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Abstract

Background: While substantial progress has been made in blocking acute transplant rejection with the advent of
immune suppressive drugs, chronic rejection, mediated primarily by recipient antigen presentation, remains a
formidable problem in clinical transplantation. We hypothesized that blocking co-stimulatory pathways in the
recipient by induction of RNA interference using small interference RNA (siRNA) expression vectors can prolong
allogeneic heart graft survival.

Method: Vectors expressing siRNA specifically targeting CD40 and CD80 were prepared. Recipients (BALB/c mice)
were treated with CD40 and/or CD80 siRNA expression vectors via hydrodynamic injection. Control groups were
injected with a scrambled siRNA vector and sham treatment (PBS). After treatment, a fully MHC-mismatched
(BALB/c to C57/BL6) heart transplantation was performed.

Result: Allogeneic heart graft survival (>100 days) was approximately 70% in the mice treated simultaneously with
CD40 and CD80 siRNA expression vectors with overall reduction in lymphocyte interstitium infiltration, vascular
obstruction, and edema. Hearts transplanted into CD40 or CD80 siRNA vector-treated recipients had an increased
graft survival time compared to negative control groups, but did not survive longer than 40 days. In contrast,
allogenic hearts transplanted into recipients treated with scrambled siRNA vector and PBS stopped beating within
10-16 days. Real-time PCR (RT-PCR) and flow cytometric analysis showed an upregulation of FoxP3 expression in
spleen lymphocytes and a concurrent downregulation of CD40 and CD80 expression in splenic dendritic cells of
siRNA-treated mice. Functional suppressive activity of splenic dendritic cells (DCs) isolated from tolerant recipients
was demonstrated in a mixed lymphocyte reaction (MLR). Furthermore, DCs isolated from CD40- and CD80-treated
recipients promoted CD4 + CD25 + FoxP3+ regulatory T cell differentiation in vitro.

Conclusion: This study demonstrates that the simultaneous silencing of CD40 and CD80 genes has synergistic
effects in preventing allograft rejection, and may therefore have therapeutic potential in clinical transplantation.
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Introduction

Dendritic Cells (DCs) are the most potent antigen-
presenting cells (APCs), having a role on both priming the
adaptive immune response and induction of immunological
tolerance [1-3]. DCs can be either immunostimulatory or
immunoregulatory; it has been demonstrated that the
properties of DCs depend on maturation status, phenotype
and source of origin. In general, mature DCs express high
levels of CD11C, major histocompatibility complex class
II (MHC 1II) and the costimulatory molecules CD40 and
CD80. DCs that inhibit immune responses have been de-
scribed as immature, having plasmacytoid morphology, or
being alternatively activated. Collectively, suppressive DCs
have been termed “tolerogenic DCs”. Previous studies have
demonstrated that donor-specific, allogeneic tolerogenic
DCs can enhance survival of transplanted grafts [4,5].

T cells require two signals to become fully activated.
The first signal, which is antigen-specific, is provided
through the T cell receptor which interacts with peptide-
MHC molecules on the membrane of APCs. A second sig-
nal, the co-stimulatory signal, is antigen nonspecific and is
provided by the interaction between co-stimulatory mole-
cules expressed on the membrane of APCs and the T cells.
T cell co-stimulation is necessary for T cell proliferation,
differentiation and survival. Activation of T cells without
co-stimulation may lead to T cell anergy, T cell deletion or
the development of immune tolerance [3,6,7].

