenge.
The results show that L91 boosting led to a greater reduc-
tion in the mycobacterial burden in the lungs (p < 0.005)
and spleen (p < 0.005), compared to BCG-vaccinated
group, and also the Pam2Cys and placebo control
(Fig. 5a, b). The decrease in the CFU in the spleen also
signifies the importance of BCG-L91 in restricting the
dissemination of Mtb.

Further, we substantiated CFU data by histopathologi-
cal study of lungs. Animals immunized with BCG-L91
exhibited reduced pathology in the lungs, manifested
by decreased macrophage infiltration and lesser and
smaller size of granulomas, fewer scattered peribronchi-
olar lymphocyte-rich areas and better preserved alveo-
lar spaces, when compared to the BCG group, placebo
and Pam2Cys controls. The control animals revealed

Mtb induced severe pathology that was characterized by
the larger size and number of lymphocyte rich compact
granulomas with signs of irregular lung architecture due
to excessive inflammation. Peribronchiolar cuffs and big-
ger confluent areas of consolidated mixed lymphocytes-
histiocytes were also apparent (Fig. 5¢). The quantitative
assessment of the granulomas in lung sections revealed a
decreased Mtb burden in BCG-L91 immunized animals
(Fig. 5d).

L91 augments the expansion and activation of human CD4
T cells

L91 efficiently amplified BCG induced immunity in the
experimental model of TB. Hence, we were next curious
to know whether L91 was able to activate human CD4 T
cells obtained from BCG vaccinated healthy volunteers.
PBMCs cultured with L91 exhibited significantly higher
(p < 0.0005) proliferation and upregulation of the activa-
tion marker CD25 (p < 0.0005) on CD4 T cells, as com-
pared to those cultured with free peptide or Pam2Cys
control (Fig. 6a—c).

L91 enhances the generation of enduring polyfunctional
Th1 cells and Th17 cells in human PBMC

We next observed that 191 stimulation improved the
generation of Thl cells, as it significantly (p < 0.05)
expanded the percentage of IFN-y™ CD4 T cells. Further,
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we observed increased frequency (p < 0.005) of poly-
functional Thl cells expressing both IFN-y and TNF-a
(Fig. 7a—d). The results were obtained using blood
from the non-TB endemic Australian population. Fur-
thermore, we also monitored the efficacy of L91 using
PBMCs from BCG-vaccinated healthy volunteers of the
TB-endemic Indian population. It is worth to mention
here that the BCG has failed to protect Indian population
from Mtb [4]. We observed a significant augmentation in
Th1 and Th17 immunity, as documented by the increased
percentage of IFN-y" (p < 0.0005) and IL-17A"
(p < 0.005) CD4 T cells, respectively (Fig. 8a—c). Further,
enhanced frequency (p < 0.005) of IFN-y' and IL-17A%
polyfunctional Th17 cells was detected (Fig. 8d). Further-
more, expansion (p < 0.005) of the pool of the memory
precursors of CD4 T cells (CD45RATCD45RO™) was
noted (Fig. 8e). These results suggest that L91 efficiently
activated polyfunctional human Th1 cells and Th17 cells
and expanded the pool of memory CD4 T cells. Thus, has
a great potential to reinvigorate the efficacy of BCG vac-
cine in TB endemic and non-endemic population.

Discussion

The slow progress of the ‘Stop TB Program’ and the
emergence of drug resistant strains of Mtb poses an
urgent challenge for the scientific community to develop
an effective vaccine against Mtb. BCG is the only cur-
rently available vaccine, which is widely administered
worldwide [10]. Nevertheless, TB accounts for 9.6 million
new cases and 1.5 million mortality annually [1]. In many
ways BCG is a controversial vaccine, since it protects
80% of individuals in non-TB endemic regions and 0%
in TB-endemic zones [7, 29]. BCG protects children but
not adults living in TB-endemic regions, further demon-
strating its variable efficacy [5, 10, 30]. Many approaches
to improve BCG vaccine have been tried, which includes
recombinant BCG with different antigenic formulations
[29-31]. However, the introduction of a globally effec-
tive vaccine candidate, at least in TB-endemic zones, is
yet to be achieved. The high protective efficacy of BCG in
the developed world and children of TB-endemic sectors
suggest that BCG has the adequate antigenic repertoire
to protect against Mtb [23]. Nevertheless, BCG efficacy
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wanes with age, which indicates its failure to elicit life-
long immunity [32]. In this context, several approaches
are being tried to boost BCG ability to generate enduring
memory T cells and protection against TB [8, 9].

L91 is a chimeric peptide comprising of MHC-II bind-
ing peptide and Pam2Cys and promotes the generation of
long-term memory CD4 T cells [10]. Therefore, we were
encouraged to test the potential of L91 to bolster BCG
efficacy by promoting the persistence of memory CD4
T cells and consequently long lasting protection against
Mtb.

