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Abstract

triggering potentially adverse effects.

may require transplantation of engineered cells.

Background: Therapeutic gene transfer is of significant value to elaborate efficient, durable treatments against
human osteoarthritis (OA), a slow, progressive, and irreversible disorder for which there is no cure to date.

Methods: Here, we directly applied a recombinant adeno-associated virus (rAAV) vector carrying a human
transforming growth factor beta (TGF-f3) gene sequence to primary human normal and OA chondrocytes in vitro
and cartilage explants in situ to monitor the stability of transgene expression and the effects of the candidate
pleiotropic factor upon the regenerative cellular activities over time.

Results: Efficient, prolonged expression of TGF-B achieved via rAAV gene transfer enhanced both the proliferative,
survival, and anabolic activities of cells over extended periods of time in all the systems evaluated (at least for

21 days in vitro and for up to 90 days in situ) compared with control (reporter) vector delivery, especially in situ
where rAAV-hTGF-(3 allowed for a durable remodeling of OA cartilage. Notably, sustained rAAV production of TGF-3
in OA cartilage advantageously reduced the expression of key OA-associated markers of chondrocyte hypertrophic
and terminal differentiation (type-X collagen, MMP-13, PTHrP, 3-catenin) while increasing that of protective

TIMPs and of the TGF-f3 receptor | in a manner that restored a favorable ALK1/ALK5 balance. Of note, the levels

of activities in TGF-B-treated OA cartilage were higher than those of normal cartilage, suggesting that further
optimization of the candidate treatment (dose, duration, localization, presence of modulating co-factors) will most
likely be necessary to reproduce an original cartilage surface in relevant models of experimental OA in vivo without

Conclusions: The present findings show the ability of rAAV-mediated TGF-$ gene transfer to directly remodel
human OA cartilage by activating the biological, reparative activities and by regulating hypertrophy and terminal
differentiation in damaged chondrocytes as a potential treatment for OA or for other disorders of the cartilage that
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Introduction

Osteoarthritis (OA) is a major, widespread degenerative
disease of the entire joint characterized by complex
structural and functional tissue and cell alterations [1-5]
for which there is no cure to date. OA has a multifactor-
ial etiology, being influenced by both genetic, mechan-
ical, and environmental factors [6-8]. The gradual and
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irreversible degradation of the articular cartilage in OA,
associated with a remodeling of the subchondral bone
and osteophyte formation, is the result of an impaired
cartilage homeostasis (prevalence of catabolic events
activated by biomechanical and pro-inflammatory me-
diators, failure of the chondrocytes to preserve and
restore the metabolic balance) [9,10]. Thus far, none of
the pharmacological treatments and surgical options
available to manage OA have allowed to reproduce the
original cartilage integrity in patients. The design of new
therapeutic approaches for OA is therefore of crucial
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importance to effectively and durably counteract the regu-
lar progression of the disease by activating regenerative
processes in the chondrocytes as a means to re-equilibrate
the disturbed cartilage balance.

Therapeutic gene transfer is a valuable tool to achieve
this goal as it has the potential to allow for the production
of factors over extended periods of time compared with
the application of recombinant molecules with short
pharmacological half-lives. While protection against cartil-
age breakdown was afforded by delivering sequences cod-
ing for agents with preventive and/or inhibitory activities
(an IL-1 receptor antagonist - IL-1Ra, siRNAs against IL-1
or ADAMTS-5, soluble IL-1 and TNF receptors - sIL-1R
and sTNFR, NF-kB inhibitors, kallistatin - KBP, throm-
bospontin-1 - TSP-1, Dickkopf-1 - DKK-1, pro-opiome-
lanocortin - POMC) [11-21], compensation for the loss
of matrix elements and cells was not achieved to further
re-establish an original cartilage surface in these various
experimental systems. Instead, such effects have been
ascribed, at least to some extent, to gene transfer of
factors with anabolic and/or proliferative properties like
proteoglycan 4 [22], the insulin-like growth factor I
(IGF-I) [18,23,24], fibroblast growth factor 2 (FGF-2)
[25,26], bone morphogenetic proteins 2 and 4 (BMP-2, -4)
[23,27], and the transcription factor SOX9 [28,29].

