
Melnik ﻿J Transl Med  (2017) 15:195 
DOI 10.1186/s12967-017-1297-2

REVIEW

p53: key conductor of all anti‑acne 
therapies
Bodo C. Melnik*

Abstract 

This review based on translational research predicts that the transcription factor p53 is the key effector of all anti-acne 
therapies. All-trans retinoic acid (ATRA) and isotretinoin (13-cis retinoic acid) enhance p53 expression. Tetracyclines 
and macrolides via inhibiting p450 enzymes attenuate ATRA degradation, thereby increase p53. Benzoyl peroxide and 
hydrogen peroxide elicit oxidative stress, which upregulates p53. Azelaic acid leads to mitochondrial damage associ-
ated with increased release of reactive oxygen species inducing p53. p53 inhibits the expression of androgen receptor 
and IGF-1 receptor, and induces the expression of IGF binding protein 3. p53 induces FoxO1, FoxO3, p21 and sestrin 1, 
sestrin 2, and tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), the key inducer of isotretinoin-medi-
ated sebocyte apoptosis explaining isotretinoin’s sebum-suppressive effect. Anti-androgens attenuate the expression 
of miRNA-125b, a key negative regulator of p53. It can thus be concluded that all anti-acne therapies have a common 
mode of action, i.e., upregulation of the guardian of the genome p53. Immortalized p53-inactivated sebocyte cultures 
are unfortunate models for studying acne pathogenesis and treatment.
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Background
Acne vulgaris is the most common inflammatory skin 
disease affecting more that 80% of adolescents of devel-
oped countries [1]. Four major factors are involved in 
acne pathogenesis: (1) increased sebum production, (2) 
hyperkolonization and biofilm formation of Propioni-
bacterium acnes (P. acnes), (3) increased acroinfundibu-
lar keratinocyte proliferation with comedo formation, 
(4) and follicular as well as perifollicular inflammation 
[2]. Sebum is the secretory product of holocrine secre-
tion of sebocytes derived from sebaceous glands (SGs) 
[3]. Excessive production of sebum containing higher 
amounts of monounsaturated pro-inflammatory lipids 
results from exaggerated sebocyte activity, which is 
induced by increased insulin-like growth factor-1 (IGF-1) 
and androgen signalling [2]. Recent evidence underlines 
that dietary factors, especially hyperglycaemic carbo-
hydrates and milk consumption, increase insulin/IGF-1 
signalling promoting acne [4–7]. Enhanced activity of the 

phosphoinositide-3-kinase (PI3K)/AKT pathway down-
regulates the nuclear activity of the metabolic transcrip-
tion factor FoxO1 [8–11], the transcription factor of 
starvation [12]. Acne is associated with increased activity 
of mechanistic target of rapamycin complex 1 (mTORC1) 
[13, 14], which promotes the expression of two lipogenic 
transcription factors, sterol regulatory element bind-
ing protein-1c (SREBP1c) and peroxisome proliferator-
activated receptor-γ (PPARγ) [15]. It has been predicted 
that mTORC1 is activated in the skin of acne patients 
[16], which has been confirmed experimentally [10, 
17]. SREBP1, which is upregulated via increased AKT/
mTORC1 signalling plays a key role in sebaceous lipo-
genesis [18, 19], and in addition induces sebum fatty acid 
monounsaturation [20, 21], that plays a crucial role in 
comedogenesis and inflammation of acne [22, 23]. Acti-
vated IGF-1/mTORC1 signalling promotes the expres-
sion of the anti-apoptotic protein survivin [24, 25], which 
has recently been found to be upregulated in the skin of 
acne patients [26]. Intriguingly, serum IGF-1 levels of 
acne patients significantly correlate with survivin expres-
sion [26]. Morphologically, acne vulgaris is characterized 
by SG hyperplasia with increased production of sebum 

Open Access

Journal of 
Translational Medicine

*Correspondence:  melnik@t‑online.de 
Department of Dermatology, Environmental Medicine and Health Theory, 
University of Osnabrück, Am Finkenhügel 7a, 49076 Osnabrück, Germany

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-017-1297-2&domain=pdf


Page 2 of 12Melnik ﻿J Transl Med  (2017) 15:195 

with higher amounts of pro-inflammatory and comedo-
genic monounsaturated fatty acids [22]. Increased IGF-1 
signalling of puberty superimposed with insulin signal-
ling of Western diet (hyperglycaemic carbohydrates and 
milk) provide the input signals for disturbed acne metab-
olomics including mTORC1-S6K1-mediated insulin 
resistance [22, 27, 28].

