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Abstract 

Gene therapy protocols require robust and long-term gene expression. For two decades, retrovirus family vectors 
have offered several attractive properties as stable gene-delivery vehicles. These vectors represent a technology with 
widespread use in basic biology and translational studies that require persistent gene expression for treatment of 
several monogenic diseases. Immunogenicity and insertional mutagenesis represent the main obstacles to a wider 
clinical use of these vectors. Efficient and safe non-viral vectors are emerging as a promising alternative and facilitate 
clinical gene therapy studies. Here, we present an updated review for beginners and expert readers on retro and len‑
tiviruses and the latest generation of transposon vectors (sleeping beauty and piggyBac) used in stable gene transfer 
and gene therapy clinical trials. We discuss the potential advantages and disadvantages of these systems such as 
cellular responses (immunogenicity or genome modification of the target cell) following exogenous DNA integration. 
Additionally, we discuss potential implications of these genome modification tools in gene therapy and other basic 
and applied science contexts.
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Background
Genetic modification has played a major role in cell biol-
ogy studies aiming to describe cellular mechanisms and 
pathophysiological processes. The ability to express for-
eign proteins and non-coding RNAs, to knock down pro-
tein expression by shRNA and, more recently, to edit the 
genome of cells allowed the elucidation of several genetic 
and biochemical systems in living organisms by interfer-
ing with their physiology. Recently, these technologies 
are being widely explored due to their potential for gene 
therapy.

Adding a new genetic unit can deeply impact the biol-
ogy of individual cells and the entire organism. While 

shRNA and genetic edition of DNA usually require tran-
sient or permanent expression for their effects to take 
place, the permanent expression from a transgenic unit 
usually requires it to be integrated in the genetic material 
of the organism so it can be passed from the originally 
modified cells to the daughter cells.

The deeper knowledge of biological signaling circuits 
and networks led to the development of a whole new 
field of synthetic biology, in which single or multiple 
genes are transferred to cells, ascribing new functions 
and, ultimately, potentially impacting the whole metabo-
lism of multicellular organisms. As examples of such new 
applications, yeasts have been recently modified to build 
a whole biosynthesis pathway for bioactive molecules 
by adding 23 new genes [1] and lymphocytes are being 
modified with multiple genes in order to sense outside 
stimuli integrating the signals in conditional [2] or logic 
gates based approaches [3]. The nature of outside signals 
can vary from proteins or ligands, to metabolites or even 
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light, as recently demonstrated in approaches based on 
optogenetics activation of genetic units [4].

While complex modifications of cells for therapeutic 
use are still under development (e.g. genome editing), 
straightforward approaches, such as adding a genetic unit 
to human cells, are currently being investigated in sev-
eral diseases as a therapeutic approach with outstanding 
results in some contexts.

The proper choice of the tool to be used in order to 
transfer the genetic cassettes to eukaryotic (and espe-
cially to mammalian) cells varies depending on the size, 
number and even complexity of the genetic unit(s) to be 
transferred. The genetic modification of cell lines for cell 
biology studies or its application in biotechnological pro-
cesses has different requirements, such as transfection or 
transduction efficiency and clonal expansion, if compared 
to human cell modifications for therapeutic purposes.

In the current review, we focus mainly in the available 
systems and efforts to genetically modify cells through 
the use of tools such as gammaretro and lentiviral vectors 
and transposons that currently or potentially accomplish 
safety and efficiency requirements for clinical applica-
tions in gene therapy protocols.

Gene therapy
Gene therapy is defined as a set of strategies that mod-
ify the expression of an individual’s genes or to correct 
abnormal genes of a defective cell to reestablish the nor-
mal function. In diseases related to recessive gene defects, 
complementing the genome with a functional sequence 
can often revert the phenotype even if mutated cop-
ies remain in the cell. In pathologies linked to dominant 
mutant copies of a gene, knocking out, knocking down 
or replacing the mutated copy may be mandatory. In this 
sense, viral and non-viral systems were designed for gene 
transfer, where each system has advantages or disadvan-
tages in terms of clinical gene therapy applications and 
protocol developments. Considering viral vector-based 
approaches, retroviruses have an intrinsic capacity to 
integrate into the target cell genome and were shown to 
be efficient in transducing mammalian cells both in vitro 
and in vivo [5–11]. The most popular members used for 
gene therapy are the retrovirus vectors based on murine 
Moloney leukemia virus (MLV) and human immunode-
ficiency virus type 1 (HIV-1). Non-specific integration 
of the viral DNA in the host genome can cause gene dis-
ruption, inducing modifications of open reading frames 
of native genes or abnormal expression of genes nearby 
the insertion site by interfering with enhancer activities. 
These interferences can alter critical cellular functions 
such as cell cycle control, ultimately inducing oncogen-
esis [12].

The overall goal of treating chronic diseases originating 
from genetic deficiencies can be potentially limited by the 
necessity of re-administrating the vector to treat patients 
throughout their lives. Another difficulty is based on 
technical principles, such as the need for extensive puri-
fication of the products to be infused to avoid or reduce 
immunologic events triggered by the vector, as well as 
costs associated with their production and manipula-
tion. Advantages of non-viral vectors include their easy 
manipulation and the relatively low cost to produce suf-
ficient vector quantities to treat a patient, stability during 
storage and low immunogenicity [13].