Yet, even in the presence of such agents, only partial
cartilage resurfacing was noted, showing the need to
identify other components of therapeutic value for im-
proved gene transfer applications in OA. Equally im-
portant, the development of an effective treatment for
OA will necessitate that the gene vehicle promotes the
stable expression of a candidate sequence that can durably
counteracts the slow and irreversible progression of the
disease. In this regard, the transforming growth factor
beta (TGF-P) is an attractive candidate owing to its
prominent, pleiotropic effects upon cartilage formation,
chondrocyte proliferation, and extracellular matrix (ECM)
synthesis and to its ability to suppress IL-1-induced cartil-
age breakdown [30-33]. Yet, little is known on the effects
of TGF- gene transfer and overexpression in primary
human OA articular chondrocytes and articular cartilage
over relevant, extended periods of time. Most remarkably,
Ulrich-Vinther et al. [34] reported that delivery of TGF-p
via the promising recombinant adeno-associated virus
(rAAV) vectors resulted in increased levels of type-II colla-
gen and aggrecan and reduced expression of matrix
metalloproteinase 3 (MMP-3) in human OA chondrocytes
in vitro for about a week although effects at later time
points were not documented. As a matter of fact, rAAV
are among the most advantageous classes of vectors
available for therapy to date, especially for use as a gene
transfer system in OA. rAAV derived from a human
non-pathogenic replication-defective virus carry no viral
coding sequences in the recombinant genome, making
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them less immunogenic than adenoviral vectors [23,35,36].
rAAV can modify the quiescent chondrocytes both in vitro
and in situ in their dense ECM at very high efficiencies and
for prolonged periods of time, probably due to their small
size (20 nm) and to a good maintenance of the constructs
in the host under episomal forms [24,26,28,34,37,38]. This
is in marked contrast with nonviral [39] and adenoviral
vectors [23,35,36] that mediate only short-term transgene
expression, and with retroviral vectors [40,41] that require
cell division and selection and carry the risk of insertional
mutagenesis following integration in the host genome.

In the present study, we tested whether efficient
TGE-B overexpression can be achieved over prolonged
periods of time via rAAV gene transfer in primary
chondrocytes and explant cultures prepared from the
articular cartilage of normal donors and OA patients
(the ultimate targets for therapy), leading to enhanced
levels of cell proliferation, survival, and matrix synthesis
compared with control (reporter gene vector) treatment.
We further analyzed the extent by which the candidate
rAAV TGE-p treatment is capable of restructuring OA
cartilage compared with normal (control) cartilage and
explored the pathways potentially implicated in the re-
modeling processes.

Materials and methods

Reagents

All reagents were from Sigma (Munich, Germany) except
for the dimethylmethylene blue (DMMB) dye (Serva,
Heidelberg, Germany). The anti-TGF-p (V), anti-MMP-
13 (72B-01), anti-TIMP-1 (C-20) and -TIMP-3 (W-18),
anti-parathyroid hormone-related protein (PTHrP) (1D1),
anti-B-catenin (E-5), and anti-TGF- receptor I (activin
receptor-like kinase-1 ALK1: C-20; ALK5: T-19) anti-
bodies were from Santa Cruz Biotechnology (Heidelberg,
Germany). The anti-type-II collagen (AF-5710) was anti-
body from Acris (Hiddenhausen, Germany). The anti-type-
X collagen (COL-10) and anti-BrdU (BU-33) antibodies
were from Sigma. Active TGF-P secretion was monitored
with the hTGF-Bp Quantikine ELISA (DB100B; R&D
Systems; Wiesbaden, Germany). The Cell Proliferation
ELISA BrdU was from Roche Applied Science (Mannheim,
Germany). The ApopTag® Plus Peroxidase In Situ Apop-
tosis Detection Kit was from Chemicon-Millipore (Schwal
bach/Ts., Germany). The type-II collagen contents were
measured with the native type-II collagen Arthrogen-CIA
Capture ELISA kit (Chondrex, Redmond, WA, USA) and
those for type-X collagen using a COL-10 ELISA (Anti-
bodies-Online, Aachen, Germany).

Cartilage and cells

Human normal articular cartilage was obtained from un-
affected knee joints removed during tumor surgery (n=38,
age 65-73). OA was excluded on safranin O-stained
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sections using the Mankin score [42] (score 1-2). OA
cartilage was obtained from joints undergoing total
knee arthroplasty (n = 14, age 65-78) (Mankin score 7-9).
The study was approved by the Ethics Committee of the
Saarland Physicians Council. Research has been performed
in accordance with the Declaration of Helsinki involving
human material. Informed consent has been obtained
from all participants. Explant cultures and chondro-
cytes (passage 1-2) were prepared as previously de-
scribed [24,26,28,38].