Multiple costimulatory pathways are involved in primary
T cells activation. CD28/Cytotoxic T-Lymphocyte Antigen
4 (CTLA4) binding to CD80/CD86 was the first costimu-
latory pathway identified and is one of the most potent
and best characterized of costimulatory interactions
[8,9]. CD80/CD86 on APCs ligated with their receptors
CD28/CTLA4 on T cells could regulate T cell responses.
Interaction through CD80/CD86-CD28 pathway is crucial
for enhancing T cells activation and survival, however,
the CD80/CD86-CTLA4 pathway is mainly for regu-
lating inhibitory T cell responses. CD40 is a type I
transmembrane protein which belongs to the TNF re-
ceptor superfamily and is found to be expressed on all
types of antigen-presenting cells (APCs), particularly
on DCs [10]. CD40 on DCs bind to T cell CD40 ligand
(CD40L) and activate T cells by upregulating CD80 and
CD86 on DCs. As well, this interaction can induce high
levels of the proinflammatory cytokine IL-12, which is
critical for the development of Thl type immune re-
sponses [11,12]. The blockade of the CD40-CD40L
pathway will result in a deficiency in APC interaction,
which will also lead to the global failure of T cell acti-
vation [13,14]. Costimulation blockade targeting either
CD28-CD80/CD86 or CD40-CD40L alone rarely gave
durable allograft survival. Therefore, simultaneous block-
ade of these two pathways has synergistic function in
promoting allograft tolerance [15].
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Gene silencing by using small interfering RNA (siRNA) is
capable of specifically blocking gene expression in mamma-
lian cells without triggering the nonspecific panic response
[16,17]. The strategies of using siRNA have been successful
in inducing therapeutic benefits in animal models of vari-
ous diseases and are currently in clinical trials [18-23]. To
date, blockade of the costimulatory molecules is being
aggressively pursued as a tolerance-inducing strategy
[24]. Inhibition of this bidirectional interaction not only
suppresses T cell responses [25] and Th2 cytokines, but also
actively generates regulatory T (Treg) cells [26]. In the
present study, we investigated the feasibility of silencing
both CD40 and CD80 expression by siRNA treatment in
the recipient to induce longer cardiac allograft survival.

Methods and material

Mice

Male 8-10 week old C57BL/6 and BALB/c mice
(Charles River Canada, Saint-Constant, Canada) were
used as donors and recipients, respectively. Animals were
housed under conventional conditions at the Animal Care
Facility, University of Western Ontario, and were cared
for in accordance with the guidelines established by the
Canadian Council on Animal Care.

DCs culture

DCs were cultured from bone marrow progenitor cells as
previously described [27]. Briefly, bone marrow cells were
flushed from the femurs and tibias of C57BL/6 mice then
washed and cultured in 6-well plates supplemented with
10 ng/ml of recombinant GM-CSF and recombinant mouse
IL-4 (Peprotech, Rocky Hill, NJ, USA). All cultures were
incubated at 37°C in 5% humidified CO,.

CDA40 and CD80 siRNA and expressed siRNA vector
constructs
For in vitro studies, CD40 and CD80 siRNA were syn-
thesized by Dharmacon (Chicago, IL). The sequence of
CD40 siRNA used was UUCUCAGCCCAGUGGAACA,
and the sequence of CD80 used was GUGUGGCCCGAG
UAUAAGA. The DCs were transfected with siRNA by
using lipofectamine 2000 (Life technologies, Burlington).
For in vivo studies, the siRNA expression vector was
constructed as previously described [28,29]. The oligonu-
cleotides containing target-specific sense and anti-sense
sequences of CD40 and CD80 mRNAs were synthesized,
annealed and inserted into the pRNAT U6.1 siRNA ex-
pression vector utilizing restriction enzyme sites at the
end of the strands (Genscript, Piscataway, NJ) to express
the siRNAs.

Heterotopic cardiac transplantation and treatment
Recipients (BALB/c) were treated with CD40 and CD80
siRNA vectors 3 days prior to heart transplantation and
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7, 14 and 21 days after transplantation by hydrodynamic
injection. 50 pg of CD40 and CD80 siRNA vectors were
diluted in 1.6 ml of PBS and rapidly injected into the
mice through the tail vein within 5-7s [23,30,31]. A low
dose (2Gy) of whole body irradiation was administered to
the recipient mice before heart transplantation. Recipient
BALB/c (H-2%) mice were subjected to intra-abdominal
allogeneic cardiac transplantation using the hearts from
fully MHC-mismatched C57BL/6 (H-2%) mice. Pulsation
of cardiac grafts was monitored daily by direct abdominal
palpation in a double-blind manner to determine survival/
rejection of the cardiac graft.