In this context, DNA transposons have been shown to 
be an attractive choice for gene therapy. Here we review 
recent advances in the design of the modified piggyBac 
(PB) and Sleeping Beauty (SB) DNA transposons, which 
are highly efficient in mediating the stable integration 
and expression of transgenes in human cells and mice. 
Thus, we review recent progress in the molecular biology 
of these stable gene-transfer tools, discussing the state-
of-the-art in the application of transposable elements for 
therapeutic gene transfer.

Retroviruses and stable gene therapy
Viruses are the most highly evolved natural vectors for 
delivering foreign genetic material into cells. This feature 
has led to extensive strategies to engineer recombinant 
viral vectors for the delivery of therapeutic genes into tis-
sues/cells. The majority of viruses elicit a host immune 
response [14–16]. For this reason, low immunogenicity 
is fundamental for successful gene therapy approaches 
using viral vectors.

Retroviridae are classified as Class VI viruses based 
on the Baltimore Classification of Viruses, this is due 
to their genome being plus sense RNA and having a 
DNA intermediate in its life cycle. According the Inter-
national Committee on Taxonomy of Viruses (ICTV), 
2015 release, the family retroviridae consists of two sub-
families, seven genera, and fifty-three species. Murine 
oncoretroviral vectors are derived from murine leukemia 
virus belonging to the gammaretroviral genus. On the 
other hand, lentiviral vectors are derived from human 
immunodeficiency viruses type-1 (HIV-1), lentivirus 
genus. Retroviridae family viruses are characterized by 
their RNA genome, which is retrotranscribed to DNA by 
the reverse transcriptase enzyme. This DNA is integrated 
into the host cell genome, allowing long-term viral gene 
expression by the infected cells and their progeny. In the 
past two decades, these proprieties have turned retroviral 
vectors into an attractive system for use as cargo for for-
eign gene expression in mammalian cells. During retro-
viral construction, the genes necessary for viral infection 



Page 3 of 15Vargas et al. J Transl Med  (2016) 14:288 

are provided in trans, being expressed in different plas-
mids. Thus, it is possible to generate a replication-defec-
tive virus that does not produce pathogenic effects in the 
cells, making these systems potentially safe. For these 
reasons, retroviral systems are efficiently employed in 
gene transfer or gene therapy protocols. Vectors based 
on HIV-1 or MLV have been used in a great number of 
preclinical experiments and clinical trials in the last two 
decades.

Functional retroviral genome: viral infection at the service 
of biotechnology and therapy
The Retroviridae family comprises enveloped non-ico-
sahedral viruses with a genome composed of two copies 
of single-stranded RNA. The genome is non-segmented 
with positive polarity, ranging from 7 to 12 kb [17]. Three 
main open reading frames (ORFs) are essential to pro-
duce structural proteins and enzymes for viral metabo-
lism (gag, pol, and env). In simple viruses such as MLV, 
these three ORFs are sufficient for viral replication and 
pathogenesis [18, 19]; lentiviruses, in contrast, are com-
plex retroviruses that require additional genes for their 
physiopathology (Fig. 1).

Amongst viral genes, Gag encodes structural glycopro-
teins and is required for the assembly of non-infectious 
and immature viral-like particles; pol encodes enzymes 
necessary for viral replication and integration into the 
host cell genome (a protease, reverse transcriptase, and 
integrase). Another fundamental gene is env, which pro-
duces proteins embedded in the viral membrane that 
enable viral attachment to cellular receptors and fusion 
with target cells, determining the tropism of these viruses 
[20–22]. In complex human retroviruses, on the other 
hand, as exemplified by lentiviruses such as human 
immunodeficiency virus (HIV), additional proteins 
are necessary for the efficient expression of viral genes 
and for viral replication. These include tat (retrotran-
scriptional regulator [23]), rev (RNA transporter [24]), 
and nef (immunomodulator), vpr (cDNA transport to 
nucleous [25]), vif (APOBEC degradation [26]) and vpu 
(theterin degradation). All the required genes for the len-
tivirus cycle are depicted in Fig.  1a. Reverse transcrip-
tion and integration require LTR (long terminal repeat) 
sequences in the extremities of the viral genome. The 
integrase enzyme recognizes the terminal LTRs in the 
double-stranded DNA molecules previously synthesized 
by reverse transcriptase. After integration, the cellular 
RNA polymerase II transcribes the retroviral genes [27]. 
The 5′ LTR sequence includes a strong promoter region 
containing several cis elements for transcription-factor 
binding and a highly active initiator sequence. An addi-
tional enhancer region is composed of two NFkB-binding 
motifs [28] that act to increase gene expression based on 

the binding of NFkB and NFAT. The 3′ LTR acts as the 
termination and polyadenylation site for all viral ORFs 
[29]. The genomic RNAs are packaged into viral particles 
at the cell membrane. Packaging of the genomic tran-
scripts requires the ψ sequence that lies downstream of 
the 5′ LTR [30], assuring that RNA lacking ψ will not be 
packaged.

For gene therapy purposes, the retrovirus backbone 
is depleted of all viral ORFs. In the region between the 
LTRs is added a therapeutic sequence, keeping the 
sequences required for the essential steps of vector pro-
duction such as the psi packaging sequence and the long 
terminal repeats (LTRs) that are necessary to inserting 
the viral genome into the host DNA. These are called cis-
acting elements because they need to be in the genomic 
RNA. Trans-acting elements are viral elements that can 
be encoded on a different RNA molecule. It is important 
to note that biotechnological tools derived from retrovi-
ral genome manipulation are designed to avoid the gen-
eration of replication-competent retroviruses that can 
arise from the recombination of cis and trans elements 
(packaging plasmids), thereby restoring a functional ret-
rovirus genome carrying all the information required for 
functional replication (Fig. 1b).