Plasmids and rAAV vectors

rAAV-lacZ is an AAV-2-based plasmid [43,44] carrying
the lacZ gene encoding B-galactosidase under the control
of the cytomegalovirus immediate-early (CMV-IE) pro-
moter [24,26,28,38]. rAAV-hTGEF-p carries a 1.2-kb human
transforming growth factor beta 1 (hT'GF-B) cDNA frag-
ment (intronless open reading frame from the ATG to the
stop codon) (pORF9-hTGFB1) (Invivogen, Toulouse, France)
that was cloned in rAAV-lacZ in place of lacZ (the fragment
was confirmed by sequencing). rAAV were packaged as
conventional (not self-complementary) vectors using a
helper-free, two-plasmid transfection system in the 293
cell line (an adenovirus-transformed human embryonic
kidney cell line) using the packaging plasmid pXX2 and
the Adenovirus helper plasmid pXX6 as previously de-
scribed [45]. Vector preparations were purified by dialysis
and titered by real-time PCR (about 10 transgene cop-
ies/ml, with a ratio viral particles-to-functional vector of
500/1) [24,26,28,38].

Gene transfer

The vectors were applied to the samples based on con-
centrations previously tested [24,26,28]. Chondrocytes
(2 x 10*) were transduced with rAAV (40 yl, ie. 8 x
10° functional recombinant viral particles; multiplicity
of infection MOI =40) and cultured for up to 21 days,
while explant cultures were transduced by direct appli-
cation of the vectors (40 pl) onto the surface of the
samples and cultured for up to 90 days [24,26,28,38].

Transgene expression

Transgene (TGF-f) expression was monitored by indirect
immunostaining using a specific antibody, a biotinylated
secondary antibody (Vector Laboratories), and the ABC
method (Vector Laboratories) using diaminobenzidine
(DAB) as the chromogen. Samples were examined under
light microscopy (Olympus BX 45; Hamburg, Germany)
[24,26,28,38]. Expression of TGF- was also assayed by
ELISA at the denoted time points (in vitro: days 5 and 21;
in situ: days 21 and 90).
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Histological and immunohistochemical analyses

Cell and explant cultures were fixed and explants were
processed to stain paraffin-embedded sections (5 pm)
using safranin O to detect proteoglycans and hematoxylin
eosin (H&E) to detect cells [24,26,28]. Expression of type-
II and type-X collagen, MMP-13, TIMP-1 and -3, PTHrP,
[-catenin, and the TGF-$ receptor I (ALK1 and ALKS5)
was detected with specific antibodies, biotinylated second-
ary antibodies, and the ABC method with DAB. Samples
were examined under light microscopy (Olympus BX 45).

Cell proliferation and apoptosis assays

The proliferative activities were assessed by immunola-
beling after BrdU incorporation [24]. Briefly, BrdU was
introduced at a final concentration of 3 pg/ml in the
culture medium 24 h after rAAV transduction. Samples
were immunochemically processed to monitor the pro-
liferation rates with a specific anti-BrdU antibody, a
biotinylated secondary antibody, and the ABC method
with DAB. Proliferation was also assessed using the
Cell Proliferation ELISA BrdU, with OD proportional
to the cell numbers, as previously described [46]. In
situ, nuclear DNA fragmentation consistent with apop-
tosis was determined by the terminal deoxynucleotidyl
transferase-mediated dUTP nick end labeling (TUNEL)
method [24,26].

Morphometric analyses

The transduction efficiencies (ratio of cells positive for
TGE-p immunolabeling to the total number of cells on
immunohistological sections), the cells positive for BrdU
uptake (ratio of cells positive for BrdU immunolabeling
to the total number of cells on immunohistological sec-
tions), the cell densities (cell numbers/mm? of surface of
the site evaluated on histological sections), the apoptotic
cells (ratio of cells positive for TUNEL assay to the total
number of cells on immunohistological sections), the
safranin O staining intensities (ratio of tissue surface
positively stained by safranin O to the total surface of
the site evaluated on histological sections), the type-II
or type-X collagen immunostaining intensities (ratio of
tissue surface positively immunostained by type-II or
type-X collagen to the total surface of the site evaluated
on immunohistological sections), as well as the cells
positive for the expression of MMP-13, TIMP-1 and -3,
PTHrP, B-catenin, and the TGF-B receptor I (ALKI,
ALK5, ALK1/ALKS5 ratio) (ratio of cells positive for
immunolabeling of each of these markers to the total
number of cells on immunohistological sections) were
measured at three random sites standardized for their
surface or using ten serial histological and immunohisto-
chemical sections for each parameter, test, and replicate
condition to allow for calculation of standard deviations
(SD). Analysis programs included SIS AnalySIS (Olympus),
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Adobe Photoshop (Adobe Systems, Unterschleissheim,
Germany), and Scion Image (Scion Corporation, Frederick,
MD, USA) [24,26,28].

Biochemical assays

Explant cultures were processed for the assays as previ-
ously described [24,26,28]. The DNA contents were de-
termined using Hoechst 33258, the proteoglycan contents
by binding to the DMMB dye, and those for type-II col-
lagen and type-X collagen by ELISA [24,26,28,47]. Data
were normalized to total cellular proteins using a protein
assay (Pierce Thermo Scientific, Fisher Scientific, Schwerte,
Germany). All measurements were performed with a
GENios spectrophotometer/fluorometer (Tecan, Crailsheim,
Germany).

