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Abstract 

Background: Treatment for acute myeloid leukemia (AML) has not significantly changed in the last decades and new 
therapeutic approaches are needed to achieve prolonged survival rates. Leukemia stem cells (LSC) are responsible for 
the initiation and maintenance of AML due to their stem‑cell properties. Differentiation therapies aim to abrogate the 
self‑renewal capacity and diminish blast lifespan.

Methods: An in silico screening was designed to search for FDA‑approved small molecules that potentially induce 
differentiation of AML cells. Bromocriptine was identified and validated in an in vitro screening. Bromocriptine is an 
approved drug originally indicated for Parkinson’s disease, acromegaly, hyperprolactinemia and galactorrhoea, and 
recently repositioned for diabetes mellitus.

Results: Treatment with bromocriptine reduced cell viability of AML cells by activation of the apoptosis program and 
induction of myeloid differentiation. Moreover, the LSC‑enriched primitive AML cell fraction was more sensitive to 
the presence of bromocriptine. In fact, bromocriptine decreased the clonogenic capacity of AML cells. Interestingly, a 
negligible effect is observed in healthy blood cells and hematopoietic stem/progenitor cells.

Conclusions: Our results support the use of bromocriptine as an anti‑AML drug in a repositioning setting and the 
further clinical validation of this preclinical study.
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Background
Acute myeloid leukemia (AML) is the most common 
acute leukemia in adults and the survival rate 5  years 
after diagnosis is below 50 % according to data collected 
from SEER Epidemiologic Datasets [1]. Standard treat-
ment consists of the combination of an anthracycline 
and cytarabine but, despite great improvement in patient 
management and hematopoietic cell transplantation, 
treatment regimens have been substantially unchanged 
for the last decades [1]. Indeed, current available chemo-
therapy may have reached its limits. In this context, drug 
repositioning appears as a promising strategy for AML 
as safety and pharmacokinetic profiles of candidates are 

well-known, enabling a faster bench-to-bedside transi-
tion [2].

Leukemia stem cells (LSC) have been described in the 
majority of AML patients and constitute a cell fraction 
with self-renewal and differentiation properties [3]. Due 
to their stem-cell like properties, relapse episodes and 
refractoriness to treatment were associated to LSC func-
tion [4]. Therefore, eradication of AML requires the elimi-
nation of the LSC population. As the equilibrium between 
self-renewal and differentiation is tightly regulated, induc-
tion of terminal differentiation of LSCs will inhibit self-
renewal capacity and eventually contributing to AML cell 
population consumption [5]. Additionally, more differ-
entiated AML blasts are more sensitive to currently used 
chemotherapeutics [6]. Thus, differentiation therapies 
hold promise as a therapeutic approach to target LSCs.

By means of an in silico screening searching for 
approved small bioactive drugs that potentially induce 
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differentiation of AML cells, bromocriptine, a drug 
originally indicated for Parkinson’s disease, acromegaly, 
hyperprolactinemia and galactorrhoea, and recently 
repositioned for diabetes mellitus [7, 8], was identified. 
Although bromocriptine was originally described as a 
dopamine receptor agonist/antagonist [9], its mecha-
nism of action for each disease is partially unknown. 
Here, we demonstrated that bromocriptine has a differ-
ential anti-leukemia activity, sparing healthy blood cells.

Methods
In silico screening
Gene signature associated with PMA (phorbol myristate 
acetate)-induced differentiation in HL60 cells was 
obtained from GSE982 and analysed as described previ-
ously (vehicle-control treated vs. PMA-treated samples) 
[10, 11]. Briefly, raw files (.cel) were normalized using 
GenePattern software (Broad Institute Cancer Program; 
http://www.broadinstitute.org/cancer/software/genepat-
tern/) and probe set with a differential expression of at 
least twofold of change and p value below 0.005 were 
chosen. The 481-top-ranking upregulated (Additional 
file 1: Table S1) and 500-top-downregulated (Additional 
file  2: Table S2) probes during PMA treatment were 
selected for in silico signature-based screening (Connec-
tivity Maps; http://www.broadinstitute.org/cmap/) [12]. 
The results obtained were filtered at a P value <0.05 and 
a connectivity score >0.75 in HL-60 (AML cell line) but 
<0.5 in PC3 (prostate cancer cell line) and MCF7 (breast 
cancer cell line), at a concentration <10 µM.