There are excellent reviews elsewhere that carefully 
describe the process of generating different retro and len-
tivectors, including different versions of the constructs 
designed as 1st, 2nd, 3rd and 4th generation lentivirus 
vectors according to the number of plasmids and entire 
or truncated viral sequences used to encode essential 
components of viral genome with increased safety. We 
direct the reader there for details of self-inactivating 
(SIN) construct generation and characterization [31–33].

Clinical trials
There are currently over 417 human clinical trials involv-
ing retroviral gene therapy registered in the Journal of 
Gene Medicine database (http://www.abedia.com/wiley/
vectors.php, accessed in July, 2016). The first success-
ful gene therapy protocol occurred in the 1990s. In that 
protocol, two patients with severe combined immunode-
ficiency (SCID) due to adenosine deaminase (ADA) defi-
ciency were treated with a retroviral vector carrying the 
ADA coding sequence under the transcriptional control 
of the promoter/enhancers of the long terminal repeat 
of the MLV. ADA disease is characterized by defective 
T and natural killer cell maturations as well as low B cell 
function, causing recurrent infections. In this pioneer 
trial, one of the treated patients recovered cell counts 
and function, showing no adverse effects after 4  years. 
The response was more limited in the second patient pri-
marily due to lower transduction efficacy; however, other 
causes could have contribute to this low efficiency such 

http://www.abedia.com/wiley/vectors.php
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as immune responses against the retroviral envelope or 
the fetal calf serum used during ex  vivo cell expansion 
[34]. In the same decade, two additional clinical tri-
als observed normalization of T lymphocyte counts in 
patients treated with murine γ-retroviral vectors [35, 36]. 
However, in these two trials patients received simultane-
ously enzymatic replacement, impairing the unequivo-
cal evaluation of the direct effect of gene therapy. From 
2000s to today, improvements of clinical trials using 
γ-retroviral vector carrying a functional copy of ADA in 
autologous CD34+ cells were performed for ADA-SCID 
therapy [37–41]. Follow-up studies showed gene correc-
tion in multiple cell lineages, leading to the expression of 
normal ADA levels and restoration of immune compe-
tence. It is further encouraging that more than 40 ADA-
SCID patients were treated with these vectors without 
genotoxic consequences [42].

The results of the first gene therapy trial for ADA-SCID 
increased optimism regarding an effective treatment 
based on gene transfer for several monogenic disorders 
using other viral vectors. The excellent results led ADA 
gene therapy to be ultimately approved for commerciali-
zation in Europe in 2016. However, in 1999, the death of 
one patient enrolled in a clinical trial designed to treat 
ornithine transcarbamylase deficiency using adenoviral 
vectors put the whole field on hold until regulatory agen-
cies released the ongoing trials [43]. Despite this negative 
event, it is necessary to clarify that it did not occurred 
due to an integrative event, because contrarily to retro-
viral vectors, adenoviral vectors are not integrative [44]. 
Shortly after this adverse event, another trial showed the 
darker aspects of gene therapy protocols applying inte-
grative vectors in a clinical trial for X-linked severe com-
bined immunodeficiency (X-SCID). This disease is caused 
by the lack of the common gamma chain (γc), which is 
present in several interleukin receptors and indispensable 
for T cell development. Between 1999 and 2006, patients 
were enrolled in several gene therapy protocols aiming 
to restore γc expression on CD34+ cells. Seventeen of 
the twenty treated participants were alive and displayed 
nearly full correction of their T-cell deficiency, present-
ing genetically modified T cells, when evaluated between 
5 and 12 years after the gene therapy procedure [45]. Five 

participants developed T-cell leukemia 3–6  years from 
gene therapy. Four of the patients were treated for leuke-
mia and achieved complete remission, but one leukemia 
patient died of refractory disease [46, 47]. Vector integra-
tion in these patients identified insertions near the LMO2 
proto-oncogene promoter, leading to aberrant transcrip-
tion of LMO2 [47–50]. LMO2 transcription disruption 
seems not to be the only hit leading to leukemogenesis 
since NOTCH1 mutations and deletions of some tumor 
suppression genes were also reported [51]. These results 
were enough to halt gene therapy trials using MLV-based 
vectors in various countries, such as France, England and 
the United States. In addition, the American National 
Institutes of Health (NIH) suggested stopping active pro-
tocols using MLV for gene therapy.

Despite these adverse events, the clinical use of chi-
meric antigen receptors or suicide genes on T lympho-
cytes has been repeatedly reported with no adverse 
effects as a consequence of gene transfer [52], suggest-
ing that T cells are safe populations for MLV-based gene 
transfer [53]. Suicide-genes for T cell elimination on 
demand after the transplantation of transduced T cell 
for the treatment of disease such as cancer and graft 
versus host disease were also developed and ultimately 
clinically applied. Among these genes, herpes simplex 
virus thymidine kinase (HSV-TK) is still accepted as 
a reference strategy. HSV-TK-based cell elimination 
results from the phosphorylation of a prodrug by thy-
midine kinase, which is converted to a toxic drug that 
interrupts DNA elongation and causes apoptosis [54]. 
This strategy is currently under investigation in a phase 
III clinical trial in patients undergoing haploidentical 
stem cell transplantation [55, 56]. Other strategies to 
eliminate transduced cells include the inducible caspase 
9 (iCasp9) switch, carrying a protein consisting of the 
fusion of the human caspase 9 and a modified human 
FK-binding protein, which allows conditional dimeriza-
tion [57]. Upon exposure to a synthetic dimerizing drug 
(AP1903), the inducible iCasp9 becomes activated and 
leads to the rapid death of cells expressing this genetic 
construct. This approach showed outstanding results in 
clinical trials for the elimination of T lymphocytes caus-
ing graft versus host disease [58].