Quantitative real-time PCR (RT-PCR)

Total RNA was extracted from cells using Trizol (Invitrogen).
Total RNA (3 pg) was used for cDNA synthesize using
oligo-(dT) primer and reverse transcriptase (Invitrogen).
Primers used to amplify murine CD40, CD80, FoxP3
and GAPDH genes were: CD40, 5'- AGCGGTCCATCT
AGGGCAGTGTG -3’ (forward) and 5- TGGGTGGCA
TTGG GTCTTCTCA-3’ (reverse); CD80, 5'- GCCTCGC
TTCTCTTGGTTG - 3’ (forward), 5'- TTACTGCGCCGA
ATCCTG-3’ (reverse); FoxP3, 5'- CAGCTGCCTACAGT
GCCCCT AG-3'(forward), 5'- CATTTGCCAGCAGTGG
GTAG-3’ (Reverse); GAPDH, 5'- TGA TGACATCAAGA
AGGTGGTGAA-3’ (forward) and 5'- TCCTTGGAGGCC
ATGTAG GCCAT -3’ (reverse). Real-time PCR reactions
were performed in a Stratagene Mx3000P QPCR System
(Agilent Technologies, Lexington, MA) using SYBR green
PCR Master Mix (Life technologies) according to manu-
facture’s protocol. The PCR reaction condition was 95°C
for 10 min, and 95°C for 30 sec, 58°C for 45 sec and 72°C
for 30 sec (40 cycles).

Flow cytometry

Characterization of DCs or T cells was performed by flow
cytometer (Becton Dickinson, San Jose, CA). All antibodies
were purchased from eBioscience, San Diego, CA, unless
otherwise indicated.

DCs were stained with FITC- or PE-CD40 and PE-
CD80 monoclonal antibodies. For T cells, PE-Cy5-CD4,
FITC-FoxP3, and PE-CD25 conjugated anti-mouse
monoclonal antibodies were used for staining. Foxp3
expression was assessed by intracellular staining, using
Foxp3 Staining Kits (eBioscience). All flow cytometric
analysis was performed using appropriate isotype controls
(Cedarlane Laboratories).

Mixed lymphocyte reaction (MLR)

For in vitro MLR, T cells (2 x 10°/well) from naive BALB/c
mice were plated with DCs cultured from C57BL/6 mice in
varying ratios of DC:T cells. For in vivo MLR, splenic DCs
isolated from tolerant or rejecting recipients (BALB/c)
using CD11c MACS beads (Miltenyi Biotec) were irradiated
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at 30 Gy. T cells (2 x 10°/well) from C57BL/6 mice
were added to the DC cultures, with the final MLR tak-
ing place in 200 ul of complete RPMI 1640 medium
(Life Technologies). Cells were cultured at 37°C in a hu-
midified atmosphere of 5% CO2 for 3 days, and pulsed with
1 uCi of [*H] thymidine (PerkinElmer, Woodbridge, ON)
for the last 18 h of culture. Cells were harvested onto glass
fiber filters, and the incorporated radioactivity was
quantified using a Wallac Betaplate liquid scintillation
counter. Results were expressed as the mean counts
per minute (cpm) of triplicate cultures + SEM.

To determine the ability of Treg to perform the inhibi-
tory MLR splenic T cells (2 x 10°/well) from naive BALB/
C mice were used as responder cells. Cultured bone mar-
row DCs (1 x 10°) from naive C57BL/6 and C3H (third
party) mice were used as stimulators. CD4"CD25" cells
isolated from spleens of tolerant recipient mice using a
Treg cells isolation kit (Miltenyi Biotec) were added to the
cultures; ratios of Treg:stimulator were 1:100, 1:20, 1:10.
Experimental procedures used to incubate and harvest cells
were the same as described above.