It is the intention of this paper to demonstrate that 
all these acne-related deviations of molecular signalling 
will be corrected by increasing the expression of the key 
transcription factor p53, known as the guardian of the 
human genome [29, 30]. Translational evidence will be 
presented showing that all common anti-acne therapies 
used in today’s clinical practice converge in upregulating 
the expression of p53.

Retinoic acid
All-trans retinoic acid (ATRA), the prototype of topical 
retinoids, is comedolytic, resolves precursor microcome-
dones and is anti-inflammatory [31, 32]. Topical ATRA 
has been shown to transform the horn-filled utriculi of 
the rhino mouse into normal follicles [33]. ATRA-medi-
ated upregulation of p53 has been reported in several 
cells including cervical carcinoma cells, acute myeloblas-
tic leukaemia cells, human embryo carcinoma cells, and 
glioma cells [34–37]. In human embryonic stem cells, 
ATRA-mediated upregulation of CBP/p300 acetylated 
p53 at lysine 373, which leads to p53 dissociation from 
E3-ubiquitin ligases HDM2 and TRIM24, thereby sta-
bilizing p53 expression [38]. It has been demonstrated 
in primary human epidermal keratinocytes that ATRA 
regulates many genes associated with cell cycle arrest 
and programmed cell death [39]. In human keratino-
cytes, ATRA increases the expression of p53, pro-apop-
totic caspases, and sensitizes keratinocytes to apoptosis 
[40]. Chronic activation of p53 in mice resulted in the 
loss of SGs associated with a depletion of B-lymphocyte-
induced nuclear maturation protein 1 (BLIMP1) positive 
SG cells explained by suppressed mTORC1 activity [41]. 
In fact, two p53 target genes, SESN1 and SESN2, activate 
the AMP-responsive protein kinase (AMPK) and target 
it to phosphorylate TSC2 and stimulate its GAP activity, 
thereby inhibiting mTORC1 [42, 43].

p53 intersects at multiple points with the regulation of 
inflammation [44]. The pro-inflammatory transcription 
factor nuclear factor κB (NFκB) and p53 can act as func-
tional antagonists. The E3 ubiquitin ligase mouse double 
minute homolog 2 (MDM2), whose gene is transcription-
ally activated by p53, can act as a direct negative regu-
lator of NFκB by binding and inhibiting p65RelA [45]. 
Furthermore, ATRA-p53-induced neutrophil apoptosis 
may reduce inflammation in acne [46–48]. ATRA has 
also been shown to induce apoptosis and suppression of 

NFκB signalling in adult T cell leukaemia cells [49]. Both, 
ATRA-p53-induced inhibition of NFκB and neutrophil 
as well as T cell apoptosis may contribute to the anti-
inflammatory effect of ATRA in the treatment of acne.

Peroxides and photodynamic therapy
Benzoyl peroxide (BPO) is an anti-bacterial topical agent 
that kills P. acnes through the release of free oxygen radi-
cals and is also mildly keratolytic and comedolytic [50–
52]. BPO treatment decreased the size of gold hamster ear 
SGs and the number of sebocytes entering the S-phase 
of the cell cycle [53]. The mitotic index of BPO-treated 
sebocytes exhibited a reduction of 33.8% [53]. Similar 
results have been obtained in autoradiographic studies of 
human SGs [54, 55]. Although less efficient than ATRA, 
BPO decreased the size and numbers of corneocytes [56], 
and reduced comedo formation in the rabbit ear micro-
comedo prevention assay [57]. HaCaT keratinocytes 
incubated for 24 h with BPO exhibited a dose-dependent 
cytotoxicity at concentrations above 250 μm. It is impor-
tant to mention that BPO is a potent inducer of oxida-
tive stress increasing the intracellular ratio of oxidized to 
reduced glutathione (GSSG/GSH) in treated keratino-
cytes [58]. Notably, BPO interacts with mitochondria, 
inhibits mitochondrial respiration and induces mito-
chondrial swelling [59]. In a comparable manner, topical 
hydrogen peroxide (H2O2) treatment reduced the num-
ber of inflammatory and non-inflammatory acne lesions 
[60–62]. It has been demonstrated in C2C12 muscle cells 
that H2O2 induced mitochondrial permeability transition 
pore opening and p53 activation. Intriguingly, testoster-
one treatment prior to H2O2 administration reduced p53 
activation and prevented mitochondrial permeability 
transition pore opening [63]. After mitochondrial dam-
age, p53 maintains the mitochondrial genome through 
its translocation into mitochondria and interactions with 
mitochondrial DNA repair proteins. This mechanism 
provides a further explanation for the upregulation of 
p53 after mitochondrial insults such as challenges with 
BPO or H2O2 [64]. Acting as a signal, H2O2 circumvents 
antioxidant defence by over-oxidizing peroxiredoxins, 
the enzymes that metabolize peroxides. Sestrins, a fam-
ily of proteins whose expression is induced by p53, are 
required for regeneration of peroxiredoxins containing 
Cys-SO2H, thus re-establishing the antioxidant firewall 
[65]. Sestrins accumulate in cells exposed to oxidative 
stress, potentiate AMPK, which finally inhibits mTORC1 
[66]. It is well appreciated that oxidative stress and mito-
chondrial damage-mediated generation of reactive oxy-
gen species (ROS) promote an immediate p53 response 
[67]. Oxidative stress activates p53 and in turn inhibits 
cell proliferation and growth through induction of Sestrin 
1 and Sestrin 2, which inhibit mTORC1 [67]. Remarkably, 
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metformin, which as well exhibits beneficial effect in the 
treatment of acne [68], via activation of AMPK and inhi-
bition of mTORC1 [69], operates on the same pathway as 
AMPK-activating peroxides. In fact, metformin has been 
shown to increase p53 expression in patients with poly-
cystic ovary syndrome [70].