AML cell lines
AML cell lines HL60 (ACC-3) [13], KG-1 (ACC-14) [14], 
MonoMac-1 (ACC-252) [15] and Kasumi-1 (ACC-220) 
[16] were obtained from DSMZ (Deutsche Sammlung 
von Mikroorganismen und Zellkulturen) and the human 
stroma cell line HS-5 was purchased from ATCC (Ameri-
can Type Culture Collection). Experiments were per-
formed within 6  months after receipt or recovery after 
thawing. AML cell lines were cultured in complete RPMI 
medium (PAA laboratories) supplemented with 10  % 
fetal bovine serum (Lonza), sodium pyruvate (Lonza) and 
non-essential amino acids (Lonza) according to manu-
facturers’ recommendations. HS-5 cell line was cultured 
in complete DMEM medium (PAA laboratories) sup-
plemented with 10  % fetal bovine serum (Lonza) prior 
to co-culture experiments. Co-culture experiments were 
performed in complete RPMI medium as described for 
AML cells.

Primary samples
Peripheral blood (PB) and bone marrow (BM) primary 
AML samples were obtained from patients diagnosed 

with AML at Hospital Clínic of Barcelona (Spain) 
(Table 1). AML diagnosis and classification was based on 
accepted WHO criteria [17]. All patients provided writ-
ten informed consent in accordance with the Declaration 
of Helsinki, and the study was approved by the Ethics 
Committee of Hospital Clínic of Barcelona. Blood mature 
mononuclear cells (MNCs) were isolated from healthy-
donor buffy coats provided by Banc de Sang i Teixits 
(Barcelona, Spain). Umbilical cord blood MNCs were 
obtained after Ficoll (GE) density gradient centrifuga-
tion and were depleted for lineage marker-positive cells 
(Miltenyi). Primary AML blasts were cultured in IMDM 
(PAA laboratories) supplemented with 3  % heat-inac-
tivated fetal bovine serum (Lonza), 1 ×  BIT (StemCell 
Technologies), 5 ng/ml IL3 (Peprotech), sodium pyruvate 
(Lonza) and β-mercaptoethanol (Sigma).

Analysis of cell viability
For AML cell lines, 100,000 cells were treated in 96-well 
plates in complete medium. Bromocriptine (Sigma) was 
added at the concentration indicated. Co-culture experi-
ments were performed seeding 1:3 HS-5/AML cells. Cell 
viability was measured by 7-AAD (eBioscience) exclusion 
and positivity for Hoechst33342 (Sigma) by flow cytometry 
and cell count was obtained by volume in a FACSVerse or 
FACSCantoII cytometer (BD). In co-culture experiments, 
AML cells were discriminated based on CD45 expression.

In order to test the cytotoxic effect of bromocriptine 
on primary AML patient samples, between 100,000 and 
150,000 cells were seeded in 200 µL of IMDM complete 
medium per well (96-well plates were used). Cells were 
treated once with 10  µM bromocriptine or the vehicle-
control (DMSO). 24 or 72  h after treatment, cells were 
stained with CD45, 7-AAD, and Hoechst33342. The blast 
population was identified by their profile CD45 versus 
side scatter (SSC) [18]. Within the blast population, live 
cells were 7-AAD negative and Hoechs33342 positive. 
Number of live cells was obtained due to the volumetric 
count performed during the acquisition.

All experiments were performed in triplicate. Data was 
normalized by setting the vehicle-control treated group 
as 100. Each patient data set is represented normalized 
against its own vehicle-treated control. Consequently, 
each experimental point was divided by the mean of 
the corresponding vehicle-treated control group and 
expressed as a percentage. Statistical analysis (Mann–
Whitney test) and IC50 determination were calculated 
in GraphPad (Prism software). FlowJo software (TriStar) 
was used for flow cytometry analysis.

Annexin V detection
AML cells were treated with bromocriptine as described 
above for 48  h. Cell were stained with Annexin-V 
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following manufactures’ recommendations (BD) and ana-
lyzed using a FACSCantoII cytometer (BD). FlowJo soft-
ware (TriStar) was used for flow cytometry analysis.

Myeloid differentiation
Cells were treated as indicated for cytotoxicity assays. 
Forty-eight hours after treatment, cells were stained with 
anti-human CD11b-PE (BD) and surface expression of 
the antigen was analyzed by flow cytometry (FACSVerse, 
BD).

Clonogenic assay
Primary AML (50 × 103) or lineage-negative cord blood 
cells (1 × 103) cells were treated for 18 h with bromocrip-
tine and mixed with 1 mL of MethoCult H4034 Optimum 
(StemCell Technologies). Colonies were screened based 
on morphology and cellularity at day 14 by light micros-
copy. BFU-E (burst-forming unit-erythroid) contains 
>200 erythroblasts in a single or multiple clusters. CFU-
GM (colony-forming unit-granulocyte/macrophage) is 
composed by at least 40 granulocytes and macrophages. 
When only granulocytes or macrophages are found, these 
colonies are identified as CFU-G and CFU-M, respec-
tively. CFU-Mix or CFU-GEM is initiated by a multi-
potential progenitor that produces a colony containing 
erythroblasts and cells of at least two other recognizable 
lineages. CFU-GEM tends to produce large colonies due 
to their primitive nature.

