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Abstract

Background: Oncolytic viruses have shown potential as cancer therapeutics, but not all patients seem to benefit
from therapy. Polymorphisms in Fc gamma receptors (FcgRs) lead to altered binding affinity of IgG between the
receptor allotypes and therefore contribute to differences in immune defense mechanisms. Associations have been
identified between FcgR polymorphisms and responsiveness to different immunotherapies. Taken together with the
increasing understanding that immunological factors might determine the efficacy of oncolytic virotherapy we
studied whether FcgR polymorphisms would have prognostic and/or predictive significance in the context of
oncolytic adenovirus treatments.

Methods: 235 patients with advanced solid tumors were genotyped for two FcgR polymorphisms, FcgRila-H131R
(rs1801274) and FcgRIlla-V158F (rs396991), using TagMan based gPCR. The genotypes were correlated with patient
survival and tumor imaging data.

Results: In patients treated with oncolytic adenoviruses, overall survival was significantly shorter if the patient had
an FcgRllla-W/ FcgRlla-HR (WHR) genotype combination (P = 0,032). In contrast, patients with FFHR and FFRR
genotypes had significantly longer overall survival (P= 0,004 and P= 0,006, respectively) if they were treated with
GM-CSF-armed adenovirus in comparison to other viruses. Treatment of these patients with unarmed virus
correlated with shorter survival (P < 0,0005 and P =0,016, respectively). Treating FFHH individuals with CD40L-armed
virus resulted in longer survival than treatment with other viruses (P = 0,047).

Conclusions: Our data are compatible with the hypothesis that individual differences in effector cell functions, such
as NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC) and tumor antigen presentation by APCs
caused by polymorphisms in FcgRs could play role in the effectiveness of oncolytic virotherapies. If confirmed in
larger populations, FcgR polymorphisms could have potential as prognostic and predictive biomarkers for oncolytic
adenovirus therapies to enable better selection of patients for clinical trials. Also, putative associations between
genotypes, different viruses and survival implicate potentially important mechanistic issues.
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Background

Oncolytic viruses are modified to selectively kill cancer
cells by replicating in them. Replicating viruses have
shown promising efficacy in human clinical trials as cancer
therapeutics but the treatment is usually not curative, es-
pecially in the context of advanced cancer [1]. Immuno-
logical factors are currently believed to play a crucial role
in determining the efficacy of the treatment or the lack
thereof [2,3]. Adenoviruses per se are known to be highly
immunogenic but it seems that even stronger stimulation
of patient’s own immune system is required to fully over-
come the immunosuppressive tumor microenvironment
and to ensure a long-lasting effect. In this regard, boosting
the immunogenicity of the virus e.g. by inserting immuno-
stimulatory transgenes has shown intriguing results [4,5].
However, patients receiving oncolytic virotherapy seem
to respond differently to the treatments, some benefit-
ing more than the others. Individual differences in the
efficiency of the patients’ immune system and antigen
recognition might play a crucial role in determining the
response to viral treatment. However, currently there
are no biomarkers available for selecting the right pa-
tients for such therapy or vice versa.

Fc gamma receptors (FcgRs) have been recognized as
key players in immune defense mechanisms against for-
eign cells and pathogens. In previous studies, single nu-
cleotide polymorphisms in FcgRIla and FcgRIIla genes
have not only been associated with susceptibility to vari-
ous diseases such as autoimmune disorders [6,7], infec-
tious diseases [8] and coagulation defects [9], but also
with disease progression and responsiveness to immuno-
logical therapies, such as mAb therapies [10,11] and
cancer vaccinations [12,13]. For example, Musolino et al.
showed association between FcgRIla and FcgRIIla poly-
morphisms and clinical outcome of trastuzumab treated
breast cancer patients [11], where individuals with VV and
HH genotypes had better survival and response rates com-
pared to patients with other genotypes. Similar results
were seen in rituximab treated B-cell lymphoma patients
[14,15]. Cetuximab therapy for colorectal cancer was also
seen to be more effective for individuals with HH geno-
type [16,17], although there has been conflicting data pub-
lished for the allele giving the best outcome [16,18,19].