Graft histology

At the experimental endpoint, cardiac tissue samples
were collected and fixed in 10% buffered formaldehyde
and processed for histology examination using standard
techniques. Specimens were embedded in paraffin, and
sectioned for H&E staining. The microscopic sections
were examined in a blinded fashion by pathologist for
rejection. Criteria for allograft rejection included the
presence of myocardial infarction, lymphocytic infiltra-
tion, thrombosis and hemorrhage.

Statistical analysis

In this study, data were reported as the mean + SEM.
Allograft survival among experimental groups was com-
pared using the log-rank test. Quantitative real-time PCR
data were analyzed using one-way ANOVA. Differences
with P values less than 0.05 were considered significant.

Results

CD40 and CD80 siRNA gene silencing validation in vitro
Mature, immunologically competent DCs are the most
efficient APCs. Upon stimulation with antigen, DCs change
from immature antigen capturing cells to mature antigen
presenting cells and active T cells [32]. Costimulatory mol-
ecules CD40 and CD80 are highly expressed on mature
DCs. Thus we first validated the efficacy of gene silencing
using siRNA specifically targeting the CD40 and CD80
genes in cultured LPS-stimulated mature DCs. We con-
firmed that both CD40 and CD80 were expressed in the
DCs cultured from C57BL/6 bone marrow by quantitative
real-time PCR (Figure 1A, B). Forty eight hours after
transfecting DCs with CD40 and CD80 siRNAs, CD40
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Figure 1 CD40 and CD80 gene silencing in vitro. (A & B) In vitro gene silencing determined by quantitative RT-PCR. C57BL/6 mice bone
marrow DCs were cultured for 6 days and were transfected with CD40, CD80 or scrambled siRNA using lipofectamine 2000. Non-transfected cells
served as a negative control. Twenty-four hours after transfection, LPS was added for another 24h. Forty-eight hours after transfection, cells were
harvested and total RNA was extracted. Transcripts of CD40 (A) and CD80 (B) were determined using quantitative RT-PCR. (*p < 0.01, CD40 or
CD80 siRNA vs untransfected or scrambled siRNA transfected cells). (C & D) In vitro gene silencing of CD40 and CD80 detected by flow cytometry
DCs were culture and transfected with siRNA as described in A & B. DCs were harvested and stained with FITC-labeled CD40 and PE-labeled CD80
antibodies. The expression of CD40 (C) and CD80 (D) was detected by flow cytometry. (E) CD40 and CD80 silenced DCs attenuate allogeneic T
cell proliferation. Bone marrow DCs were cultured and transfected with CD40 and CD80 siRNA as described in A & B. Forty-eight hours after
transfection, DCs were collected and co-cultured with allogeneic T cells in a 96 well plate at various ratios as indicated. [*H] was added 48h after
co-culture, and its incorporation was measured as an indicator of T cell proliferation. (*p <001 vs control group).
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and CD80 gene expression was reduced by approximately
75% and 55%, respectively, when compared with the
DCs transfected with scrambled siRNA or untransfected
control DCs (Figure 1A-B).

We further confirmed the gene silencing efficiency by
flow cytometry. Upon activation by LPS, untreated con-
trol DCs and scrambled siRNA transfected DCs highly
expressed CD40 (89%) and CD80 (70%), suggesting that
these DCs were mature (Figure 1C, D). DCs transfected
with CD40 or CD80 siRNA showed decreased CD40 (43%)
or CD80 (41%) costimulatory molecule expression.