The major effect of photodynamic therapy (PDT) in 
acne is the generation of ROS [71, 72]. Thus, PDT mim-
ics the effects of BPO-mediated upregulation of p53. It 
should thus be expected that retinoid- and BPO-medi-
ated upregulation of p53 may exert synergistic effects in 
the treatment of acne. In fact, adapalene and BPO sig-
nificantly decreased the expression of the proliferation 
marker Ki67, α2 and α6 integrins, TLR-2, β-defensin-4 
and IL-8 in inflammatory acne skin, whereas single treat-
ments with adapalene or BPO alone were less effective 
[73].

Azelaic acid
Azelaic acid (AZA), a saturated C9-dicarboxylic acid, is 
mildly effective as a comedolytic, anti-bacterial, and anti-
inflammatory topical agent for the treatment of acne 
vulgaris [74, 75]. In cultured keratinocytes, AZA exerted 
time- and dose-dependent anti-proliferative effects 
associated with an early marked swelling and damage 
of mitochondria [76–78]. AZA and other C8-C13 dicar-
boxylic acids inhibit mitochondrial respiration and pro-
mote mitochondrial damage [79]. It has been shown that 
phosphatidylcholine esterified with AZA induced mito-
chondrial apoptosis at low micromolar concentrations 
in various cell lines [80]. Isolated exposed mitochondria 
rapidly swelled and released cytochrome c and apopto-
sis-inducing factor [80]. Mitochondrial damage results 
in mitochondrial ROS production, which upregulates 
the expression of p53, which promotes mitochondria-
mediated apoptosis [81]. In fact, it has recently been 
confirmed that AZA induces apoptosis in acute myeloid 
leukaemia cells in a dose-dependent manner [82]. Thus, 
AZA shares mechanistic similarities with peroxide-
induced mitochondrial disturbances upregulating the 
p53 response.

Tetracyclines and macrolides
Tetracyclines are considered the first-line therapy in 
moderate to severe acne [83]. Apart from their anti-
bacterial activities against P. acnes and bacterial lipases, 
non-antibiotic properties of tetracyclines gained recent 
attention [84]. The observation that sub-antimicrobial 
dosing of doxycycline showed equal efficacy as conven-
tional anti-bacterial doxycycline treatment of inflam-
matory lesions in moderate and severe acne underlined 
the importance of tetracyclines’ non-antibiotic effects in 
acne [85]. Tetracylines, hypervitaminosis A, and systemic 

isotretinoin treatment share an increased risk for pseudo-
tumor cerebri, which already points to a common under-
lying pathogenic mode of action [86]. ATRA homeostasis 
in the adult CNS is tightly controlled through local ATRA 
synthesis and cytochrome P450 (CYP450)-mediated 
inactivation of ATRA [87]. In neuronal cells, minocycline 
increased ATRA levels via inhibiting p450-mediated 
ATRA degradation [87]. This observation prompted Hell-
mann-Regen et al. [88] to speculate that tetracyclines and 
erythromycin may exert their pharmacological mode of 
action in acne via suppression of p450-mediated ATRA 
degradation in the skin. In fact, these investigators pro-
vided experimental evidence that minocycline potently 
blocked ATRA degradation in rat skin microsomes, and 
strikingly enhanced ATRA levels in ATRA-synthesizing 
cell cultures in a dose-dependent manner [89]. Several 
studies underline that tetracyclines and macrolides such 
as erythromycin and azithromycin suppress ATRA-cat-
abolizing p450 enzymes modifying cellular ATRA home-
ostasis [90–92]. Intracellular upregulation of ATRA is 
thus the common denominator of p450-inhibiting agents 
that finally upregulate p53. A link between p450-regula-
tion and mTORC1 signalling has recently been suggested 
[93]. In fact, it has been demonstrated that minocycline 
upregulated p53 and inactivated the AKT/mTORC1 
pathway [94].