Results
AML is characterized by the accumulation of trans-
formed immature myeloid blasts which have lost their 
ability to normally differentiate. As targeted therapies 
aiming to force AML blast cells to terminally differenti-
ate will ultimately result in cell death, a PMA (phorbol 
myristate acetate)-induced differentiation-associated 
gene expression profile was identified and interrogated 
against the Connectivity Map database (https://www.
broadinstitute.org/cmap/) [12]. In order to identify 
potential drugs that selectively induced differentiation 
of AML cells, the results obtained were filtered at a P 
value <0.05 and a connectivity score >0.75 in HL-60 
(AML cell line) but <0.5 in PC3 (prostate cancer cell 
line) and MCF7 (breast cancer cell line), at a concentra-
tion <10  µM (Additional file  3: Figure S1). Bromocrip-
tine, a FDA- and EMA-approved drug for treatment of 
Parkinson’s disease [19], pituitary tumors [20], hyper-
prolactinemia [21] and type II diabetes [22], was iden-
tified as a potential differentiation-inducing drug for 
AML blasts. Four different AML cell lines (HL-60, AML 
FAB M2; KG-1, AML FAB M0/1; MonoMac-1, AML 
FAB M5 MLL-AF9 positive; Kasumi-1, AML FAB M2 

t(8;21) positive) were treated at different doses of bro-
mocriptine for 48 h. As shown in Fig. 1a, bromocriptine 
treatment resulted in at least 50  % cell viability reduc-
tion at 10  µM concentration. Interestingly, bromocrip-
tine-treated AML cells were highly positive for the early 
apoptosis marker Annexin-V (Fig. 1b, Additional file 4: 
Figure S2A and data not shown), indicating that bro-
mocriptine activated the cell death program in AML. 
In concordance with the in silico screening performed 
to identify bromocriptine, treatment with this drug 
induced the surface expression of the myeloid-associ-
ated differentiation marker CD11b (Fig.  1c, Additional 
file 4: Figure S2B and data not shown) and morphologi-
cal changes compatible with terminal differentiation 
(Fig. 1d).

One of the principal causes of therapy failure in AML 
patients is the resistance to chemotherapy where the 
bone marrow microenvironment plays a crucial role in 
drug resistance and cell survival [23]. In order to inves-
tigate the effect of bone marrow (BM) stroma cells on 
bromocriptine-mediated cytotoxicity, AML cells were 
cultured in the presence of the BM stroma cell line HS-5 
and treated with bromocriptine as previously described. 
Bromocriptine treatment overcame BM stroma-survival 
signaling, reducing cell viability in a dose-dependent 
manner (Fig. 1e). Indeed, a similar degree of cell viability 
reduction was induced upon bromocriptine treatment 
both in the presence (Fig.  1e) and absence (Fig.  1a) of 
HS-5 cells. Interestingly, HS-5 viability was not affected 
by bomocriptine treatment. Therefore, bromocriptine 
treatment presented an anti-leukemic cytotoxic effect 
accompanied by the activation of the differentiation 
and the apoptosis programs in a stroma-independent 
fashion.

Next, the cytotoxic activity of bromocriptine was 
investigated in eleven primary AML patient samples, 
representative of several different non-APL (acute pro-
myelocytic leukemia) subtypes. AML primary samples 
were treated with the vehicle control or 10  µM bro-
mocriptine for 24 and 72  h and the cytotoxicity was 
measured within the blast population (identified by its 
side scatter profile and CD45 intensity). A significant 
reduction in cell viability was detected 24  h after treat-
ment (Fig.  2a); moreover, this effect was more pro-
nounced 72 h after treatment, when the majority of the 
AML blasts died upon treatment (Fig. 2b). Interestingly, 
treatment with bromocriptine spared non-blast cells 
while the blast population was severely reduced upon 
treatment (Fig. 2c).