Statistical analysis

Each condition was performed in triplicate in three
independent experiments with both types of cultures.
Data were obtained by two individuals that were blinded
with respect to the treatment groups. Values are expressed
as mean + standard deviation (SD). The #-test and Mann—
Whitney Rank Sum Test were employed where appropri-
ate. P values of less than 0.05 were considered statistically
significant.

Results

rAAV-mediated TGF-B overexpression in human normal
and OA articular chondrocytes in vitro and in situ

The functionality of the rAAV-hTGE-p vector was first
tested in human normal and OA primary chondrocyte
cultures and articular cartilage explants.

In vitro, significant, sustained (at least 21 days) TGF-p
expression was noted only in rAAV-hTGF-p-transduced
chondrocytes compared with the control (rAAV-lacZ)
condition (normal cells: from 461.2+7.8 to 184.2 + 3.5
versus 14.6 + 2.1 to 11.3 £ 0.9 pg/ml/24 h between days 5
and 21; OA cells: from 552.4 £ 6.5 to 219.4 + 3.2 versus
17.5+3.1 to 10.6 + 0.7 pg/ml/24 h between days 5 and
21; up to 31.6-fold difference, always P < 0.001), showing
durable transduction efficiencies (up to 80%) (Figure 1A).

Significant, durable (at least 90 days) TGF- expres-
sion was also achieved in situ when applying rAAV-
hTGE-p to cartilage explants compared with rAAV-lacZ
(normal cartilage: from 724.5+4.9 to 304.2 £ 2.2 ver-
sus 92.3 £ 1.1 to 55.2 + 1.9 pg/ml/24 h between days 21
and 90; OA cartilage: from 987.7 + 4.8 to 324.9 +4.3
versus 83.4 2.1 to 58.1 + 3.2 pg/ml/24 h between days
21 and 90; up to 11.8-fold difference, always P<
0.001), with specific immunoreactivity observed both
in the superficial and middle zones of the cartilage
and showing again durable transduction efficiencies
(up to 70%) (Figure 1B).
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Figure 1 Detection of TGF-B expression in rAAV-transduced
human normal and OA chondrocytes in vitro and in situ. Cells
(A) and explants (B) were transduced by direct administration of the
vectors (rAAV-lacZ or rAAV-hTGF-B: 40 ul each vector) and
maintained in culture for 21 days in vitro and for 90 days in situ. The
samples were then fixed and histologically processed to monitor the
expression of TGF-f by immunocyto-/-histochemical detection
(A: magnification x4; B: magnification x20, view of the middle zone).

These results show that the current rAAV TGE-f vector
is capable of modifying human normal and OA chond-
rocytes both in vitro and in situ, allowing for significant
levels of transgene expression compared with control
vector administration over extended periods of time,
especially when the cells are embedded in their ECM
(at least 90 days in situ).

Effects of rAAV-hTGF-B administration upon the cellular
activities of human normal and OA articular chondrocytes
in vitro and in situ
We next evaluated the ability of rAAV-mediated TGF-f3
overexpression to stimulate the proliferative and survival
activities of chondrocytes in the systems tested above.

In vitro, immunodetection of BrdU incorporation re-
vealed significant and durable (from day 5 to day 21)
increases in the levels of cell proliferation with TGF-p



Venkatesan et al. Journal of Translational Medicine 2013, 11:211
http://www.translational-medicine.com/content/11/1/211

versus lacZ both in normal and OA cells (up to 6.3-fold
difference, always P < 0.001) (upper panels of Figures 2A
and 3A). These results were corroborated by Cell Pro-
liferation ELISA BrdU (0.698 versus 0.605 OD** "™ in
normal cells and 0.680 versus 0.626 OD*° ™™ in OA
cells; up to 1.2-fold difference, always P <0.001) and by
analyzing the DNA contents (up to 1.3-fold difference,
always P <0.001) (Figure 3B). Similar results were noted
in cartilage explant cultures in situ. Immunodetection

(A)
rAAV-lacZ
normal
chondrocytes
OA
chondrocytes
normal
cartilage
OA
cartilage
normal
cartilage
0A
cartilage
Figure 2 Effects of rAAV-mediated TGF-B expression upon the
proliferative and anti-apoptotic activities in human normal and
OA chondrocytes in vitro and in situ. Cells and explants were
transduced with rAAV-lacZ or rAAV-hTGF-$ as described in Figure 1
and maintained in culture for 21 days in vitro and for 90 days in situ.
The samples were then fixed and histologically processed to detect
the incorporation of BrdU by immunolabeling (A) (in vitro:
magnification x2; in situ: magnification x10) and to monitor
apoptotic events by TUNEL assay (B) (magnification x10). View of
the middle zone.