Polymorphisms in FcgRIla and FcgRIIla have also been
shown relevant for cancer vaccines. A positive correlation
was observed between the outcome of patients treated
with idiotype vaccination against B-cell lymphoma and the
FcgRIIla-VV genotype [20]. FcgRIla-131R and FcgRIIla-
158 V allotypes were associated with significantly better
overall in survival of colorectal carcinoma patients receiv-
ing either passively administered monoclonal antibodies
or antibodies induced by carcinoembryonic antigen
(CEA) vaccination [13]. Because oncolytic adenoviruses
are known to elicit strong immune reactions in patients
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[21], and it is increasingly understood that immuno-
logical factors determine the efficacy of the treatment or
lack thereof [3], we wanted to assess if FcgR polymor-
phisms play a role.

FcgRs are glycoproteins that are part of the immuno-
globulin superfamily expressed on leukocytes. These re-
ceptors have a major role in antigen recognition during
immune response. They serve as a link between humoral
and cell-mediated immune systems, but also between
innate and adaptive immune responses [22]. FcgRs can
be divided into three classes, FcgRI, FcgRII and FcgRIII,
which differ in structure, cell distribution and also in af-
finity and specificity to different IgG subtypes. Each of
these receptor classes can in turn be split into subclasses,
indicated with letters (a, b or c¢). In contrast to FcgRI,
which exhibits high affinity to monomeric IgG, FcgRII and
FcgRIII are capable of binding effectively only aggregated,
multimeric IgG that is bound to an antigen [23]. Binding
of antigen-bound IgG leads to activation of FcgRs through
phosphorylation of the ITAM/ITIM signaling unit by
tyrosine kinases leading to activation of various down-
stream targets, eventually resulting in changes in effector
cell functions. Effector cells bearing FcgRs can destroy tar-
get Ag-Ab complexes by multiple mechanisms. FcgRs can
regulate effector cell functions including phagocytosis,
degranulation, antibody-dependent cellular cytotoxicity
(ADCC), cytokine and chemokine expression or antibody
production by B-cells [23-25].

At least eleven polymorphic regions can be found in
FcgR genes, and copy number variation has also been
reported [26]. Among different subclasses, FcgRIla and
FcgRIlIa play the most important role in immune regula-
tion and their polymorphisms have been most often associ-
ated with diseases and disease severity in previous studies.

FcgRIla (CD32a) is one of the three possible receptor
subclasses expressed from FCGRII genes. It has low
affinity to monomeric IgG, but binds effectively to aggre-
gated IgG and Ag-Ab immune complexes. FcgRIla is
expressed on monocytes, macrophages, neutrophils, cer-
tain dendritic cells (DCs) and also on platelets, which is
unique among all FcgRs [22]. FcgRIla has a wide cellular
distribution, but it is mainly expressed on phagocytic cells
such as macrophages and neutrophils, and is commonly
involved in the process of phagocytosis and clearance of
immune complexes [27]. A single nucleotide polymorph-
ism (SNP) in FcgRIla, FcgRIla-H131R (rs1801274), alters
the binding affinity of the receptor to IgG between the two
possible receptor allotypes. In this polymorphism, a mis-
sense mutation (guanine (G) - > adenine (A)) in FCGRIIA
gene results in amino acid change, histidine (H) to arginine
(R), in amino acid position 131 in the receptor’s extracellu-
lar ligand-binding domain. The FcgRIla-R allotype binds
weaker to IgG (especially to IgG2) than the ancestral H
allotype. This variation leads to functional difference
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between the two allotypes. Effector cells of homozygous in-
dividuals for FcgRIla-H are more effective in recognizing
and clearing [gG2-coated antigens than cells of FcgRIIa-
R homozygous individuals. Heterozygous individuals
(FcgRIIa-HR) have effector cells bearing both allotypes
of the receptor and are referred to as “intermediate im-
mune responders” regarding FcgR functions. FcgRIIa-R
allotype binds also other IgG subtypes weaker than H
allotype [23].