AML is a hierarchical structure sustained by a “stem-
cell”-like population termed LSC [3], responsible for 
the initiation and maintenance of the disease. Although 

https://www.broadinstitute.org/cmap/
https://www.broadinstitute.org/cmap/
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the phenotype of this population is controversial, there 
is strong evidences suggesting that the CD34+CD38− 
subpopulation is enriched for LSCs [4]. This primitive 
population displayed higher sensitivity to bromocriptine 
treatment than the bulk population [Fig. 2a (p = 0.0071) 
and b (p = 0.0081)]. Indeed, viability of this primitive cell 
fraction was reduced about 50  % 24  h upon treatment 
with bromocriptine. Next, the sensitivity to bromocrip-
tine was analyzed according to the prognostic cytoge-
netic category of AML samples (Additional file 5: Figure 
S3) based on diagnostic karyotype [24]. No significant 

differences in the response to bromocriptine were 
observed in the bulk population among these three risk 
groups. Nonetheless, sensitivity to bromocriptine within 
the primitive population significantly decreased in the 
adverse risk group as compared to favorable/intermedi-
ate-risk patients, although the number of AML patients 
analyzed is limited.

Similarly to the effect on AML cell lines, bromocrip-
tine induced the upregulation of CD11b, suggesting that 
AML blasts activated the differentiation program in the 
presence of the drug (Fig. 2d; Table 2).
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Due to the higher sensitivity to bromocriptine of the 
primitive cell fraction and the induction of terminal 
differentiation upon treatment, the clonogenic capac-
ity as an ex  vivo measure of the self-renewal and dif-
ferentiation potential was interrogated in the presence 
of bromocriptine. Primary AML cells were treated for 
18  h with bromocriptine and a CFU assay was per-
formed. In concordance with previous results, bro-
mocriptine also impaired the clonogenicity of AML 
cells (Fig. 2e).

To demonstrate the differential effect of bromocriptine 
in AML cells versus healthy blood cells, mature myeloid 
cells isolated from peripheral blood of healthy donors, as 
AML normal counterpart, were treated with bromocrip-
tine in the same conditions as were AML cells. As shown 
in Fig. 3a, no significant effect was detected in cell viabil-
ity. Thus, bromocriptine treatment spared healthy blood 
cells. Besides, bromocriptine treatment had no signifi-
cant effect on the clonogenic capacity of hematopoietic 
stem/progenitor cells (isolated from lineage-negative 
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blast and non‑blast population (according to the SSC‑CD45 profile). d Vehicle control‑ or bromocriptine‑treated primary AML samples were assayed 
for the expression of CD11b. The relative frequency of CD11b‑positive cells refer to control is represented. e Primary AML samples were treated for 
18 h and cultivated in methylcellulose. 14 days after, colonies were screened based on cellularity and morphology criteria. Bars represent mean 
value of at least biological triplicates. Error bars correspond to SEM. CFU‑B: CFU‑Blasts. ***p < 0.005; ****p < 0.001
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umbilical cord blood) both in terms of total number of 
colonies formed and relative frequency of each colony 
subtype (Fig.  3b). Taken together, bromocriptine dif-
ferentially acted as an anti-AML drug that spared the 
healthy counterpart, especially fighting against the most 
primitive cell population within the tumor bulk.

Discussion
The standard treatment of AML has remained essen-
tially unchanged for the last decades, despite advances 
in molecular biology related to AML and a better under-
standing of the mechanisms underlying leukemogenesis. 
De novo drug discovery research involves high develop-
ment costs, generic competition due to the long time 
required for reaching clinics that overlaps with legal 
protection, increasingly conservative regulatory policies, 
and insufficient breakthrough innovations in the field. 
Drug repositioning consists in the process of discover-
ing new therapeutic indications for existing approved 
or candidate drugs, which makes it an attractive drug 
development strategy, both economically and timely [25]. 
In order to abrogate the self-renewal capacity of LSCs, 
a differentiation-inducer already-approved drug was 

sought using an in silico approach. Bromocriptine, a Par-
kinsons’ disease, hyperprolactinaemia and galactorrhoea-
approved drug, was identified as an anti-AML compound 
that specifically targets the most primitive fraction of 
blasts. Interestingly, bromocriptine exerted its cytotoxic 
effect sparing healthy blood cells.

The original indication for bromocriptine was Parkin-
sons’ disease with a mechanism of action through dopa-
mine receptors. Bromocriptine acts as a D2 dopamine 
receptor agonist and a D4 dopamine receptor antagonist 
[8]. For type II diabetes, a reformulation of bromocrip-
tine was investigated and approved for human use [26]. 
Although dopamine signaling and metabolism are tightly 
linked, the exact mechanism of action of bromocriptine 
in diabetes is partially unknown [27]. More recently, 
an anti-Trypanosoma cruzi effect has been studied for 
bromocriptine [28], unlikely through dopamine recep-
tor signaling. Taking into account that cancer stem cells 
(including LSCs) depend on dopamine signaling and 
its inhibition compromises their viability [29], the anti-
AML cytotoxic effect shown here might be exerted by D4 
dopamine receptor antagonism and/or other alternative 
mechanism.