Page 5 of 14

of BrdU incorporation in normal and OA explants
demonstrated significant and durable (from day 21 to
day 90) increases in the levels of cell proliferation with
TGE-B versus lacZ (up to 15.8-fold difference, always
P <0.001) (lower panels of Figures 2A and 4A). These
findings were substantiated by an analysis of the DNA
contents (up to 2.3-fold difference, always P <0.001)
(Figure 4B) and of the cell densities on histological
sections (up to 4.7-fold difference, always P <0.001)
(Figures 4C and 5A). Remarkably, these parameters
were always higher with TGF-B in normal cartilage
versus lacZ (always P<0.001). Of further note, a
TUNEL analysis showed that the presence of TGF-f
significantly and durably (from day 21 to day 90) re-
duced the percentage of apoptotic cells in OA cartil-
age compared with lacZ (36-fold decrease, P <0.001),
bringing back the levels to those noted in control nor-
mal cartilage (almost undetectable levels) (Figures 2B
and 4D).

Further biochemical analyses in vitro next revealed
significant and durable (from day 5 to day 21) increases
in the proteoglycan and type-II collagen contents with
TGE-P versus lacZ both in normal and OA cells (up to
11.5-fold difference, always P <0.001) (Figures 3C and
D) while those for type-X collagen significantly and
durably decreased (from day 5 to day 21) with TGF-$
(up to 1.7-fold difference, P < 0.001 in OA cells) (Figure 3E).
Again, similar results were obtained in cartilage explant
cultures in situ. An analysis of the proteoglycan and
type-II collagen contents showed significant and durable
(from day 21 to day 90) increases with TGF-p versus lacZ
both in normal and OA cartilage (up to 8.2-fold difference,
always P <0.001) (Figures 4E and G). These findings were
substantiated by an analysis of the intensities of safranin O
staining and of type-II collagen immunostaining (up to
17.4-fold difference, always P <0.001) (Figures 4EH, 5A,
and B). Again, these parameters were always higher
with TGF-f in normal cartilage versus lacZ (always P <
0.001). Also, the contents and immunostaining inten-
sities for type-X collagen significantly and durably
(from day 21 to day 90) decreased with TGF-p (up to
20.5-fold difference, P <0.001 in OA cartilage) (Figures 41,
], and 5C).

These findings show that application of rAAV-hTGE-
B is capable of both enhancing the proliferative and
anabolic activities of human normal and OA chond-
rocytes in vitro and in situ while advantageously
delaying their terminal differentiation. While the effects
of TGF-B were in general more robust early on both
in vitro and in situ (between 1.1- and 1.7-fold difference),
probably due to higher levels of TGF-f} expression over
time (up to 3.04-fold difference), they remained signifi-
cant vis-a-vis lacZ at the latest time points evaluated
(always P <0.001).
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Figure 3 Morphometric and biochemical analyses in rAAV-transduced chondrocytes in vitro. Cells were transduced with rAAV-lacZ or
rAAV-hTGF-B as described in Figure 1 and maintained in culture for up to 21 days. The samples were then fixed and histologically processed at the
denoted time points to monitor the % of BrdU labeling (A) and the contents of DNA (B), proteoglycans (C), type-Il (D) and type-X collagen (E).

Evaluation of the pathways allowing for the long-term
protective effects of TGF-f3 via rAAV gene transfer in
human normal and OA articular cartilage

To determine the mechanisms possibly involved in the
processes of TGF-B-mediated cartilage remodeling over
time via rAAV gene transfer, we investigated the expres-
sion of critical chondrocyte differentiation-related and
OA-associated factors in the cartilage in situ at the latest
time point evaluated in the study (90 days) among
which MMP-13 (collagenase-3, a marker of terminal
differentiation), the members of the protective TIMP fam-
ily (TIMP-1 and -3), PTHrP (a hypertrophy-associated
agent), B-catenin (a mediator of the Wnt signaling path-
way associated with hypertrophy), and the TGF-f receptor
I (protective ALK5 signaling pathway versus alternative
opposing ALK1 route).