In contrast, it should be expected that p450-inducing 
agents such as isoniazid, phenobarbital, rifampicin, phe-
nytoin, glucocorticosteroids and others [95–97] may 
lower intracellular ATRA levels and thus increase the risk 
for acne. Indeed, the majority of drugs reported to pro-
mote acne and acneiform drug eruption are p450-induc-
ing agents [98–100].

Oral isotretinoin
Oral isotretinoin (13-cis retinoic acid), an isomer of 
ATRA, has been used for the treatment of severe recal-
citrant acne for nearly four decades [101]. Its use has 
proven successful for most patients with severe acne, 
resulting in decreased sebum production and marked 
reduction of inflammatory lesions [102–105]. It is 
important to realize that the sebum-suppressive action 
of isotretinoin is not related to decreased lipid synthe-
sis of individual sebocytes but is caused by sebocyte 
death, which histologically corresponds to the involu-
tion of SGs during isotretinoin treatment [106–108]. 
In pioneering histological and planimetrical studies, a 
marked decrease in the size of SGs of up to 90% of the 
pre-treatment values has been observed after 12  weeks 
of treatment. Additionally, the ratio of the differentiat-
ing pool of sebocytes versus the undifferentiating cell 
pool changed from 2:1 to 1:7 [107]. Furthermore, the 
labelling index of sebocytes regressed significantly under 
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isotretinoin therapy. Today, this dramatic SG involu-
tion can be explained by isotretinoin-mediated sebo-
cyte apoptosis (programmed cell death). Sebocytes are 
able to isomerize 13-cis retinoic acid to all-trans reti-
noic acid (ATRA), which binds to and activates retinoic 
acid receptors (RARs) that modify gene expression [109] 
(Fig.  1). One most important ATRA-responsive gene is 
the transcription factor p53 [39]. Activated p53 induces 
the expression of the pro-apoptotic effector TRAIL 
(tumour necrosis factor-related apoptosis-inducing 
ligand) [110]. There are two p53 DNA-binding sites in 
the human TRAIL promoter region [110]. Furthermore, 

ATRA induces RAR-dependent transcriptional upregu-
lation of the TRAIL receptor 1 (TRAIL-R1, also known 
as death receptor 4) [111], thus promotes apoptotic 
TRAIL signalling at the ligand- and receptor level. ATRA 
also activates the expression of the transcription fac-
tor FoxO3a [112, 113]. p53 directly binds and activates 
the expression of the FOXO3A gene [114, 115]. Many of 
the genes targeted by p53 were also targeted by FOXO 
transcription factors, indicating that p53 functions in a 
coordinate manner to suppress gene expression down-
stream of PI3K/AKT/mTORC1 signalling [116, 117]. 
Both ATRA-induced p53 and ATRA-induced FoxO3a 
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Fig. 1  Isotretinoin-induced p53-mediated sebocyte apoptosis. In the sebocyte, isotretinoin is isomerized to all-trans-retinoic acid (ATRA), which 
is transported to the nucleus via cellular retinoic acid binding protein 2 (CRABP2). In the nucleus, ATRA binds to retinoic acid receptor (RAR) and 
activates RAR-responsive genes such as TP53, which promotes the expression of p53. ATRA-induced expression of ARF promotes the expression 
of p14, which is a negative regulator of mouse double minute 2 (MDM2), the key inhibitor of p53 via proteasomal degradation of p53. Increased 
IGF-1 signalling is attenuated by p53 and reduces the activity of the kinase AKT, that via phosphorylation inhibits the activity of FoxO1 and FoxO3 
but stimulates MDM2. Thus, isotretinoin increases p53 activity via its direct transcriptional induction and posttranslational inhibition of its negative 
regulator MDM2. Subsequently, increased p53 activates several apoptosis-promoting proteins such as tumour necrosis factor-related apoptosis-
inducing ligand (TRAIL). p53-attenuated IGF-1 signalling reduces the expression of survivin, a critical inhibitor of caspase 3. p53-induced expression 
of BLIMP1 and FoxO3 suppresses c-Myc, a key transcription factor of sebocyte differentiation. The final outcome is sebocyte apoptosis, the primary 
mechanism of isotretinoin-induced sebum suppression
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synergistically promote TRAIL expression [118]. In 
isotretinoin treated acne patients, TdT-mediated dUTP-
biotin nick end labelling (TUNEL), a marker of apop-
totic cells, was strongest in the nuclei of sebocytes in the 
basal layer and in early differentiated sebocytes adjacent 
to the basal layer of SGs [119]. In accordance, upregu-
lated TRAIL expression has been observed in the basal 
and suprabasal layers of SG during isotretinoin treat-
ment of acne patients [120], which allows the conclusion 
that isotretinoin-ATRA-p53/FoxO3a-induced TRAIL 
signalling explains isotretinoin-induced sebocyte apop-
tosis resulting in the involution of SGs (Fig. 1). Kelhälä 
et  al. [106] confirmed increased TRAIL mRNA expres-
sion in lesional skin of isotretinoin-treated acne patients. 
TRAIL-mediated activation of caspase 8 and caspase 3 
inactivates p63 [121], a critical marker of seboblasts/pro-
genitor cells located in the outermost layer of SGs [122]. 
Thus, isotretinoin via increased p53 signalling appar-
ently depletes the number and survival of p63-regulated 
sebocyte progenitor cells.