We carried out a study in which L91 was used to boost
the immune response primed by BCG vaccination. As
compared to BCG group, the following major findings
have been obtained: (i) significant reduction in the num-
ber of CFU in the lungs and diminished pathological

changes in the Mtb infected mice; (ii) higher proliferation
of the CD4 T cells and upregulated expression of IFN-y
and IL-17A; (iii) robust increase in the pool of multifunc-
tional Th1 cells (IFN-y"/TNF-a™t) and Th17 cells (IL-17"/
IFN-yt/CXCR3"/CCR6™); (iv) expansion in the percent-
age of central and effector memory CD4 T cells; (v) the
mechanism involved in the reduction of bacterial burden
was through iNOS and TNF-a; (vi) the PBMCs obtained
from the BCG vaccinated volunteers showed increase in
the frequency of polyfunctional Th1 cells, Th17 cells and
memory CD4 T cells on in vitro exposure to L91.

One of the main reasons associated with the weak
efficacy of BCG vaccine to protect against Mtb is attrib-
uted to the generation of Tregs following immunization,
which dampens Thl immunity through release of IL-10
[33-35]. The decrease in the frequency of Tregs in the
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BCG-L91 group compared to BCG group clearly indi-
cates the importance of L91 boosting in reducing the
number of Tregs. The inhibition in the development of
Tregs by BCG-L91 may be due to the augmented secre-
tion of IFN-y by Th1 cells [36, 37]. Furthermore, the sign-
aling events stimulated by TGF-f are negatively regulated
by IFN-vy [38]. TGE- is responsible for the differentiation
of naive CD4 T cells to Tregs. IFN-y-mediated phospho-
rylation of STAT1 leads to the expression of T-bet and
Smad?7 [38, 39], which is known to suppress the regula-
tory function of Tregs [40].

It has also been well documented that Mtb drives Thl
cells to exhaustion [11]. Thl cells play a crucial role in
protecting against Mtb [10, 11]. Recently, we have dem-
onstrated that triggering of TLR-2 with Pam2Cys can
enhance the generation of memory Thl cells and rescues
them from exhaustion by downregulating PD-1 and Tim-3
and amplifying co-stimulatory signals and the secretion of
pro-inflammatory cytokines [10, 11]. TLR-2 agonist Pam-
2Cys is a major component of L91. TLR-2 signaling not
only rescues T cells from exhaustion but also stimulates

both innate and adaptive immunity. Further, the higher
susceptibility of TLR-27/~ animals to Mtb indicates an
important role of TLR-2 in protection [41, 42].

The induction of Thl immunity plays a fundamental
role in protecting against intracellular pathogens such as
Mtb (7, 8, 10]. Further, MyD88’/ ~ animals with partially
compromised Thl immunity are more susceptible to TB
[15]. We demonstrated that the L91 booster substantially
augmented Th1l immunity, as evidenced by improvement
in IFN-y secretion. Pam2Cys is known to stimulate DCs
to release IL-12 through TLR-2 signaling [10]. IL-12 is
a differentiating factor for Thl cells. Thus, L91 prefer-
entially expands Thl cells. Furthermore, we noted the
generation of Th17 cells in the animals vaccinated with
BCG-L91. Recently, it was demonstrated that Th17 cells
confer protection against Mtb by recruiting Thl cells to
the site of infection. Th17 cells show a robust effect on
chemokine-mediated infiltration of macrophages and
neutrophils at the site of infection [17, 18].

It has been shown that the protective role of poly-
functional Thl cells (IFN-y"/TNF-at) and Th17 cells



Rai et al. J Transl Med (2017) 15:201

Page 11 of 14

a
Medium Pam2Cys L91
4.0+0.6 4.6+0.7 11.22+1.
)
124 P
]
e vy vy hé!&."_ — ~
b 30,
%k % %k
r 1
% %k X
1
A
3
2
S A
= A
3 154 A
;’ ns 4
z 1
o
= . AMA
- A
- AA
° A
. =:. AL
L P
b2 ] -:
‘:'. T L
v Medium Pan&Cys L91
d 20,
%k %k %k
| L
—_ %k 3k
X I 1
Seme A
2
]
e A
8 .
+ -
« 10
~
-
4 A
- ns AL
1
£ .
A
. s
bJ P wal
— % -
. - A
.
N ]
N Medium Pan&Cys Lo1

Fig. 8 L91 elicits long lasting Th1 and Th17 immune response of BCG vaccinated volunteers. PBMCs of BCG vaccinated human subjects were stimu-
lated with L91 and control cultures with Pam2Cys and medium for 96 h and analyzed for the expression of memory markers and cytokines by flow
cytometer. a Histogram and b scatter plot depicts percent population CD4 T cell expressing IFN-y (n = 16). Likewise, € scatter dot plot represents
percent population of CD4 T cell expressing IL.-17A (n = 9). d Polyfunctional T cells were identified on CD4 gated T cells co-expressing IFN-y and
IL-17A (n = 9). e Histogram and f scatter dot plot represent the percentage of CD45RATCD45RO™ memory CD4 T cells in BCG immunized human