To evaluate the capacity of DCs to stimulate allogeneic
T cells responses after gene silencing of CD40 and CD80,
we performed mixed leukocyte reaction (MLR). DCs
cultured from C57BL/6 mice transfected with CD40 or
CD80 siRNA alone or in combination were used as
stimulators, while DCs transfected with scrambled siRNA
were used as controls. These DCs were plated and cultured
with allogeneic T cells from BALB/c mice (Figure 1E).
The results showed that, control DCs initiated a strong
allogeneic T cells responses, CD40 or CD80 alone-
silenced DCs showed reduced levels of allogeneic T
cell responsed, although the differences between the
groups did not reach statistical significance. However,
silencing both CD40 and CD80 using siRNA signifi-
cantly inhibited allogeneic T cell proliferation. These
data suggested that CD40 and CD80-silenced DCs are
immunosuppressive or tolerogenic DCs and fail to stimu-
late T cell responses.
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CD40 and CD80 gene silencing in vivo

To validate CD40 and CD80 gene silencing efficiency
in vivo, we treated mice with CD40 or CD80 siRNA vectors
using the method of hydrodynamic injection through the
tail vein. In order to stimulate spleen DC maturation, the
mice were also subsequently treated with LPS. We isolated
splenic DCs and performed flow cytometry to detect CD40
and CD80 expression. Mice that were administered scram-
bled siRNA vector plus LPS showed upregulated expression
of CD40 (89%) and CD80 (87%) (Figure 2). Treatment with
CD40 or CD80 siRNA vectors significantly decreased CD40
(57%) and CD80 (51%) gene expression. These data demon-
strate that the CD40 or CD80 siRNA vectors were capable
of knocking down CD40 or CD80 gene expression in vivo.

Prevent cardiac allograft rejection by using CD40 and
CD80 siRNA expression vector

Blocking the costimulation pathway by monoclonal
antibody can improve allograft survival in rodents and
non-human primates [33]. Since our in vitro results
show that siRNA targeting of CD40 and CD80 reduces
costimulatory molecules expression and prevents DC
maturation (Figure 1C, D), leading to an inhibition of
allogeneic T cell proliferation (Figure 1E), we hypothe-
sized that the blockade of the costimulatory signaling
pathway using siRNA expression vectors would prevent
graft rejection. To determine this, we treated BALB/C re-
cipients with CD40 and CD80 siRNA vectors before and
after fully MHC-mismatched transplantation of C57BL/6
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Figure 2 CD40 and CD80 gene silencing in vivo. Fifty micrograms of CD40 and CD80 siRNA vector or scrambled siRNA control vector were
administrated to mice by iv injection. Forty-eight hours after injection, 0.5 mg LPS was administrated by ip injection. Splenic DCs were isolated
24h after LPS injection using MACS beads. Scrambled siRNA vector treated mice served as a control. The expression of CD40 and CD80 in splenic
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hearts. A low dose (2Gy) of whole body irradiation was
administered to the recipient mice before heart trans-
plantation. As expected, untreated recipients or scrambled
siRNA vector treated recipients had rapid graft rejection, al-
lografts only survived 12-16 days. Treatment with single
CD40 or CD80 siRNAs significantly prolonged cardiac allo-
graft survival (25.7 + 2.7 days CD80, 30.0 + 3.6 days CD40)
(Figure 3A). Furthermore, combined use of CD40 and
CD80 siRNA vectors had synergistic effects of further
increasing allograft survival (88.3 +5.9 days), while 66.7%
of recipients achieved tolerance to allgeneic cardiac grafts
(Figure 3A).

At end of point of experiment, cardiac graft tissues were
harvested, the pathological changes in the allografts were
examined (Figure 3B). The rejected hearts (Figure 3B-a),
demonstrated severe cellular and humoral rejection, indi-
cated by lymphocyte infiltration, hemorrhage, infarction
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and thrombosis. Opposed to the rejected mice, the grafts
from the tolerant mice treated with CD40 and CD80
siRNAs showed minimal pathological changes. There
was no cellular infiltration, infarction nor thrombosis
(Figure 3B-b). These results show that CD40 and CD80
silencing can prevent induce cardiac allograft rejection
and induce allograft tolerance.