(See figure on previous page.) 
Fig. 1  Stable gene expression systems. a Representation of simple (e.g. MLV) and complex (e.g. HIV-1) retroviral genomes. b Lentiviral production 
of 3rd generation vectors and cell transduction. Plasmids containing expression constructs of genetic elements required for packaging (gag-pol, 
rev and VSV-G, a gene encoding the fusogenic envelope G glycoprotein of the vesicular stomatitis virus) and a plasmid of interest comprised of a 
chimeric 5′ LTR (long terminal repeat) fused to a heterologous promoter (hP), a promoter (P) to control transgene expression and 3′ Self-inactivating 
(SIN) LTR are co-transfected together into a producer cell line. After viral production, transduction of lentivector is performed on the target cell. c 
Cut-and-paste mechanism of SB transposons, where a transposon in a plasmid and a transposase binds to two inverted terminal repeats (ITRs) of 
the transposon, and precisely cuts the transposon out of the plasmid, inserting the transposon into DNA of the target cell. SB transposons, integrate 
into TA dinucleotide base pairs, which are duplicated on each end of the insertion site
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However, it is important to note that MLV vectors have 
the biological disadvantage that they are unable to effi-
ciently transduce non-dividing or slowly dividing cells. 
As a result, MLV vectors were gradually replaced by len-
tiviral vectors based on HIV-1, which can integrate in 
the host genome of non-dividing cells nearly as well as in 
dividing cells [59]. Lentiviral vectors finally entered clini-
cal trials a few years ago, and several gene therapy pro-
tocols are currently underway with impressive results 
around the world. In 2001, the first human subject was 
treated with lentiviral vectors. Autologous CD4+ cells 
from HIV +  patients were transduced with a lentiviral 
vector based on HIV-1, containing antisense sequences 
against the HIV-1 envelope gene [60]. Thereafter, gene 
therapy with lentivectors was extended to the pre-clinical 
study of several monogenic diseases, such as hemophilia 
[61], a X-linked bleeding disorder caused by mutations in 
Factor VIII or Factor IX genes and; metachromatic leu-
kodystrophy [62], caused by arylsulfatase A deficiency. 
In 2007 the firsts clinical trials of monogenic diseases, 
adrenoleukodystrophy and beta-thalasemia, took place 
[63–65]. More recently, gene transfer via lentiviral vec-
tors was shown to revert the disease state in the long 
term in patients of metachromatic leukodystrophy and 
Wiskott-Aldrich syndrome [66, 67]. These studies indi-
cate that lentiviral-based gene therapy is a safe and effec-
tive approach to treat distinct diseases [65]. Furthermore, 
concerning ADA-SCID therapy, it is important to high-
light that the trials using retroviral vectors presented 
similar survival rates to those achieved in hematopoietic 
stem cell (HSC) transplantation in patients undergoing 
an HLA-matched donor transplant [68]. Until now, there 
is only one clinical study reporting negative side effects 
due to insertional mutagenesis of lentivirus based vectors 
(as detailed in 4.3.1) and, although some clonal patterns 
in hematopoietic reconstitutions were suggested, this 
clonal skewing with transduced cells led to no evident 
clinical implications [69, 70].

Recently, lentivirus-based vectors were also applied in 
clinical trials to transfer chimeric antigen receptor (CAR) 
genes to T lymphocytes, leading to impressive leukemia 
elimination in patients treated with gene-modified T cells 
[71], reinforcing the concept that T lymphocytes are safe 
targets for gene therapy.

According to the Journal of Gene Medicine database, 
there are currently 114 clinical protocols registered to 
treat several diseases (including cancer) around the world 
using lentiviral vectors, representing about 21 % of all ret-
roviral gene therapy protocols, demonstrating the wide 
applicability of this vector backbone. In this sense, we pre-
sent a detailed table including major technical aspects of 
these 114 protocols (Additional file 1: Table S1). Interest-
ingly, handling of patient’s autologous cells is registered in 

over 90 % of all clinical trials (Additional file 1: Table S1). 
Currently, nearly 46 % of these clinical trials are dedicated 
to cancer treatment, 14 % to HIV and the remaining per-
centage to monogenic diseases. Several reports describe 
clinical efficacy of gene therapy protocols based on lentivi-
ral systems for human cancer and HIV treatment [71–74]. 
Their efficacy at promoting potent anti-tumor immune 
responses certainly relies in their capability to ensure a 
persistent expression of the desired transgene, such as 
the molecules designed to efficiently boost T cell effector 
functions. Other retro and lentiviral manipulations of T 
lymphocytes are under development to increase antitu-
mor T cell function and target cell specificity as recently 
reviewed in Chicaybam and Bonamino [2].