The polymorphism in FcgRIlla, FcgRIlla-V158F
(rs396991), leads also to different binding affinity to IgG
between the two different isoforms of the receptor.
FCGRIIIA gene has a thymine (T) to guanine (G) missense
mutation in amino acid position 158 which changes the
valine (V) to phenylalanine (F) in the ligand-binding
domain of the receptor. The FcgR-V158 allotype has a
stronger binding affinity to IgG1, IgG3 and IgG4 than the
F form [23]. It is noteworthy that binding of IgG4 is lim-
ited only to the V158 allotype of the receptor [22].
FcgRIlla are found mostly on natural killer cells (NKs),
but also on tissue-specific macrophages and on a subset of
monocytes, Y8 T-cells and DCs. NK-cells are major com-
ponents of the cellular defense system against foreign or
infected tissue and could be especially relevant in the con-
text of granulocyte-macrophage colony-stimulating factor
(GM-CSF) coding oncolytic viruses, since increased activ-
ity of NK cells through DC recruitment is one of the
expected mechanisms of action of the transgene [28].
Tumor cells are known to have often lost their MHC class
I protein expression, which is needed to activate cytotoxic
T lymphocyte (CTL) —mediated cell killing. NK-cells do
not need MHC I antigen presentation to be able to
recognize and destroy an infected tumor cell since they
express FcgRIlIIa receptors that can bind antibodies bound
to antigens presented on target cells. Triggering of NK-
cell FcgRIlla induces ADCC and lymphokine production
underlining the central role of this receptor in host
defense against viral infections and malignancies [23,29].
Also FcgRIlla on macrophages (e.g. Kuppfer cells in the
liver) are thought to play a role in the clearance of circu-
lating immune complexes [22,23].

The role of FcgR polymorphisms in determining the
efficacy of immunotherapies is increasingly recognized.
Here, we assessed the association of FcgRIla and FcgRIIla
with clinical response to, and survival post oncolytic
adenovirus therapy.

Materials and methods

Patient samples

Analysis carried out in the present study are based on a
series of 235 individuals (98 males and 137 females; age
median 58 years) with advanced solid tumors refractory
to available treatment modalities. These patients were
treated with oncolytic adenoviruses in an Advanced
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Therapy Access Program (ATAP). ATAP was regulated
by Finnish Medicines Agency (FIMEA) as determined by
EU EC/1394/2007. The inclusion and exclusion criteria
have been reported elsewhere [30,31]. The analyses
reported here have been approved by HUCH (Helsinki
University Central Hospital) Operative Ethics committee.

71,9% of patients included in this present study have
been treated with GM-CSF-armed viruses, 15,7% with
CD40L-armed viruses and 7,2% with both GM-CSF-and
CD40L-armed viruses. Other relevant clinical data are
shown in Table 1.

Peripheral blood samples were originally collected
from patients to assess presence of virus (biosafety, effi-
cacy and safety implications). Since receptor polymor-
phisms could also impact safety or efficacy, the same
samples were used for FcgR SNP genotyping with Ethics
committee permission.

DNA extraction

Genomic DNA was extracted from patient clot samples
by using a QiAmp Blood Mini Kit (Qiagen, Germany).
First the samples were thawed in a 37°C water bath and
then the clots were transferred into clot spin basket

Table 1 Patient characteristics

No. of patients 235
Age (vears when treatments started)
Range 3-82
Medium 58

Sex (No. (%))

Female 137 (58,3%)
Male 98 (41,7%)
Cancer type (No. (%))
Colorectal, intestinal and anal 42 (17,9%)
Ovarian (also tubal) 35 (14,9%)
Breast 29 (12,3%)
Sarcomas 21 (8,9%)
Pancreatic and papilla vater 20 (8,5%)
Lung 18 (7,7%)
Neuroblastoma 14 (6,0%)
Prostate 12 (5,1%)
Skin and melanomas 11 (4,7%)
Liver and mesothelioma 9 (3,8%)
Gastric 6 (2,6%)
Biliary tract or cholangio 5(2,1%)
Urinary tract or bladder 4 (1,7%)
Cervix and endometrial 3(1,3%)
Renal 3 (1,3%)
Thyroid, thymus or parathydoid 2 (0,9%)
Esophageal 1 (0,4%)
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filters (Qiagen, Germany). Samples were spun through the
filter by centrifugation (2000 rcf, 5 min., RT). Qiagen
QiAmp Blood Mini Kit DNA extraction protocol was used
for the DNA extraction. DNA was eluted in nuclease free
water (Amresco LLC, Solon, OH, USA) and stored in-20°C
freezer until genotype analysis. DNA concentrations
were measured by using NanoDrop ND-1000 (Thermo
Fisher Scientific, Wilmington, DE, USA). For genotype
analyses DNA samples were diluted in nuclease free
water (Amresco) to get a final concentration of 1 ng/pl.