Knockdown of costimulatory molecules increases Treg
number and function

In order to clarify whether Tregs are involved in main-
taining immune tolerance, we identified Tregs in the
tolerant and rejecting recipients. There were signifi-
cantly more Tregs in mice that were treated with CD40
and CD80 siRNA compared to rejected mice (Figure 4A).
The numbers of CD4 + CD25 + FoxP3+ Tregs, were
significantly increased in the spleens and lymph nodes
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Figure 3 Prevent graft rejection by using CD40 and CD80 siRNA expression vector. (A) Allograft survival curve. Recipient BALB/c mice were
injected with 50ug of CD40 and CD80 siRNA vectors by hydrodynamic injection through the tail vein at 3 days before transplantation. A low
dose (2Gy) of whole body irradiation was administered to the recipient mice before heart transplantation. MHC fully mismatched allogeneic
cardiac transplantation was performed from C57BL/6 mice to BALB/c mice.
pg CD40 and CD80 siRNA vectors. The groups of mice that were treated with PBS treated or scrambled siRNA vectors were used as controls

(*p < 0.05 vs control groups). (B) Histopathology of cardiac allograft from recipient mice. Mice were used and treated as described in (A). Cardiac
allografts were collected at the time of rejection or 100 days post transplantation. Tissues were sectioned and stained with H&E. Sections from
rejected mice (a) and CD40 and CD80 siRNA vector treated tolerant mice (b) are compared (magnification x200).

At 7 and 14, 21 days after transplantation, mice were treated with 50
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Figure 4 Treg cells in cardiac allograft recipients. (A) Flow cytometric analysis of Treg cells in BALB/C recipients with C57BL/6 grafts. T cells
were isolated from spleens and lymph nodes of recipient at the time of allograft rejection or 100 days post transplantation. T cells were stained
with antibodies against FoxP3, CD25 and CD4. Flow cytometry was performed to determine the percentages of Treg cells by first gating on
CD4" cells and then subsequently analyzing the percentages of CD25" and FoxP3™ cells in the spleen and lymph nodes of recipients (A). (B & C)
FoxP3 expression in splenocytes of recipients. T cells were isolated from spleens of recipient mice at the time of allograft rejection or 100 days

(*p <0.01 vs control groups).

post transplantation. Total RNA was extracted and transcripts of FoxP3 were determined using RT-PCR (B) and quantitative RT-PCR (C).

J

(LNs) of tolerant mice treated with the combination of
CD40 and CD80 siRNA (Figure 4A). The PCR and RT-
PCR results demonstrated that FoxP3 expression was sig-
nificantly increased in the spleen of tolerant treated mice
compared to scrambled siRNA treated mice (Figure 4B, C).
Collectively, knock down of both CD40 and CD80 costi-
mulatory molecules by siRNA can generate tolerogenic
DCs and Treg cells that induce alloimmune tolerance in
heart transplantation [34].

In order to determine the specificity of Treg function,
we performed inhibitory MLR in the presence of Treg cells.
CD4"CD25" Treg cells isolated from tolerant recipients
(BalB/c) can inhibit donor (C57BL/6) DCs stimulating
proliferation in naive allogenic T cells (BalB/C) in a dose

depend manner. However, the CD4"CD25" Treg cells
from tolerant recipients showed no inhibition of T cell
proliferation stimulated by DCs culture from third party
(C3H) mice. The data demonstrate that Treg inhibition
of MLR occurred in a donor antigen-specific manner
(Figure 5).

DCs in tolerant recipient suppress T cell responses and
induce Treg generation

In the context of transplantation, DCs play a pivotal role in
determining the balance between immunity and tolerance
[5]. DCs have the capacity to present allograft antigen
to recipient T cells to induce graft rejection or accept-
ance depending on state of DCs. After exposure to the
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Figure 5 Inhibitory function of Treg cells from tolerant
recipients in MLR assays. Splenic T cells (2 x 10°/well) from naive
BALB/C mice were used as responder cells. Cultured bone marrow
DCs (1 x 10%) from naive C57BL/6 and C3H (third party) mice were
used as stimulators. CD4*CD25™ cells from spleens of tolerant
recipient mice were added to the cultures, the ratios of Treg cells
compared with stimulators were 1:100, 1:20, 1:10. [BH}—thymIdine
incorporation was measured as described in Figure 1E. Inhibition
rate was compare with a control where no inhibitor was added in
the MLR. Data are presented as the mean + SEM (*p < 0.01 C57BL/6
DCs vs C3H DCs, n = 6).