The expression of IGF-1, the most important pro-sur-
vival stimulus and mitogen of SGs, was increased in the 
basal and suprabasal layers of SGs of acne patients [7]. In 
normal skin, lGF-1 receptor (IGF1R) mRNA expression 
was most intense in the basal cells of the SG in immature 
sebocytes. Some weaker staining was present in mature 
fully differentiated sebocytes [119]. Expression was also 
detected in all cells of the infundibulum [123]. IGF-1 
may thus promote infundibular keratinocyte prolifera-
tion (comedogenesis) in acne [124]. The pattern of IGF-1 
and IGF1R expression suggests a critical role for IGF-1 as 
a sebaceous mitogen and morphogen [123]. IGF-1-defi-
cient patients with Laron syndrome do not develop acne 
and other mTORC1-driven diseases of civilization [124, 
125]. The expression pattern of the IGF-1/IGF1R system 
thus perfectly fits to the hyperproliferative cell layers of 
SGs and infundibular keratinocytes observed in acne 
patients [126, 127]. Importantly, p53 has been identi-
fied as a negative regulator of the IGF1R gene [128], 
which mediates increased IGF-1/mTORC1 signalling of 
puberty and Western diet (Fig. 1) [6, 22, 129]. Recent evi-
dence underlines that the IGF-1 signalling axis and p53 
genome protection pathways are tightly interconnected 
[130]. IGF-1/AKT/mTORC1 signalling also increases the 
anti-apoptotic regulator survivin [24, 25], which is upreg-
ulated in the skin of acne patients [26]. Survivin’s anti-
apoptotic effects are mediated via inhibition of caspase 3 
[131], which is the downstream effector caspase activated 
by TRAIL signalling [132]. FoxO3a, which is suppressed 
via IGF-1/AKT signalling [133], is an inducer of TRAIL 
expression (Fig.  1) [131]. Thus, p53-mediated inhibition 
of IGF-1 signalling will reduce survivin expression and 
its anti-apoptotic action in the pilosebaceous follicle. 

Furthermore, p53 and p53-mediated FoxO3a signalling 
increase pro-apoptotic TRAIL signalling.

Isotretinoin treatment of SEB-1 sebocytes induced G1 
cell cycle arrest via upregulation of the cell cycle inhibitor 
p21 [134]. It is known that p53 uses cell cycle checkpoints 
to induce G1/S and G2/M cell cycle arrest [135, 136]. p21 
(WAF1) was among the first p53 target genes that have 
been identified [137, 138].

mTORC1 signalling, which is increased in SGs of acne 
patients [10, 17], is negatively regulated by p53 [42, 116]. 
Deletion of p53 enhances mTORC1 activity by altering 
lysosomal dynamics of TSC2 and Rheb [139]. mTORC1 
orchestrates the expression of SREBP1c and PPARγ [13–
15], which play a crucial role in sebaceous lipogenesis, 
sebocyte differentiation, and sebum production [18, 19, 
140–142].

IGF binding protein-3 (IGFBP-3) is a nuclear regu-
lator that binds to retinoid X receptor-α (RXRα) and 
several of its dimerization partners, including nuclear 
receptor Nur77 and PPARγ [143, 144]. RXRα-IGFBP3 
interaction leads to modulation of the transcriptional 
activity of RXRα that is essential for mediating the effects 
of IGFBP3 on apoptosis [145]. In response to IGFBP3, the 
RXRα binding partner nuclear receptor Nur77 rapidly 
undergoes translocation from the nucleus to the mito-
chondria, initiating an apoptotic cascade resulting in cas-
pase activation [146]. IGFBP3 attenuates the activation 
of PPARγ and inhibits adipocyte differentiation [147]. 
IGFBP3 interacted with PPARγ and inhibited PPARγ het-
erodimerization with RXRα [147]. Isotretinoin treatment 
of SEB-1 sebocytes resulted in a threefold over-expres-
sion of IGFBP3 [119]. Notably, IGFBP3 is a target gene of 
p53 [148]. Thus, p53-mediated induction of IGFBP3 gene 
expression inhibits mitogenic IGF-1 signalling (Fig. 2).