Genotyping

Patients were genotyped for two different Fc gamma re-
ceptor polymorphisms, FcgRIla-H131R (rs1801274) and
FcgRIIla-V158F (rs396991) using TaqgMan technology
[32] on Applied Biosystems (AB) 7500 Fast Real-Time
PCR system (Applied Biosystems Inc., CA, USA). Probes
and primers (TagMan SNP Assays for rs1801274 and
rs396991) were ordered from Applied Biosystems. Geno-
typing was performed by manufacturer’s instructions.
Briefly, polymerase chain reactions were prepared in
MicroAmp Fast Optical 96-well Reaction Plates (AB) in
final volume of 25 pl. The reaction mixes consisted of 2x
TagMan Genotyping Master Mix (AB) and 20x TagMan
SNP Assay Mix (AB) for either FcgRIla or FcgRIIla poly-
morphism. 10 ng of genomic template DNA sample was
added per well. Each sample was set up as triplicate.
Nuclease free water (Amresco) was used as No Template
Control (NTC). Following PCR program was used: initi-
ation at 60°C for 2 minutes and AmpliTaq Gold Enzyme
activation at 95°C for 10 minutes followed by 45 cycles of
denaturation at 92°C for 15 seconds and annealing and
extension at 60°C for 1 minute, allelic discrimination plate
read was performed at 60°C for 1 minute. The FcgR
genotypes were determined using Allelic Discrimination
protocol in the Sequence Detection System (SDS) software
provided by Applied Biosystems.

Statistical analysis

The Pearson’s Chi-square (x°) test was used to asses
Hardy-Weinberg equilibrium of genotype and allele fre-
quencies by using OEGE (Online Encyclopedia for Gen-
etic Epidemiology studies) Hardy-Weinberg equilibrium
calculator [33]. CubeX (Cubic Exact Solution) software
[34] and EM (expectation-maximisation) algorithms [35]
were used for analyzing linkage disequilibrium between
the two polymorphic loci. The x* test was used to com-
pare outcomes of the patients according to FcgR polymor-
phisms. Outcome data were divided to disease control
(DC) (i.e. stable disease or better) or to progressive disease
(PD) according to patients’ imaging (RECIST or PET cri-
teria [36]) and tumor marker data. Kaplan-Meier survival
estimations [37] and log-rank statistics [38] were used to
determine the differences in the overall survival (OS) and
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median time to death. OS was calculated from the date of
initiation of the adenovirus therapy to the date of death or
to the date of last follow-up when data were censored.
The statistical data were obtained by using IBM SPSS Sta-
tistics 20 software for Windows (SPSS Inc., Chicago, IL,
USA). All P values are two-sided and considered statisti-
cally significant when < 0,05.

Results

Genotypic frequencies of polymorphisms

DNA from 235 patients with advanced cancers refrac-
tory to conventional therapies treated with oncolytic
virotherapy were genotyped for FcgRIla-H131R and
FcgRIIla-V158F polymorphisms by TagMan-based qPCR.
Genotyping was successful for all patients. Frequencies of
FcgRIla and FcgRIIla polymorphisms did not differ signifi-
cantly from the expected ratios of Hardy-Weinberg equi-
librium with x*=0,72 (P<0,5) and x*=0,01 (P<0)9),
respectively. By using a 2-locus linkage disequilibrium
analysis for these two polymorphic receptor loci, some
linkage disequilibrium (LD), i.e. non-random distribution
of alleles, was observed (D’ =0,28; P <0,01). The observed
frequencies and results of LD analysis are shown in
Additional file 1: Table S1.