Integrating vectors: drawbacks and potential pitfalls
Stable retroviral expression is the final aim of gene ther-
apy protocols using this powerful therapeutic tool but 
can potentially produce two primary problems that influ-
ence the vector suitability for specific therapeutic appli-
cations: insertion mutagenesis and/or the destruction of 
transduced cells by the immune system. Here, we review 
the most relevant data reported in the literature describ-
ing the deleterious effects of provirus integration-medi-
ated genotoxicity.

Retroviral integration pattern, a potential problem for gene 
therapy
Provirus integration for MLVs is mainly described in pro-
moter and enhancer sequences of the target cell genome, 
while lentiviral vectors preferentially integrate through-
out gene sequences [75–77]. In both cases, provirus 
integration can potentially disrupt the gene structure 
altering its transcription or function, ultimately leading 
to oncogenesis. Insertional mutagenesis was reported 
in a β-thalassemia patient who was treated with a self-
inactivating (SIN) HIV-1-based vector containing the 
β-globin gene controlled by its wild-type promoter. The 
patient was treated with autologous CD34+ cells trans-
duced with a lentiviral vector [65]. Clonal population 
analysis demonstrated a bias for one hematopoietic clone 
derived from transduced cells with the proviral cassette 
integrated into the HMGA2 proto-oncogene sequence 
causing a benign cell expansion. Interestingly, HMGA2 
was overexpressed in myeloid cells, but the deregulation 
was not observed in granulocyte-monocyte cells shar-
ing the same vector integration pattern. Thus, studies to 
understand cell-type-dependent deregulation could help 
to develop improved methods for ex  vivo cell handling, 
which promote an efficient monitoring of patients to 
obtain a safe gene therapy.

Due to the necessity of tracking the vector insertional 
pattern during the treatment, several clinical trials using 



Page 7 of 15Vargas et al. J Transl Med  (2016) 14:288 

lentiviral-vector-based HSC, analyzed transduced clones 
in the reconstituted haematopoiesis. The results showed 
a cell population without the emergence of dominant 
clones capable of promoting the development of neo-
plasic events. An in-depth molecular analysis of the 
reconstituted haematopoiesis is systematically realized 
in subjects transplanted with hematopoietic cells trans-
duced with retroviral vectors, helping to develop the 
first reliable comparative assessment of vector-induced 
events in patients [34, 61, 64, 66, 67, 78]. Tracking clonal 
activity in the reconstituted haematopoiesis is a neces-
sary step to guarantee the safety of gene therapy proto-
cols, a point reviewed and discussed in detail by Naldini 
et  al. [69]. Investigators developed novel strategies aim-
ing to avoid, or at least reduce, incidental gene disrup-
tions refining these vectors through the creation of 
retroviral vectors containing insulators that increase the 
autonomy between nearby transcriptional units by block-
ing the interaction between enhancer and promoters or 
by suppressing the spread of heterochromatin. Most of 
them are derived from a cHS4 element of the chicken 
β-globin locus [reviewed in [79]. Some in  vitro studies 
reported a reduction of the transforming potential to the 
background levels when lenti or retrovectors containing 
insulators are used [80–82], but one study performed 
by transducing Jurkat cells suggests that insulators are 
not sufficient to avoid proliferative or survival advantage 
conferred by some integration events leading to clonal 
dominance events [83]. On the other hand, mutation in 
the insulators can affect its function [65]. It is important 
to note that these side effects do not exclude hematopoi-
etic cells as targets for gene therapy. In the Northstar 
Study (HGB-204), HGB-205 and HGB-206 clinical pro-
tocol researchers evaluated the use of a lentiviral vectors 
that transport an engineered βA−T87Q-globin gene (Len-
tiGlobin BB305 Drug Product) into patients hematopoi-
etic autologous CD34+ cells. Preliminary results of these 
trials indicated that patients with β-thalassemia major 
after hematopoietic cell transplantation with the lentivi-
ral product experienced consistent βA−T87Q-globin pro-
duction, leading to transfusion Independence for at least 
15  months [84]. After a median follow-up of 198  days, 
no clonal dominance was detected in these patients [85]. 
Furthermore, one subject with severe SCD, treated with 
LentiGlobin BB305 lentiviral vector, remains free of 
SCD-related events by producing approximately 51 and 
49 % of anti-sickling globins and HbS, respectively [84].

It is clear that specific studies are also required to 
define the mechanism of action of retroviral pre-integra-
tion complexes in order to develop alternative strategies, 
avoiding deleterious effects of insertional mutagen-
esis. This will hopefully allow the design of modified 

integrases with the ability to integrate DNA only in a spe-
cific genome sequence.

Strategies to fuse the viral integrase with specific 
sequences of DNA-binding domains obtained from bac-
teria (LexA) [86, 87] or mammalian (zinc finger pro-
tein zif268) [88] have been developed. However, these 
attempts showed limited success without major modifi-
cation in the genome integration pattern when compared 
to wild-type integrases.

Immune system and lentivectors
As discussed before, the appropriated level of transgene 
expression is essential to gene therapy approaches in pro-
tocols using either lentiviral vectors or non-viral meth-
ods. The immune system is a natural barrier that can 
influence transgene expression. Controversial informa-
tion about immunologic responses against transduced 
cells has been reported in the literature. For instance, in 
an in  vivo murine model, the expression of coagulation 
factor IX, mediated by a lentiviral integrase-defective 
vector in hepatocytes elicited tolerance to the transgene 
without induction of neutralizing antibodies [89]. In 
contrast, in a similar model, hepatic lentiviral adminis-
tration induced rapid and transient IFN-α/β response 
and promoted functional cytotoxic T lymphocyte (CTL) 
responses [90].