Table 2 Baseline and post-treatment CD11b expression levels in primary samples from 7 AML patients

AML sample Vehicle control treatment Bromocriptine treatment CD11b induction

Mean SEM Mean SEM

#2 0.78 0.09 8.31 2.73 10.65

#4 0.82 0.49 5.00 1.90 6.10

#5 3.94 1.59 19.31 8.24 4.90

#8 3.25 0.20 14.81 11.45 4.56

#10 8.48 0.18 6.38 2.03 0.75

#14 3.37 0.14 34.02 0.95 10.09

#22 21.43 0.74 30.90 0.78 1.44
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Fig. 3 Bromocriptine treatment spared healthy blood cells. a Healthy CD33‑positive myeloid mature cells from peripheral blood of healthy donors 
were treated for 72 h with vehicle control or 10 µM bromocriptine. Cell viability was measured by flow cytometry. b Lineage‑depleted umbilical 
cord blood cells were treated with vehicle control or 10 µM bromocriptine for 18 h and cultured in methylcellulose. Total number of colonies (left) 
or frequency of each colony subtype (right) refer to control is represented. Bars represent mean value of at least biological triplicates. Error bars cor‑
respond to SEM. ***p < 0.005; ****p < 0.001
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For the last decades, improvements in outcomes 
for adult AML patients are most likely attributable to 
advances in supportive care and optimization of hemat-
opoietic progenitor cell transplantation. Relapse contin-
ues to be the main reason for AML patients to succumb 
to the disease. Due to their self-renewal and differen-
tiation capacity, LSCs are thought to be responsible for 
sustaining and regenerating AML in the patient. Thus, 
abolishment of the self-renewal capacity is critical 
for eliminating the disease. Bromocriptine treatment 
reduced the clonogenic potential of AML cells as deter-
mined by CFU assays, the ex vivo “gold standard” test for 
measuring self-renewal.

In concordance with our results, Liberante and cow-
orkers recently described bromocriptine as a potential 
drug for myelodysplastic syndromes (MDS) and sec-
ondary AML (sAML) [30]. MDS involves different enti-
ties that display multilineage dysplasia with ineffective 
hematopoiesis, developing a sAML in 30  % of patients 
[31]. Even though sAML constitutes a separated sub-
group within AML; sAML and de novo AML share 
multiple clinical features [17]. However, AML and MDS 
behave differently from a biological point of view [32]. 
Indeed, treatment regimens are specific for each disease. 
5 out of 11 AML samples analyzed in this study belonged 
to the AML with myelodysplasia-related changes (AML-
MRC). This group includes: (1) AML arising from pre-
vious myelodysplastic syndrome (MDS) (sAML) or an 
MDS/myeloproliferative neoplasm, (2) AML with a spe-
cific MDS-related cytogenetic abnormality, and/or (3) 
AML with multilineage dysplasia [17]. Only 15–40 % of 
the AML-MRC patients have prior MDS [33–36] and, 
the clinical outcome of patients with a history of MDS 
are not significantly different from the remaining cases of 
AML-MRC [36, 37]. Consequently, the majority of AML-
MRC does not evolve from a antecedent MDS. Moreover, 
the sensitivity to bromocriptine treatment of AML-MRC 
(bulk population mean survival: 47.33 ± 12.94 %; primi-
tive population mean survival: 24.09  ±  10.72  %) was 
equivalent to none-AML-MRC samples (bulk popula-
tion mean survival: 46.21 ± 13.03 %; primitive population 
mean survival: 23.69 ±  11.63  %). These results suggest 
that the sensitivity to bromocriptine is not related to the 
presence of myelodysplasia-related changes although the 
number of samples analyzed is limited to demonstrate 
that bromocriptine sensitivity in AML is independent 
of prior MDS. Accordingly, bromocriptine may target a 
common signaling pathway shared by myeloid neoplas-
tic cells. Interestingly, this drug differentially decreases 
clonogenicity and self-renewal capacity of AML cells, 
a cellular effect difficult to ex vivo evaluate in MDS and 
critical to definitively eliminate the disease in patients. 
Hence, our results support its further validation in a 

clinical setting through a drug repositioning strategy for 
AML.

Conclusions
  • Bromocriptine is described as a potent anti-leukemia 

drug that mainly targets leukemia stem cells,
  • Bromocriptine treatment spared healthy mature 

blood cells and hematopoietic stem cells.
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