Administration of rAAV-hTGEF-p to OA cartilage versus
rAAV-lacZ promoted a significant decrease in the levels of
key components involved in hypertrophic differentiation
such as MMP-13 (31-fold, P <0.001) (Figures 6A and 7A),

PTHrP (22.7-fold, P <0.001) (Figures 6D and 7D), and
B-catenin (20.7-fold, P<0.001) (Figures 6E and 7E)
while expression of these markers was low in normal
cartilage. In contrast, expression of the protective TIMP-1
and TIMP-3 significantly increased following application
of TGF-B both in normal and OA cartilage (at least
2.3-fold for TIMP-1 and 2.1-fold for TIMP-3, always
P<0.001) (Figures 6B and 7B and Figures 6C and 7C,
respectively). As a result, the proportion of TIMPs against
MMP-13 was significantly higher in TGF-B- than in
lacZ-treated (control) OA cartilage (39.5 versus 0.5 for
TIMP-1/MMP-13, i.e. 79-fold; 41.5 versus 0.6 for TIMP-3/
MMP-13, i.e. 69.2-fold; always P<0.001) and than in
control normal cartilage (22 for TIMP-1/MMP-13, i.e.
1.8-fold; 27 for TIMP-3/MMP-13, i.e. 1.5-fold; always
P <0.001). Transduction with rAAV-hTGF-B was also
capable of enhancing the expression of the TGF-J re-
ceptor I in normal and OA cartilage compared with
control conditions. Both the levels of ALK1 and ALK5
were significantly up-regulated in response to TGF-f
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Figure 4 (See legend on next page.)
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of type-X collagen immunostaining (J).

Figure 4 Morphometric and biochemical analyses in rAAV-transduced chondrocytes in situ. Explants were transduced with rAAV-lacZ or
rAAV-hTGF-B as described in Figure 1 and maintained in culture for up to 90 days. The samples were then fixed and histologically processed at
the denoted time points to monitor the % of BrdU labeling (A), the DNA contents (B), cells densities (C), % of apoptotic cells (D), proteoglycan
contents (E), % of matrix staining (F), type-Il collagen contents (G), % of type-Il collagen immunostaining (H), type-X collagen contents (1), and %
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Figure 5 Effects of rAAV-mediated TGF-B expression upon the
anabolic activities of human normal and OA chondrocytes in
situ. Explants were transduced with rAAV-lacZ or rAAV-hTGF-(3 as
described in Figure 1 and maintained in culture for 90 days. The
samples were then fixed and histologically processed for safranin O
staining (A) and immunohistochemical detection of type-Il (B) and
type-X collagen (C) (all at magnification x10; view of the

middle zone).

(©

(ALK1: 1.6-fold in normal and 5.1-fold in OA cartilage;
always P<0.001; ALK5: 1.6-fold in normal and 23.3-
fold in OA cartilage; always P <0.001) (Figures 6F and
7F and Figures 6G and 7G, respectively). Strikingly,
while similar increases were noted for ALK1 and ALK5
in normal cartilage with TGF-p allowing to maintain
the ALK1/ALKS5 ratio to ~ 1.1 like in the corresponding
controls (Figure 7H), application of the therapeutic vec-
tor to OA cartilage enhanced the ALKS5 levels to those
noted for ALK1 thus re-establishing a standard ALK1/
ALKS5 balance in OA (~ 1.0) versus a shift towards in-
creased, unfavorable ALK1 noted in damaged, control
cartilage (~ 4.7) (Figure 7H).

These findings indicate that treatment of human OA
cartilage with the candidate rAAV TGE-f vector benefi-
cially impacts the processes of chondrocyte hypertrophy
and terminal differentiation in human OA chondrocytes
in situ via the TGF-f signaling pathway.

Discussion

Study goals

Direct therapeutic gene transfer based on the use of the
efficient and stable rAAV vectors is a promising tool to
manage the irreversible progression of OA. In this regard,
TGF-B might be a good candidate to achieve this goal
due to its protective and reparative effects in the articu-
lar cartilage [32,33]. Notably, Ulrich-Vinther et al. [34]
reported that gene transfer of TGF-$ via rAAV was
capable of increasing the levels of key ECM components
while decreasing those of MMP-3 over a one-week period
of time in human OA chondrocytes in vitro, yet the
benefits of such an approach upon the long-term re-
modeling of human OA cartilage especially in situ remain
to be elucidated. In the present study, we therefore exam-
ined whether an rAAV-hTGF-p vector can effectively
and durably modify primary human normal and OA ar-
ticular chondrocytes in vitro and most importantly in
cartilage explant cultures in situ, leading to a prolonged
activation of remodeling activities compared with con-
trol treatment.

rAAV mediates successful overexpression TGF-p in human
normal and OA articular chondrocytes in vitro and in situ