Several reports in mouse models suggest that the elimi-
nation of transduced cells is mediated by CTL responses. 
These responses can be attenuated by tissue-specific pro-
moters present in the backbone of the lentiviral vector or 
exacerbated by viral envelope proteins that can be highly 
immunogenic [91].

Despite the reported immune responses to the 
transgene that can limit its expression, lentiviral vectors 
induce very limited immune and inflammatory responses 
associated with the vector itself [9, 19].

Transposon‑transposase vector systems
Despite being one of the most used gene-transfer sys-
tems, viral vectors have important hurdles to overcome 
regarding their clinical application, such as large-scale 
vector production and careful biosafety characterization, 
which have major impacts on the costs of clinical-grade 
vector stock production. In recent years, non-viral DNA 
transposon based-systems have emerged as a potential 
tool that might overcome some of these limitations.

DNA transposons are mobile genetic elements shown 
to be present in all animal phyla [89]. There are thou-
sands of families of these elements, and the majority of 
them have a transposase gene flanked by inverted ter-
minal repeats (ITRs). The transposase, through a “cut 
and paste” mechanism, recognizes the ITRs, excises 
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the transposon and integrates it in another site of the 
genome. These elements have important roles in the evo-
lution of genomes, constituting a considerable fraction of 
host DNA in several species [92].

Due to its integration capacity and non-viral nature, 
some of these transposons were adapted for use in gene 
therapy protocols. To achieve efficient and safe use, the 
transposons were split in two plasmids that are co-trans-
fected in the cell, one containing the sequence encod-
ing the transposase enzyme and the other containing an 
expression cassette flanked ITRs (Fig. 1c).

This design has the following advantages when com-
pared to viral vectors:

• • Decreased production costs: plasmid production 
under Good Manufacturing Practices (GMP) con-
ditions is much faster and cheaper than viral vector 
production. Moreover, there are no cumbersome 
quality-assurance procedures, such as titration of 
vectors and testing for replication-competent virus.

• • Increased biosafety: because it involves only the 
manipulation of plasmids, it can be easily performed 
in a biosafety level 1/2 laboratory with basic equip-
ment, without requiring complex biohazard conten-
tion procedures.

• • Low immunogenicity: in vivo applications of VSV-G 
pseudotyped vectors and adenoviral vectors are often 
limited by immune recognition of viral proteins, 
which may not occur when using plasmid-based vec-
tors.

However, despite these advantages, DNA transposon-
based vectors are essentially gene-inserting tools that 
still need assistance for efficient cellular uptake. Activity 
may therefore vary depending on transfection method 
selected, cell type, and plasmid size. Moreover, it is 
important to note that these vectors have been largely 
used in the preclinical setting, and clinical trials are 
underway to evaluate their efficacy, safety and presumed 
advantages.

Several transposon systems have been developed, 
allowing the application of this technology in different 
model organisms, such as Tol2 for zebrafish [93, 94]. In 
this review, we focus on the two main systems used in 
mammalian cells, Sleeping Beauty and piggybac, and we 
discuss their efficiency, improvements and applications 
for clinical trials.

Sleeping beauty—SB
For many years, the use of DNA transposons as a gene-
transfer system was hampered by the lack of active ele-
ments in mammalian genomes. In 1997, pioneering work 
by Ivics and colleagues [95] developed the sleeping beauty 

(SB) transposon from inactive copies of Tc1/mariner-like 
elements found in several fish genomes. This transpo-
son was shown to be active in tissues of different verte-
brate species, including humans, and showed no signs of 
endogenous transposon cross mobilization. It has mod-
est cargo capacity, allowing the efficient transposition 
of genes up to 6  kb, which is sufficient for most appli-
cations. Beyond this limit, the transposition rates rap-
idly decay [96], although recent studies using improved 
versions of the transposon vectors (T2 and sandwich 
versions) showed efficient integration of transgenes of 
up to 18  kb [97]. It has been shown that this system is 
more efficient under limiting quantities of transposon 
DNA, which occurs in hard-to-transfect cells like CD34+ 
hematopoietic cells [98]. A disadvantage of the SB system 
is the overproduction inhibition phenomenon, achieving 
less transposition at higher transposase concentration, 
which is thought to occur due to misfolded or aggrega-
tion of this enzyme [99]. Thus, careful titration of the 
transposase is needed to determine the optimal transpo-
son/transposase ratio to be used [100]. Importantly, the 
delivery of SB transposase in the form of RNA was shown 
to be much less toxic when transient expression at a low 
level using mRNA transduction approach was used [101].

Despite early in  vivo applications of SB showing effi-
cient integration of the transgene in hepatocytes [102, 
103], the transposition activity of SB was low, limiting 
the applicability of this approach. The development of 
hyperactive SB mutants [96, 104–106] increased transpo-
sition rates up to 100-fold when compared to wild-type 
SB, leading to efficiencies comparable to retro- and lenti-
viral transduction in some applications [107]. The use of 
hyperactive mutants in vivo resulted in long-term expres-
sion of the transgene and phenotypic corrections in mod-
els of mucopolysaccharidosis type I [108] and hemophilia 
[109] for example. The generation of sets of transposon 
plasmids containing different fluorescent proteins and 
selection markers improved the flexibility of the system, 
increasing the possible applications of this system [110].