Analyses of patient survival and treatment responses
according to FcgRlla and FcgRllla genotypes

The median overall survival (OS) time after the first treat-
ment with oncolytic adenoviruses of the studied patients
was 130 days. We performed survival estimations for the
different genotypes of both FcgRIla-H131R and FcgRIIla-
V158F polymorphisms by using the Kaplan-Meier analysis
to assess whether some of the genotypes would be pro-
gnostic of prolonged survival of patients treated with
oncolytic adenoviruses. We did not observe any statisti-
cally significant differences in OS based on FcgRIla/Illa
genotypes (FcgRIla HH vs. HR vs. RR, P =0.335; FcgRIIla
VV vs. VF vs. FE, P =0.193) (Figure 1). In addition, no sig-
nificant difference in the distribution of clinical responses
(disease control (DC) or progressive disease (PD)) was
observed between patients with either FcgRIla HH, HR or
RR genotype (42,1%/57,9% vs. 43,7%/56,3% vs. 37,5%/
62,5%; P=0,842). Similarly, no statistically significant
difference in the clinical responses was observed between
patients with either FcgRIIla VV, VF or FF genotype
(45,5%/54,5% vs. 37,9%/62,1% vs. 44,6%/55,4%; P = 0,730)
(Additional file 1: Figure S1). Thus, there was no differ-
ence in survival or disease control in association with any

of the genotypes individually.

Analyses of patient survival according to combinations of
FcgRlla and FcgRllla genotypes

Because it is known that FcgRs have different expression
patterns and biologic significance in different cell types,
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FcgRIla-H131R and (b) FcgRllla-V158F genotypes. Survival time is presented in days after the first treatment with oncolytic adenovirus. Censored
refers to patients who were still alive at the time of performing the analysis.

all of which could contribute to the overall immuno-
logical response, we analyzed the combinations of FcgR
genotypes (see Additional file 1: Table S2 for observed
genotype combinations). We assessed the survival estima-
tions for the different genotype combinations of FcgRIIa-
H131R and FcgRIlla-V158F polymorphisms by using the
Kaplan-Meier analysis (Figure 2). Interestingly, one geno-
type combination, FcgRIIIa-VV and FcgRIla-HR (VVHR),
stood out as a prognostic factor for poor survival after
oncolytic adenovirus treatments (P =0,032). Addition-
ally, FcgRIlla-VF and FcgRIla-HH (VFHH) genotype
combination displayed a borderline trend towards good
overall survival, although the correlation was not signifi-
cant (P =0,079).

The VVHR genotype combination is prognostic and
predictive of long survival in patients treated with
oncolytic adenoviruses

In the Kaplan-Meier survival analyses we observed that
patients with a VVHR genotype combination had an
overall survival (time from the first virus treatment) esti-
mate significantly shorter than patients with any other
genotype combinations with a median of 113 (95% CI:
54,1-171,9) versus 138 (95% CI: 112,6-163,4) days, respect-
ively (Figure 3a). When the survival after cancer diagnosis
was compared between patients with VVHR genotype
combination and all others, no significant difference could
be observed (P =0,248), supporting the notion that the
genotype is not prognostic for cancer patients per se, but

only in the context of oncolytic virotherapy (Figure 3b).
Thus, in fact this genotype is not a pure prognostic factor
but also predictive of poor survival in patients treated with
oncolytic adenovirus. Although the trend was clear, and in
accord with the survival result, no statistically significant
difference in disease control versus progressive disease
was observed between patients with either VVHR or
other genotype combinations (20,0%/80,0% vs. 42,6%/
57,4%; P = 0,314) probably due to the limited amount of
patients bearing VVHR genotype with an evaluable ob-
jective outcome (Figure 3c).