Taken together, pro-apoptotic isotretinoin-ATRA-p53 
signalling induces a complex regulatory network that 
counteracts exaggerated IGF-1-AKT-mTORC1-mediated 
pro-survival signalling in acne vulgaris. Whereas isotreti-
noin-induced p53-TRAIL signalling is the desired effect 
promoting sebum suppression via sebocyte apoptosis, 
all adverse effects of the drug including teratogenicity 
can be explained by p53-mediated apoptosis of vulner-
able ATRA-sensitive cells such as neuronal crest cells 
(Table 1) [149]. Intriguingly, hyper-activated p53 induced 
neural crest cell apoptosis in mice and craniofacial abnor-
malities resembling retinoid embryopathy [150, 151].

Anti‑androgens
Antiandrogens play an important role in sebum sup-
pression and acne therapy in female patients [152, 153]. 
Androgen receptor (AR)-mediated signalling contrib-
utes to sebocyte differentiation and maximization of 
sebaceous lipogenesis [154]. In hamster sebocytes, 
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phosphorylation and thus activation of TOR was 
increased by the addition of testosterone in the pres-
ence of IGF-1 [154]. Furthermore, IGF-1 enhances adre-
nal and gonadal androgen synthesis and via activation 
of 5α-reductase promotes the conversion of testoster-
one to its ten times more potent AR-ligand dihydrotes-
tosterone (DHT) [6]. Increased IGF-1 signalling in acne 
suppresses nuclear FoxO1 [8–10], which is a nuclear co-
suppressor of AR [155], and thus increases AR-mediated 
target gene expression. Recently, p53 has been identified 
as transcriptional inducer of FOXO1 and PTEN [156], 
an important observation that confirms the role of p53 
in regulating multiple signalling levels of IGF-1/IGF1R/
PI3K/AKT/FoxO1 signalling. AR is regarded as a sensi-
tive marker of sebaceous differentiation [157]. Androgens 
induce sebaceous differentiation in sebocytes expressing 
a stable functional AR. DHT up-regulated the expression 

of genes potentially related to sebocyte differentiation 
such as MUC1/EMA, AQP3, and FADS2 [158]. Remark-
ably, AR is a direct target of p53 and is negatively regu-
lated by p53 [159, 160]. This allows the conclusion that all 
p53-activating anti-acne agents attenuate AR signalling 
and thus exert anti-androgenic activity, which is further 
suppressed via classical anti-androgens such as cyproter-
one acetate (CPA).

c-Myc is a further important transcription factor pro-
moting sebocyte differentiation [161, 162]. Interestingly, 
a functional interaction between c-Myc and p53 has 
been reported [163]. Expression of c-Myc significantly 
attenuated apoptosis and impaired the transcriptional 
activity of p53 on p21 [163]. c-Myc overexpression may 
antagonize the pro-apoptotic function of p53 [163]. 
Recent evidence indicates that c-Myc-induced SG dif-
ferentiation is controlled by an AR/p53 axis [163]. 

An�-acne drugs                                        p53 expression           p53-regulated acne target genes 