Moreover, the SB system is being successfully used for 
the ex vivo transfer of TCR or CAR genes for the genera-
tion of antitumoral T lymphocytes [107, 111, 112]. These 
T cells maintain high expression of the 19BBz CAR after 
in vitro expansion [113] and showed antitumor activity in 
preclinical models of leukemia [114, 115]. It is important 
to note that compared to other transposon systems, such 
as piggyBac and Tol2, the SB system displays a safer inte-
gration profile, integrating in TA dinucleotides in a close 
to random pattern. This is in sharp contrast to piggyBac 
and Tol2, which showed integration profiles similar to 
retroviral vectors, with integration sites near transcrip-
tion start sites [116]. Furthermore, the ITRs of trans-
poson vectors have a low promoter/enhancer activity 
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similar to the SIN LTR of retro/lentivirus vectors, mini-
mizing the risk of promoter/enhancer interference [117]. 
These properties prompted investigators to start a clini-
cal trial using SB-modified T cell therapy for the treat-
ment of B-cell malignancies [118]. These results were 
recently described and showed that the use of SB-mod-
ified CAR T cells is safe when infused after autologous 
or allogeneic hematopoietic stem cell transplantation as 
an adjuvant therapy. These cells persisted for an average 
of 201 or 51 days in the autologous or allogeneic setting 
respectively, and patients showed progression-free sur-
vival rates that were improved when compared to histori-
cal data [119].

Finally, the SB system has successfully been used for 
transgenesis in mice, rats and rabbits, achieving bet-
ter efficiency than pronuclear injection and lentivirus-
based protocols [120]. SB-mediated transgenesis was 
shown to be less prone to mosaicism and gene silencing 
when compared to the methods cited above and allows 
the generation of founders harboring a single copy of the 
transgene by titration of the transposase. Similar results 
were obtained in large animals, like pigs [121] and cattle 
[122]. This system also showed superior efficiency in the 
in  vitro genetic modification of human CD34+ hemat-
opoietic stem cells compared to the piggyBac system, 
making SB a reliable alternative to lentivirus vectors that 
are routinely used in this setting [123]. A recent publi-
cation reported an elegant reprogramming strategy to 
generate transgene-free iPS cells based on SB constructs 
[124].

The major challenge faced by transposable systems 
such as SB or other transposons is the delivery of plas-
mids to the target cells. Several strategies can be used for 
this purpose, including in  vitro [112] and in  vivo [125] 
electroporation of target cells and hydrodynamic injec-
tions [103]. Viral delivery of transposase and transposon 
using adenovirus [126] and non-integrating retrovirus 
[101] or lentivirus [127] can bypass these hurdles, pro-
viding efficient delivery in vitro and in vivo for different 
types of cells. Recently, the delivery of SB transposon 
and transposase in the form of DNA minicircle vectors 
showed increased transposition rates in cell lines [128] 
and, when used in conjunction with methotrexate selec-
tion, allowed efficient stable expression of up to three 
different transgenes [129], widening the potential appli-
cations of the technology. Updated clinical trials proto-
cols using SB system are showed in the Additional file 2: 
Table S2.

piggyBac (PB)
Although pioneered by SB, the transposon toolbox was 
expanded and developed with the discovery of other 
transposable elements. The piggyBac transposon, isolated 

from the cabbage looper moth Trichoplusia ni [130], 
showed high transposition activity in different mamma-
lian cells [131, 132]. The most common setup is, as in 
SB, the use of a two-plasmid system, one containing the 
expression cassette flanked by ITRs and the other cod-
ing the PB transposase. This system is capable of deliver-
ing large inserts (up to 14 kb) without a significant loss 
of efficiency [131], and recent work showed that genomic 
regions up to 100 kb can be transposed, allowing a more 
physiological regulation of gene expression by trans-
fer of entire regulatory regions [133]. The transposition 
occurs in TTAA sites and, unlike SB, which has a mobi-
lization footprint of 3 bp consisting of the terminal three 
base pairs of the transposon flanked by TA dinucleo-
tides [100, 134], the PB transposase completely restores 
the integration site upon mobilization [130, 135]. The 
PB transposase was shown to be tolerant to engineer-
ing, such as the development of an inducible system by 
fusion with ERT2 (making it responsive to 4-hydroxy-
tamoxifen) [136], and the generation of a hyperactive 
version, called mPB, with a 17-fold increase in excision 
and ninefold increase in integration [137]. Moreover, a 
recent paper developed an excision-competent but inte-
gration-defective PB transposase, allowing excision of the 
transgene without reintegration in other genomic loci 
[138]. Despite these advances, the PB transposase is also 
susceptible to overproduction inhibition, even in in vivo 
models, although it has been rarely reported and is still a 
matter of debate [139].

These features render mPB system very useful for 
applications where transient expression of genes is suffi-
cient, such as the generation of transgene-free iPS cells 
[140–142]. Importantly, when using mPB, the repro-
gramming efficiency is comparable to protocols using 
retroviral vectors, making PB one of the most useful 
transposon systems for this type of application [143]. It is 
also effective in BAC transgenesis, where the transfer of 
large sequences is needed [144]. Moreover, the PB system 
is the only one that showed activity in parasites, and the 
generation of transgenic Schistosoma mansoni has been 
recently reported [145].