Different arming molecules have different impacts on
survival of patients with different FcgR genotypes
GM-CSF and CD40L are both potent recruiters and acti-
vators of immune cells and they are also essential for
FcgR-mediated effector cell functions. Thus, we studied
if the arming molecule present in the virus has also an
impact on the survival of patients with different FcgR
genotypes (Additional file 1: Table S3) and genotype
combinations (Table 2). Overall, patients treated with
armed viruses lived longer regardless of genotype. Inter-
estingly, patients with FFHR and FFRR genotypes had
significantly longer overall survival after first virus treat-
ment if they were treated with GM-CSF-armed adenovirus,
in comparison to other viruses (P=0,004 and P =0,006
respectively) (Figures 4a and 4b). In contrast, treatment of
these patients with unarmed virus correlated with
shorter survival (P < 0,0005 and P = 0,016, respectively).
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Treating FFHH individuals with CD40L-armed virus
resulted in longer survival than treatment with other
viruses (P = 0,047) (Figure 4c).

Discussion

Oncolytic virotherapy has been proposed a potent ap-
proach for treatment of advanced cancers. However, it is
becoming increasingly recognized that there is variance

in efficacy between treated patients; Some patients seem
to respond better to the therapy than others. A similar
phenomenon has also been observed with some other
immunotherapeutics, including monoclonal antibodies
[17] and cancer vaccines [12,13]. As immunological as-
pects have been reported important for the efficacy of
oncolytic viruses [5,21,39,40], we hypothesized that there
may be some germline differences in the immunological
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therapy. (a) Kaplan-Meier estimate of overall survival after the first treatment with oncolytic adenovirus until death or the end of follow up was
plotted by VWHR genotype combination versus all others. The overall survival of patients with VWHR genotype combination is significantly
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mechanisms of patients that might in part explain differ-
ences in response to oncolytic virotherapy. One of these
could be Fc gamma receptors (FcgRs), which are known
key players in the immune defense against infections

and malignancies [23]. Single nucleotide polymorphisms
in these receptors lead to different binding affinity of
IgG between the receptor allotypes and therefore to
varying efficiency in immune defense mechanisms
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Table 2 The effect of virus arming on the survival of patients with different FcgR genotype combinations

Genotype Treated with Treated with Treated with GM-CSF Treated with
GM-CSF virus CDA4O0L virus and CD40L viruses unarmed virus
N (all patients) N P + or - N P + or - N P + or - N P + or -

FFHH 24 17 0,783 +/— 4 0,047 + 2 0,034 + 4 0,067 -
FFHR 61 42 0,004 + 9 0,106 + 4 0,222 + 13 <0,0005 -
FFRR 39 27 0,006 + 6 0,175 +/— 2 0,166 + 8 0016 -
VFHH 30 22 0,194 + 6 0,182 + 5 0,103 + 7 0,283 -
VFHR 39 28 0,093 + 10 0331 + 4 0,025 + 5 0,179 -
VFRR 22 17 0,061 + 2 NA 0 NA 3 0,122 -
WHH 7 7 NA 0 NA 0 NA 0 NA

VWHR 10 8 0,081 + 0 NA 0 NA 2 0,081 -
WRR T 1 NA 0 NA 0 NA 0 NA

P =log rank, + or = benefits or disadvantageous (= better or worse OS estimate) when compared to others.

Kaplan-Meier analyses were performed to study the effect of the virus arming (GM-CSF, CD40L, both or unarmed) on survival of patient with different genotype
combinations. Calculations were made by first restricting the study population by each genotype combination and then comparing the overall survival of patient
treated with a certain type of virus versus all others. Abbreviations: H histidine allele of FcgRlla, V valine allele of FcgRllla, F phenylalanine allele of FcgRilla, CD40L,

CDA40 ligand, GM-CSF granulocyte macrophage colony-stimulating factor.

between individuals. FcgR polymorphisms have recently
been associated with disease severity of multiple im-
munological diseases [22,23] and responsiveness of im-
munological cancer therapies [10,11], although there are
also reports suggesting lack of association [41]. To date
there are also many conflicting results about which geno-
type predicts the best outcome or survival [16,18,19],
however, this might in fact only reflect the fact that differ-
ent therapies work in different ways so that there will not
be a “universal” genotype (marker) that would predict re-
sponse to all therapies. In this study, we wanted to asses if
FcgR polymorphisms have an effect on survival and/or
outcome of cancer patients treated with oncolytic adeno-
viruses and if these polymorphisms could serve as
prognostic and/or predictive biomarkers for oncolytic
virotherapy to further enable better selection of patients
suitable for this novel therapy.