For the first time to our best knowledge, we show that
efficient, sustained TGF-B expression can be promoted
by rAAV gene transfer both in human normal and OA
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chondrocytes in situ. Explants were transduced with rAAV-lacZ or rAAV-hTGF-B as described in Figure 1 and maintained in culture for 90 days.
The samples were then fixed and histologically processed for immunohistochemical detection of MMP-13 (A), TIMP-1 (B), TIMP-3 (C), PTHrP (D),
B-catenin (E), and the TGF-{ receptor | (ALKT and ALK5) (F and G, respectively) (all at magnification x20; view of the middle zone).
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chondrocytes in vitro for at least 21 days and in human
normal and OA cartilage explants in situ for at least
90 days, probably resulting from the persistence of
rAAV in the targets [24], and with transduction effi-
ciencies reaching 70-80% in these systems, in good
agreement with previous findings using this class of
vector [24,26,28,34,37,38]. The levels of production
achieved here early on in vitro with rAAV (up to
552.4 pg TGF-B/ml/24 h on day 5 at an MOI = 40) were
in the range of those reported by Ulrich-Vinther et al.
at a similar time point (5 ng/ml/24 h on day 8 at an
MOI = 250) [34]. For comparison, the levels of expression
reached 60 ng/ml/24 h with a nonviral vector but in

bovine chondrocytes and using a very high amount of
plasmid (2 pg) [48], 2.5 ng/ml/24 h with an adenoviral
vector at an MOI of 50 but in a human chondrocyte-like
cell line [35], and 20-33 ng/10° cells/24 h (i.e. 4-7 ng/
2 x 10" cells/24 h) in human chondrocytes with retro-
viral vectors but tested upon selection of transduced
cells [40,41]. However, only very short-term expression
was noted with these classes of vectors (never beyond
4 days) while we describe an ongoing, significant syn-
thesis until day 21 (up to 219.4 pg/ml/24 h). Most re-
markably, and for the first time, we further evidenced a
sustained production of TGF-f in situ via rAAV (up to
90 days), reaching levels of up to 987.7 pg/ml/24 h and
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Figure 7 Morphometric analyses of mechanisms and pathways in rAAV-transduced chondrocytes in situ. Explants were transduced with
rAAV-lacZ or rAAV-hTGF-B as described in Figure 1 and maintained in culture for up to 90 days. The samples were then fixed and histologically
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and the TGF-f receptor | (ALKT and ALKS5) (F and G, respectively). Data on the ALK1/ALKS5 ratio are presented in (H).

occurring through the whole thickness of the cartilage,
probably due to the ability of the small rAAV particles
to penetrate the dense matrix [24,26,28,38].

rAAV-mediated TGF-B overexpression activates the
proliferative and anabolic activities of human normal and
OA articular chondrocytes in vitro and in situ

The data further indicate that such high, maintained
levels of rAAV-delivered TGF-p stimulated both the
proliferative, survival, and biosynthetic activities of human
normal and OA chondrocytes in vitro and in situ over
time compared with control treatments, consistent with
the properties of the growth factor [23,34-36,39-41]. A
rigorous comparison of the effects of TGF-f resulting
from rAAV gene transfer compared with other vector
classes is difficult to establish as divergent assessment
methods have been used in these earlier studies
[23,34-36,39-41]. Nevertheless, it is noteworthy that
only short-term effects of the growth factor have been
demonstrated there (only some few days) or following
cell selection, and mostly in in vitro settings, whereas
we report prolonged effects both in vitro and most sig-
nificantly in situ.

rAAV-mediated TGF-B overexpression delays chondrocyte
hypertrophy and terminal differentiation in situ via the
TGF-B signaling pathway

Furthermore, application of the current TGF-} construct
led to advantageous decreases in the expression of key
OA-associated markers of chondrocyte hypertrophic
and terminal differentiation like type-X collagen, MMP-13,
PTHrP, and B-catenin, again in agreement with the effects
of this growth factor [49,50]. In contrast, TGF-p overex-
pression increased (although to a lesser extent) the levels
of protective TIMPs as previously described [51,52], al-
lowing nevertheless to beneficially influence the balance
between TIMPs and MMP-13 and suggesting that other
pathways might be implicated. Most strikingly, we show
that efficient, sustained production of TGF-f via rAAV sig-
nificantly enhanced the levels of the critical TGF-f recep-
tor I as previously reported [53], both for the ALKl and
ALKS5 signaling pathways but in a fashion that restored a
favorable, original ALK1/ALK5 balance in OA cartilage like
in control normal cartilage [54,55], allowing to overcome
the age- and OA-associated changes in TGF-p signaling
[56] and probably resulting in the modulation of hyper-
trophic and terminal differentiation processes [54].
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Perspectives