However, the use of PB system for other applications 
may encounter some important obstacles. The 5´ITR 
of PB was shown to have transcriptional activity that 
might interfere with nearby promoters [136]. The PB 
system also showed an integration pattern similar to ret-
roviral vectors, integrating mainly in transcription start 
sites and transcription units, raising concerns about the 
long-term safety of these vectors [116, 146]. PB may also 
integrates in sites other than TTAA nucleotides at low 
frequencies (~2  %), but these insertions can cause mis-
matches that could potentially generate point mutations 
in the genome [147]. This pattern of integration is useful 
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as a gene-discovery tool using gene-trap cassettes [148]. 
Currently, there are no clinical trials underway using this 
system, and the described properties may limit its appli-
cation in a clinical setting, where a safer integration pat-
tern is required. A recent report showed that mutations 
in the transposase to increase function may also change 
the integration pattern [149] and it remains to be seen if 
this property can be used to purposely alter the transgene 
integration profile.

Despite this limitations, modifications of clinically rele-
vant cells are being developed for a variety of human dis-
eases, i.e., hESCs [47], hiPSCs [142, 150], HSCs [98] and 
human T lymphocytes. T lymphocytes are an attractive 
target for adoptive immunotherapy for cancer. Human 
T cells that were modified using piggyBac-transposons 
killed CD19-expressing human lymphoma cell lines, 
showing a functional activity of this transposon in this 
cellular model [151]. In addition, stable transgene expres-
sion using PB showed an efficiency of up to 40 % without 
selection in primary T cells in culture [152]. Moreover, 
integration site mapping showed that this transposon did 
not integrate into or near known proto-oncogenes [152]. 
According, PB would seem to be a promising nonviral 
system for cancer immunotherapy based on T cell modi-
fication in a future clinical trial.

Safety issues of transposon vectors
The results obtained in preclinical studies using trans-
poson vectors prompted researches to evaluate these 
systems in clinical trials. Given the safer integration 
profile [153] when compared to retrovirus [154], lenti-
virus [155] and PB [116], SB is currently being tested in 
ten clinical trials of T cell immunotherapy (Additional 
file 2: Table S2). As a high copy number is not desired 
due to the risk insertional mutagenesis, a transposase 
with an intermediate activity (SB11) is being used in 
these studies. Besides insertional mutagenesis, the 
main risk associated with SB-mediated gene therapy 
is the remobilization of the inserted transposon. This 
case results from the theoretically possible residual 
activity of transposase due to the unlikely integration 
of transposase-encoding plasmid, causing the inserted 
transposon to “jump” to a new genomic location and 
induce new alterations. However, due to the autoreg-
ulated activity of DNA transposons, the remobiliza-
tion requires optimal rates of transposon/transposase, 
being highly inefficient in low or high concentrations 
of transposase [156]. The footprint of 3–5 bp leaved by 
SB remobilization could also induce a frameshift if the 
transposon was inserted in an exon, but the probability 
of this event is very low [157]. To exclude these possi-
bilities, the transposase can be transfected in the form 
of RNA, which is also less toxic to the cells [107]. In 

above mentioned clinical trials using SB11 transposase, 
the modified T cells are evaluated for the presence of 
residual SB11 plasmid and for TCR clonality before 
infusion into patients to safeguard SB remobilization 
[158].

Although SB transposon-based gene transfer is con-
sidered a safer tool due to its integration pattern, all the 
mentioned tools lack specificity in sequence integration. 
As so, one caveat of the unparalleled efficiency of these 
tools is the inability to direct transgene integration into 
the host cell genome. Enabling integration in the genome 
in a sequence-based fashion opens the possibility for new 
genes to be integrated in safe harbors, regions where no 
relevant genes were mapped, increasing the safety pro-
file of these already extremely useful gene modification 
tools. Recent studies have approached this by combining 
SB [159] or PB [160] transposases with ZF (zinc finger) 
or TALE DNA-binding domains respectively, directing 
the integration of transposon to pre-determined regions 
of the genome.

Conclusions and perspectives
The last few decades witnessed a revolution in the devel-
opment and application of gene therapy. There is cur-
rently no doubt that gene modification approaches have 
turned into a valuable biotechnology and therapeutic 
tool. New and safer vector designs along with a bet-
ter comprehension of vectors biology led to success-
ful utilization of these valuable tools in several clinical 
contexts now. The success of retro and lentivirus-based 
gene therapies helped to turn gene therapy into a solid 
and flourishing field. Non-viral integrative vectors, such 
as transposons, have the potential to extend this success 
story, hopefully making gene therapy approaches more 
straightforward, simple and cost-effective.

The newly developed genome-editing technologies 
such as zinc finger nucleases (ZFNs), transcription acti-
vator-like effector nucleases (TALENs) and Clustered 
regularly-interspaced short palindromic repeats (CRIS-
PRs) represent the most recent tools for genetic manip-
ulation. Even if clinical safety of these tools are still to 
be clarified and there is undoubtedly still room for the 
improvement of such approaches, the ability to edit spe-
cific genome sequences could revolutionize the whole 
cell biology, biotechnology, cell engineering and gene 
therapy areas. Such tools may allow approaches such as 
add back of gene function, site-directed gene corrections 
and gene replacements, impacting activities such as ani-
mal transgenesis and the incipient logic-systems and bio-
logical fields. Hopefully the combination of gene delivery 
approaches such as those described in this review with 
the new gene editing tools will turn gene therapy into a 
more effective and curative approach.
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