Fig. 2  Synoptic illustration of p53-activating anti-acne therapies. Systemic isotretinoin (13-cis retinoic acid) via isomerization to all-trans retinoic 
acid (ATRA), tretinoin (ATRA), as well as cytochrome p450-inhibiting tetracyclines and macrolides all enhance ATRA-mediated upregulation of p53. 
Benzoyl peroxide (BPO) and hydrogen peroxide (H2O2) enhance p53 expression as well as a azelaic acid (AZA)-induced mitochondrial damage and 
photodynamic therapy, which generate reactive oxygen species (ROS). Activated p53 attenuates the expression of IGF-1 receptor (IGF1R) and of 
androgen receptor (AR). p53 activates expression of cell cycle inhibitor p21 and via upregulation of IGF binding protein-3 (IGFBP3) suppresses the 
transactivation of peroxisome proliferator-activated receptor-γ (PPARγ), which is important for sebocyte differentiation. Oxidative stress-responsive 
sestrins activate AMP kinase (AMPK), which inhibits mechanistic target of rapamycin complex 1 (mTORC1) downregulating anabolism, cell growth 
and sterol regulatory element binding protein 1c (SREBP1c)- and PPARγ-dependent lipogenesis. p53-mediated upregulation of FoxO1 expression 
inhibits AR, PPARγ, and SREBP1c, key transcription factors of sebaceous lipogenesis and sebocyte differentiation. p53-induced expression of FoxO3a 
and tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) activate pro-apoptotic signalling with upregulation of caspase 8 (Casp8) and 
caspase 3 (Casp3), which execute apoptosis and promote p63 degradation. p53 increases the expression of the ubiquitin E3 ligase MDM2, which 
inhibits nuclear factor κB (NFκB), the key transcription factor for inflammatory cytokine expression. Anti-androgens attenuate AR-mediated expres-
sion of miRNA-125b, a key negative regulator of p53. Thus, p53 upregulation balances all pathological deviations observed in the sebaceous follicle 
of patients with acne vulgaris: increased proliferation, exaggerated lipogenesis, and inflammation. Note, that p53 is suppressed in SV40 immortal-
ized sebocytes, because SV40 large T antigen physically inhibits p53
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c-Myc-induced SG differentiation was reduced in 
mice lacking a functional AR. In contrast, testosterone 
treatment or p53 deletion activated AR signalling and 
restored c-Myc-induced differentiation [164]. Recent 
studies have revealed that FoxO3a acts as an antago-
nist of c-Myc (Fig. 1) [165]. Thus, increased IGF-1-AKT 
signalling in acne via FoxO3a suppression may favour 
c-Myc-driven SG differentiation.

Anti-androgens with proven effects in the treamt-
ment of acne are CPA, spironolactone and flutamide 
[152, 153]. These three major anti-androgens used for 
acne therapy are AR ligands that antagonize the actions 
of testosterone and DHT by competing for AR bind-
ing sites. Testosterone and DHT-mediated activation of 
AR induces the expression of miRNA-125b [166, 167]. 
Importantly, miRNA-125b is a highly conserved key 
suppressor of p53 [168–170]. The MIR125B2 gene pro-
moter exhibits four AR response elements pointing to 
close interaction between androgens and miRNA-125b 
expression [167]. Anti-androgens such as CPA or fluta-
mide reduce AR-mediated expression of  miRNA-125b 
[167], which increases p53 activity [167–170]. Remark-
ably, p53-dependent expression of the pro-apoptotic 
proteins TRAIL and death receptor 5 (DR5) increased 
by CPA treatment [171]. p53 suppresses the expression 
of AR, thus reduces AR signaling [159, 160]. Indeed, 
oral isotretinoin, which enhances p53 activity, has 

been demonstrated to reduce AR levels in the skin of 
isotretinoin-treated acne patients [172]. In this regard, 
isotretinoin and anti-androgens converge in p53-
induced TRAIL-mediated sebocyte apoptosis and sebum 
suppression.

Androgen/AR-induced miRNA-125b not only tar-
gets p53 but also BLIMP1 [173]. p53 positively regulates 
BLIMP1 transcription [174]. BLIMP1 is a suppressor of 
c-Myc [175]. Anti-androgen treatment of acne via attenu-
ation of miRNA-125b may thus increase the inhibitory 
effect of BLIMP1 on c-Myc thereby inhibiting sebocyte 
differentiation and sebaceous lipogenesis.

Immortalized sebocytes
A huge number of experimental acne research has been 
performed with immortalized sebocytes such as the 
SZ95 or SEB-1 sebocyte cell lines, which are derived 
from human sebocytes transfected with the SV40 large 
T antigen [176, 177]. Via transfection of the HPV16-E6/7 
oncoproteins, the immortalized human sebocyte cell line 
SEBO662 has been established [178]. It is believed that 
immortalized sebocyte culture models provide valu-
able insights into the development and management of 
acne [179, 180]. However, immortalized cell lines are 
not a suitable model to study acne nor the in vivo phar-
macological action of anti-acne agents as immortaliza-
tion abolishes p53 activity [179, 180]. Immortalization 

Table 1  p53-regulated target genes involved in isotretinoin’s mode of action

p53 target genes Desired and adverse drug effects

Tumor necrosis factor-related apoptosis-inducing ligand,  
TRAIL (TNFSF10) upregulation

Sebocyte apoptosis: sebum suppression
Meibomian cell apoptosis: dry eyes
Neural crest cell apoptosis: teratogenicity
Hypothalamic cell apoptosis: depression
Intestinal cell apoptosis: inflammatory bowel disease

Insulin-like growth factor-1 receptor (IGF1R) suppression Attenuated pro-survival and mitogenic signaling of IGF-1