Our analyses included 235 cancer patients that have
been treated with oncolytic adenoviruses as an experimen-
tal therapy after all other treatment options had failed. We
genotyped all patients for two SNPs in FcgR genes,
FcgRIIa-H131R and FcgRIIla-V158E, using TagMan-based
technology. The distribution of FcgRIla and FcgRIIla
genotypes observed in our study population were rela-
tively similar to those reported previously for Caucasian
[18,42-46] and Finnish [47] populations. This confirms
the reliability of the genotyping performed in this study.
We observed some linkage disequilibrium between the ge-
notypes, which has also been reported in some previous
studies in Dutch [42] and Spanish [48] populations.

It is obvious that FcgRs function in concert with each
other and with other receptors, especially in the context
of a therapy such as oncolytic viruses which are active
on several immunological levels. The overall effect of
different FcgRs on clinical outcome is currently poorly

understood, but simplistic explanations include pro-
posals that different classes of FcgRs mediate binding by
different cell types. For example, it has been proposed
that FcgRII is important in the context of antigen
presenting macrophages, while FcgRIII is relevant for ac-
tivity of NK cells [22]. Thus, we were encouraged to
investigate the genotype combinations and how they
correlate with patient survival and treatment outcome.

In survival estimations one genotype combination
(FcgRIIla-VV + FcgRIla-HR) stood out as a prognostic
factor for poor overall survival after oncolytic virus
therapy. Since this genotype did not correlate with
length of survival from cancer diagnosis, we hypothesize
that this is not a purely prognostic factor but in fact pre-
dictive of long survival in patients treated with oncolytic
adenoviruses. The small proportion of patients with this
genotype combination may limit its clinical utility and
therefore our findings may be more interesting from a
mechanism-of-action point of view. We also observed
another FcgR genotype combination, VFHH (heterozy-
gote for FcgRIIla and homozygote for FcgRIla-H allo-
type), to have a trend towards good overall survival, but
the correlation was not significant. Interestingly though,
this genotype combination was an “opposite” genotype
for the poor responder genotype VVHR (homozygote
for FcgRIlla-V allotype and heterozygote for FcgRIla)
supporting a possible mechanistic aspect.

We observed that different arming molecules associ-
ated differently with survival in patients with different
FcgR genotype combinations. This is not very surprising
since GM-CSF and CD40L are both potent recruiters
and activators of immune cells (e.g. DCs and NK cells)
essential for FcgR-mediated effector cell functions. Thus,
individuals with FFHR and FFRR genotypes might have
lower innate activity of NK cells, and therefore their
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with unarmed virus vs. others.

Figure 4 The effect of virus arming on the survival of patients with FFHR, FFRR and FFHH genotype combinations. Kaplan-Meier
analyses were performed to study the effect of the virus arming (GMCSF, CD40L or unarmed) on survival of patient with FFHR, FFRR and FFHH
genotype combinations. Calculations were made by first restricting the study population by each genotype combination and then comparing
the overall survival of patient treated with a certain type of virus versus all others. @) Survival of patients with FFHR genotype when threated with
GM-CSF-armed virus vs. others or with unarmed virus vs. others. b) Survival of patients with FFRR genotype when threated with GM-CSF-armed
virus vs. others or with unarmed virus vs. others. ) Survival of patients with FFHH genotype when threated with CD40L-armed virus vs. others or

tumors feature less resistance to NK cell mediated kill-
ing. When a potent NK recruitment signal is provided
by virally produced GM-CSE, anti-tumor efficacy may
ensue. Importantly, since the effect of GM-CSF is
paracrine, activity of the recruited NK-cells is not only
against infected cells, but also against “bystanders”. If
the baseline NK activity is low, perhaps infected cells are
not cleared as rapidly as when baseline NK activity is
high, as predicted for VVHR. These hypotheses are in
accord with VVHR correlating with poor survival, as this
genotype might indicate high NK responsiveness against
infected cells, limiting virus dissemination (Additional
file 1: Figure S2).