Interestingly, overexpression of TGF-f in the conditions
applied here led to enhanced biological activities in
human OA cells and cartilage compared with control nor-
mal cells and cartilage. It remains to be seen whether
such prominent activities will not alter the cell activities
and cartilage and joint integrity over time especially
in vivo, in light of reports showing adverse effects of
TGEF-P delivery in experimental animal models (synovial
inflammation and fibrosis, osteophyte formation) [57-62].
Still, in these studies, detrimental effects were evidenced
when very high amounts of recombinant factor were
applied (100-200 ng while we report up to 987.7 pg
biologically active TGF-p/ml/24 h with rAAV in situ), in a
dose-dependent and recurrent manner [62], or following
adenoviral-mediated gene transfer at much higher
doses than those used here (107-10° versus 8 x 10° viral
particles) [57-61]. It is also important to note that in all
these studies, administration of the treatments was per-
formed by intra-articular injection, a setting where the
gene vector and recombinant factor can target all the
tissues of the joint, allowing TGF-B to possibly exert
chemoattractant, inflammatory, and chondrogenic effects
especially upon the periosteum, subchondral bone, and
synovium [63-65] that is highly permissive to gene
transfer [66].

In any case, careful optimization of rAAV TGEF- deliv-
ery and expression in vivo (dose, duration, localization)
will be necessary to establish an effective and appropriate
treatment for human OA that takes advantage of the fa-
vorable actions of the growth factor over its potentially
deleterious effects. Beside injecting low vector doses as
performed here, the use of regulatable (tetracycline-
sensitive), disease-inducible (NF-kB, COX-2, proinflam-
matory cytokines), or tissue-specific control elements
(SOX9, type-II collagen, cartilage oligomeric matrix
protein) may permit to modulate transgene expression
compared with the strong CMV-IE promoter. Another
important consideration will be to carefully decide on
the route of administration. Instead of a conventional
approach by intra-articular injection, direct local applica-
tion of the vector preparation to the sites of cartilage
injury might be more favorable to prevent dilution of
the treatment in the joint space leading to undesirable
dissemination and uptake by surrounding tissues. This
will be practicable only when some cartilage surface is
remaining like in early stages of OA and transplantation of
TGF-B-modified cells might be needed for more advanced
cases of the disease, having the further advantages of
containing the TGF-f transgene [67] and avoiding trans-
duction of other joint tissues. In this regard, it is interest-
ing to note that Ha et al. [68] reported the feasibility of
delivering retrovirally TGEF-B-modified chondrocytes in
patients with severe OA (TissueGene-C dose-escalating
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phase I clinical trial) with a trend toward efficacy and with-
out serious adverse effects, in marked contrast with find-
ings in experimental systems showing deleterious effects of
TGF-B (inflammation, fibrosis, osteophyte formation) when
provided at very high and repeated doses [57-62]. Again,
rAAV might be best suited to develop such indirect, ex vivo
trials as their high transduction efficiencies allow to use
them without having to preselect the transduced cells
compared with retroviral vectors [40,41,67].

Finally, administration of other candidates in conjunc-
tion with TGF-3 (concomittently or sequentially) might be
necessary, especially those that can specifically counteract
the side effects of the growth factor or of its putative
secondary mediators (fibrotic CTGE, BMP-2 in the case
of osteophyte formation) like the inhibitory Smad6 and
Smad7 and antagonist gremlin [58,59,69]. Alternatively,
agents like IL-1Ra or IL-1 siRNA, sTNFR, NF-«B inhibi-
tors, KBP, TSP-1, DKK-1, POMC, sFlt-1 (a VEGF antagon-
ist) [11,13-21,27] might provide other good options to
achieve this goal. Again rAAV might be a powerful tool
to achieve these goals as combined gene transfer with this
class of vector has been demonstrated in the current
systems evaluated [26].

Final remarks

In summary, the results of the present study indicate
that for the first time and in marked contrast with other
classes of vectors, the direct, prolonged overexpression of
TGE-P via rAAV vectors can efficiently stimulate the rep-
arative activities of human normal and OA chondrocytes
over time in vitro and most importantly in situ, contribut-
ing to the significant, proper remodeling of human OA
cartilage. Future studies will allow to determine the bene-
fits of applying the rAAV-hTGEF-f construct in an appro-
priate, clinically relevant experimental OA model in vivo,
requiring to translate first the current findings in the
corresponding animal cells. The present findings valid-
ate the concept of using rAAV as an effective treatment
for human OA.

Conclusion

OA is an incurable joint disease that disables millions of
people worldwide, remaining very difficult to manage.
Gene-based approaches may provide long-term treat-
ments to restore an original structure and integrity in
OA cartilage by rejuvenating resident (or transplanted)
cells. The safe and highly efficient rAAV vectors are
particularly well suited to treat OA that is not a life-
threatening disease. Here, we showed the potency of an
rAAV TGE-B vector to remodel human OA cartilage
over extended, clinically relevant periods of time. The
effects of this therapeutic vector in vivo and upon other
affected tissues in the OA joint remain now to be
investigated.
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