Androgen receptor (AR) suppression Reduced AR expression and miRNA-125b-mediated suppression of p53

IGF binding protein-3 (IGFBP3) upregulation Enhanced pro-apoptotic signalling and suppressed PPARγ signalling: 
attenuated lipogenesis

Cyclin-dependent kinase inhibitor 1A, p21 (CDKN1A) upregulation G1/S cell cycle arrest: Suppression of comedogenesis and sebocyte  
proliferation

B lymphocyte-induced maturation protein 1 (BLIMP1) (PRDM1)  
upregulation

Increased BLIMP1-mediated c-Myc suppression reducing sebocyte  
differentiation

Sestrin 1 (SESN1) and sestrin 2 (SESN2) upregulation Activation of AMPK resulting in mTORC1 and ACC inhibition: sebum  
suppression

Forkhead box O1 (FOXO1) upregulation Suppression of AR, SREBP1c and PPARγ: suppression of lipogenesis

Forkhead box O3a (FOXO3A) upregulation Enhanced upregulation of TRAIL: enhancement of apoptosis

AMP-activated protein kinase (PRKAA1) Increased expression of AMPK and AMPK-mediated inhibition of mTORC1

Aquaporin 3 (AQP3) upregulation Increased aquaporin 3 expression: increased transepidermal water loss, dry 
skin, xerosis,

Aquaporin 4 (AQP4) upregulation Increased aquaporin 4 expression increasing cerebrospinal fluid (risk of 
pseudotumor cerebri)

Apolipoprotein B100 (APOB) and apoB mRNA editing enzyme  
complex 1 (APOBEC1)

Increased hepatic synthesis of ApoB100: hypertriglyceridaemia with 
increased hepatic secretion of triglyceride-rich VLDL
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by SV40 large T antigen and oncogenic HPV16 proteins 
inactivates p53, pRB and SEN6 [180, 181].

The large T antigen of simian virus 40 (SV40) forms 
a specific complex with p53 [182, 183] and inhibits 
p53-mediated transcription [184] (Fig.  2). During evolu-
tionary viral adaptation to host organisms, viruses have 
developed strategies to manipulate host cell p53 depend-
ent pathways to facilitate viral survival via inhibition of 
host cell apoptosis [185]. SV40 T antigen-mediated p53 
suppression apparently impairs ATRA-p53-induced sebo-
cyte apoptosis. In fact, isotretinoin (10−8 − 10−5 M) did 
not affect externalized phosphatidylserine levels, DNA 
fragmentation, and lactate dehydrogenase cell release, 
despite increased caspase 3 levels [186]. Only, after addi-
tion of a further apoptosis-inducing agent (staurosporine) 
DNA fragmentation in SZ95 sebocytes was induced [186]. 
In B16F-10 melanoma cells, isotretinoin alone induced 
apoptosis associated with upregulated p53 expression 
[187]. Despite a multitude of studies with immortalized 
sebocytes, no data on the expression and regulation of 
p53, the guardian of the genome, have yet been reported.

Conclusion
There is compelling evidence for the key role of p53 in 
sebocyte homeostasis. It can be concluded from transla-
tional evidence that currently available anti-acne agents 
have a common mode of action: the upregulation of p53 
expression. p53 controls a web of critical genes related to 
acne pathogenesis such as AR, FoxO transcription factors, 
BLIMP1, and mTORC1 activity, that all play a key role in 
acne pathogenesis as well as pharmacological actions of 
anti-acne agents [188]. p53, the guardian of the genome, 
is a pivotal regulator for cell homeostasis. p53 controls 
most important cellular responses such as IGF-1 and AR 
signalling and via induction of MDM2 terminates p53-
induced cellular responses via ubiquitination and protea-
somal degradation of p53, FoxO1 and FoxO3a, respectively 
[189–191]. All these essential regulatory mechanisms are 
compromised in immortalized sebocytes via transfection 
with SV 40 large T antigen or HPV16-E6/7 oncoproteins. 
In contrast to the in vivo situation, p53 in acne patients is 
not artificially inactivated and still responsive to pharma-
cological targeting. We have to appreciate that acne is a 
pro-survival disease of the sebaceous follicle with increased 
IGF-1/AKT/mTORC1-survivin signalling [192]. Anti-acne 
agents such as retinoids, antibiotics, peroxides, azelaic acid, 
metformin and anti-androgens induce p53-mediated sig-
nalling and thus readjust the delicate p53-dependent bal-
ance between survival and death. Immortalized sebocytes 
with inactivated p53 transcription are thus a most critical 
and perhaps misleading model system to study p53-driven 
apoptotic signalling pathway in acne, which have recently 
excited the field of acne research [193].
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