antigen, DCs capture the antigen and express the high
level of costimulatory molecules and stimulate T cell
responses. Suppression of costimulatory molecules can
generate tolerogenic DCs induce more Treg generation
and tolerance [35]. It is important to know the state
and function of DCs in the recipients. To test this, we
first determined the allostimulatory capacity of splenic
DCs in tolerance and rejecting recipients. The DCs
from recipients with rejected allografts displayed a vig-
orous stimulation of allogeneic T cell proliferation. In
contrast, DCs isolated from the long-term allograft
survival recipients treated with CD40 and CD80 siRNA
had significantly suppressed T cell responses in a MLR
(Figure 6A). To further confirm the feedback loop between
tolerogenic DCs and Tregs [34], we isolated splenic CD11C*
cells from tolerant or rejected recipient and cultured them
with naive allogeneic T cells for 7 days. The results showed
that splenic DCs isolated from tolerant recipient can gen-
erate more FoxP3" Treg cells than DCs isolated from
rejected mice (Figure 6B). These data demonstrated that
knock down of the costimulatory molecules in DCs may
generate tolerogenic DCs and induce Treg cell differen-
tiation leading to immune tolerance.

Discussion

Gene silencing offers the possibility of downregulating
genes of interest in a specific and potent manner. Previous
studies by our group have demonstrated that immature
DCs, or DCs whose costimulatory molecules are silenced,
are capable of promoting donor-specific tolerance, in part
through induction of Treg cells [27]. In the current study,
we sought to utilize a clinically translatable approach, by
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targeting costimulatory molecules in the recipient through
systemic administration of siRNA expressing vectors using
hydrodynamic administration. We utilized DCs in vitro as
a model to assess whether the siRNA that we generated
was sufficient for downregulating expression of CD40 and
CD80. These molecules were chosen based on previous
studies showing importance of these costimulators in
blocking transplant rejection [36,37]. We observed that
siRNA treatment resulted in specific downregulation
of CD40 and CD80 molecules, without non-specific ac-
tivation of the DC. Furthermore, in vitro modulation of
DC function was observed such that silenced stimulator
DCs were hypoimmunogenic as compared to scrambled
siRNA treated DCs in MLR. An additive suppressive effect
was seen in MLR when CD80 and CD40 siRNA were sim-
ultaneously to treat stimulator DCs.

Gene silencing of DCs was also observed in vivo subse-
quent to hydrodynamic administration of siRNA expression
vector. Splenic DCs isolated from siRNA treated mice
possessed specific suppression of CD40 or CD80 ex-
pression, subsequent to treatment with their respective
siRNA sequences. It may be possible that hydrodynamic
administration of siRNA vectors resulted in downregulation
of costimulatory molecules on other cells as well, as it has
been found that endothelial cells express both CD40 and
CD80 and these molecules may be involved in allograft
rejection [38]. Indeed, previous studies have demonstrated
that hydrodynamic administration of siRNA results in
endothelial cell transfection [39]. We plan to assess whether
silencing in other cells besides DC occurs.

The demonstration of extended allograft survival by re-
cipient treatment with siRNA vector suggests the possibility
of developing clinically-relevant protocols for induction of
transplantation tolerance. While clinical implementation
of hydrodynamic administration is not practical, a more
feasible means of recipient modification may be through
administration of DC targeted immunoliposomes, which
was previously demonstrated by our group [40].