C 207
* % %
I 1
gi A
Y
] A
-
g A
S 10
g
- AL
_‘l nS AA
= —
-l
. --. A
oo —_—
— % -
LY - A
L
A -
" Medium Pam2Cys L91
Medium Pam2Cys

L91

CD45RA* CD45RO* CD4 T Cells (%)

20.
% %
I 1
% %
| —
A
A
A
ns
10+ L ! A
[ ] S W—
. [ A
Y . A
L] AA
L1 1] A:A
e _® .=-
% =
. "
°®
[}
Mo&um PanéCys Lé1
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(IFN-y*/IL-17A™) is qualitatively superior to their single
cytokine secreting counterparts, since they can effec-
tively restrict the survival of Mtb [10, 17]. Interestingly,
we found that BCG-L91 immunization expanded IFN-y
and TNF-a secreting polyfunctional Thl cells. IFN-y is
known to activate macrophages and increase their bacte-
ricidal effect and TNF-a restricts the growth of Mtb [43,
44]. Such Th17 cells are reported to have a better pro-
tective capacity than single cytokine secreting cells [17,
18, 45]. Further, Th17 cells expressing CXCR3TCCR6™
are associated with protection against Mtb, while those
displaying CCR6" CCR4™ are involved in autoimmunity
[17, 45]. We found in this study that L91 preferentially
expanded polyfunctional Th17 cells displaying CXCR3
and CCR6. Consequently, suggesting non-pathogenic
nature of Th17 cells.

The importance of NO has been well documented in
the killing of Mtb by inducing apoptosis of infected cells
[27]. L91 activates DCs and augments the expression of
iNOS and TNF-a. Both NO and TNF-a cumulatively
protect the host from Mthb and the mechanism deci-
phered is by inducing apoptosis of Mtb-infected cells.
Apoptosis releases intracellular bacteria, which provides
an opportunity for the activated macrophages to engulf
and eliminate them [27]. We have shown that a booster
dose of LI1 efficiently bolsters the protective efficacy of
BCG and significantly constrains bacterial burden in the
lungs and spleen even after a lengthy period of 229 days
of vaccination. The results of protection study suggest
that L91 has a unique capability of generation and main-
tenance of long-lasting memory CD4 T cells and protec-
tion against Mtb [10].

Finally, we validated the efficacy of L91 employing
PBMC:s of BCG vaccinated healthy adult volunteers from
TB-endemic and non-endemic zones. Importantly, CD4
T cells exhibited an enhacement in the expression of
IFN-y and IL-17A on in vitro stimulation with L91. Fur-
thermore, an increase in the frequency of polyfunctional
Th1 cells and Th17 cells was detected. Finally, it is worth
to mention here that a remarkable expansion in the pool
of memory CD4 T cells was found in our study, which
illustrates the role of L91 in reinvigorating BCG efficacy
to evoke long-lasting immunity responsible for protec-
tion against Mtb.

Conclusions

This study indicates that BCG priming followed by L91
boosting could efficiently overcome the low long-term
protective efficacy associated with BCG vaccination
by generating enduring memory T cells and protec-
tion against Mtb. The possible mechanism involved is
through the involvement of both innate (NO and TNEF-
a) and adaptive (long-lasting polyfunctional Th1 cells and
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Th17 cells) immunity. In future, this vaccination strategy
of BCG-LI1 vaccine may be developed into an effective
strategy to control TB in the TB-endemic population.

Additional files

Additional file 1: Figure S1. Gating strategy for monitoring the expression
of FoxP3, PD-1, Tim-3, IFN-y, IFN-y Y TNF-q, IL-17A, IL-17ATIFN-y, CD62LTCD44
and CD127 on CD4™ T cells. CD4™ T cells were stained with the fluoro-
chrome labeled Abs to FoxP3, PD-1, Tim-3, IFN-y, IFN-yTTNF-q, IL-17A,
IL-17A%IFN-y, CD62LTCD44, CD127.The P1 gate was made on lymphocyte
zone and P2 gate on SSC-A and CD4* T cells. The expression of FoxP3,
PD-1,Tim-3, IFN-y, IFN-y*TNF-q, IL-17A, IL-17AFIFN-y, CD62LTCD44 and
CD127 was observed on P2 gated population (CD4™ and SSC-A™). The
unstained cells failed to show any CD4™ T cell population.

Additional file 2: Figure S2. Gating procedure for monitoring the expres-
sion of CXCR3TCCR6 on IFN-y™IL-17A expressing CD4 T cells. The P1 gate
was made on lymphocyte zone and P2 gate on SSC-A and CD4™ T cells.
The display of IL-17ATIFN-y (P3 gate) was monitored on P2 zone (CD4™
and SSC™). The expression of CXCR3TCCR6 was examined on P3 region
(IL-17AMIFN-y positive cells). The unstained cells failed to show any CD4*
T cell population.
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