The demonstration of prolonged allograft survival by
targeting of recipient costimulatory molecules suggests the
possibility of inhibiting indirect antigen presentation. In the
process of direct antigen presentation, donor MHC alloan-
tigens are recognized by alloreactive T cells which are found
in relatively high frequencies between, 1:100 and 1:10,000
T cells in humans [41]. In contrast, the process of indirect
antigen presentation involves recipient antigen presenting
cell uptake of the donor antigen, processing of the antigen,
and presentation of peptides in the context of self MHC.
The frequency of alloreactive T cells with specificity for
antigens presented through the indirect pathway is sig-
nificantly less than for direct antigen presentation, which
occurs with a frequency of T cells between 1:100,000—
1:1,000,000 T cells [42]. Accordingly, the large number of
existing T cells in the direct antigen presentation pathway
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Figure 6 DCs capacity in cardiac allograft recipients. (A) DCs from tolerant recipients attenuate the alloimmune stimulatory capacity. Mice
were treated and transplanted with allografts as described in Figure 3. Splenic DCs were isolated from BALB/c recipients at the time of rejection
or 100 days post transplantation. DCs were cocultured with allogeneic T cells from naive C57BL/6 mice at varying ratios. After 48h, [*H]-thymidine
was added to the coculture for another 18h, and its incorporation was measured as an indicator of T cell proliferation. Data are presented as the
mean + SEM (*p < 0.01 vs rejected groups, n=6). (B) Splenic DCs from recipients were cocultured with allogeneic T cells as described in 6A.
Seven days after the coculture, T cells were stained with antibodies against FoxP3, CD25 and CD4. Flow cytometry was performed to determine
the expression of FoxP3 by gating on CD4"CD25" cells and then subsequently analyzing the expression of FoxP3.

leads to relatively rapid allograft rejection. In our previous
study, ex vivo perfusion of siRNA solution into heart graft
effectively attenuated ischemia/reperfusion injury and pro-
tected cardiac function [43]. It has not yet been reported
the feasibility of perfusing allografts ex vivo using siRNA
for prevent immune rejection. Indeed, perfusion of the allo-
graft ex vivo might lead to knocking down costimulatory

molecules in donor-derived DC thus blocking the direct
pathway of rejection. However, this strategy is not able to
block the recipient's DC-medicated indirect pathway which
induces chronic rejection. Acute rejection in this scenario
is effectively controlled by clinical immune suppressants,
however, chronic rejection appears to be resistant to
current immune suppressants and is the major cause
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of graft failure today [44]. Given that the mechanism of
extended graft prolongation in our study was obtained
via the manipulation of recipient antigen presenting cells,
we propose that this approach of manipulating the recipi-
ent may be more effective at preventing chronic graft re-
jection in the future. This is supported by the histological
observations of reduced signs of chronic rejection such as
hemorrhage, infarction and thrombosis.

Mechanistically, prolongation of allograft survival by
the CD40 and CD80 combination may be associated with
development of a “tolerogenic feedback loop” between
Treg cells and DC [34]. In this scenario, hydrodynamic
delivery of siRNA-expression vector by systemic adminis-
tration may suppress the costimulatory molecules on DCs
from donor grafts or DCs in recipients. For example, we
have identified tolerogenic DCs in tolerant recipients that
demonstrated attenuated the alloimmune stimulatory cap-
acity (Figure 6A). These tolerogenic DCs would result in
generation of Treg cells, which then would further induce
an immature state in the DCs. Such tolerogenic loops
have been previously demonstrated through induction
of immature DC by blockade of IkB together with Treg
stimulation by antiCD45 antibodies [34]. Indeed the
possibility of amplifying such tolerogenic loops by admin-
istration of agents that increase the number of Treg cells,
which has previously been clinically applied using non-Fc
binding antiCD3 [45], may be assessed in future experi-
ments to augment the tolerogenic process.

In conclusion, the current paper provides proof of
concept for the utilization of siRNA in modifying recipient
responses to allogeneic transplantation. The possibility of
inhibiting chronic rejection through targeting the indirect
pathway of antigen presentation suggests a possibility to
overcome limitations of current immune suppressants.
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