It has also been shown that many inflammatory mole-
cules, including cytokines and growth factors, can alter
FcgR expression and FcgR-mediated immune responses,
although not all reports agree. Pleiotropic effects of these
inflammatory molecules have been shown to act locally to
distract and downregulate FcgR-mediated immune func-
tions [21,26,47,48]. On the other hand, e.g. GM-CSF and
IEN-y have been shown to increase the activity and ex-
pression of FcgRIla and FcgRIlla (49-52). Possibly these
features of GM-CSF and CD40L contributed to long
survival in individuals with FFHR and FFRR genotypes
(GM-CSF) or FFHH (CD40L); lower baseline activity was
compensated by transgene products resulting in immuno-
logical activation.

NK cells have been proposed limiting for the efficacy
of oncolytic viruses and they are the main cell type ex-
pressing FcgRIIla [49]. NK cells can mediate antibody-
dependent cell killing by ADCC, which occurs when the
FcgRIIla molecules on effector cells are cross-linked by
binding to the IgG molecules that are present on the
target cell [23]. In the case of homozygous individuals
for FcgRIlla-V allotype (VV), infected tumor cells are
probably killed efficiently by these “strong binding” re-
ceptor variants, possibly before the virus has even had
time to replicate effectively. This may result in fierce
anti-viral ADCVI (antibody-dependent cell-mediated
virus inhibition) [9] against oncolytic adenoviruses par-
tially inhibiting its efficacy.

In line with this thinking, it is logical that intermediate
binding of NK cells would be optimal, as ADCVI would
not be too prominent, but that infected tumor cells —
and bystander cells - would be eventually eradicated. In

other words, the virus has time to replicate and spread
while simultaneously the NK cells are still effective
enough to kill the tumor cells. This would result in indi-
viduals heterozygous for FcgRIlla polymorphism (VF)
benefiting the most. There is always balancing between
ADCC and ADCVI that are partly overlapping and com-
peting events in the context of oncolytic virus therapy [9].

FcgRIla receptors are widely distributed on many im-
mune cell types, but are mostly considered to be prom-
inent on phagocytic cells, including tissue macrophages,
the most important class of antigen presenting cells
(APC) [50]. Given the mechanism-of-action of oncolytic
adenoviruses armed with immunostimulatory molecules
such as GM-CSE, effective recognition of tumor epitopes
by APCs seems likely to be important for efficacy and sub-
sequent survival. Therefore, it is logical that we observed
the trend for increased survival in HH-homozygotes,
which can strongly bind IgG and a significant correlation
with survival in CD40L virus treated patients.

Conclusions

According to the results of this study, we suggest that
FcgR-mediated blockage of virus infectivity via degrad-
ation of immune complexes in APCs and ADCC to-
gether with ADCVI could have an effect on oncolytic
virotherapy and therefore on the therapy responsiveness.
At this point, our understanding of the distribution of
the different classes of FcgR on different immunological
cells is insufficient to allow drawing of firm conclusions.
Moreover, the interplay of different cell types in the con-
text of response to oncolytic virotherapy are poorly under-
stood. Also, due to relatively small and heterogeneous
study cohort no definitive conclusions can be drawn from
these results and should thus be taken as hypothesis gen-
erating rather than conclusive analysis. However, our
empiric observation that polymorphisms in FcgRIla and
FcgRIlIla seem to have potential as prognostic and predict-
ive biomarkers for oncolytic adenovirus therapies could
eventually enable selection of patients responsive to the
treatments. Importantly, this observation was made in
real-life human patients treated with oncolytic adenovi-
ruses. The results presented here are, according to our
knowledge, the first associations studied between Fc
gamma receptors and survival of oncolytic virus treated
patients. Our data set the stage for prospective study of
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these genotypes in the context of trials with oncolytic
adenoviruses coding for immunostimulatory molecules.
Since many different oncolytic viruses are currently
being used, the phenomenon of oncolysis might never-
theless have common features, and the most popular
transgenes employed tend to be similar, often featuring
immunostimulatory mechanisms of actions. Thus, our
data might have relevance for the entire field of cancer
therapy with oncolytic viruses. Moreover, as immuno-
logical aspects are daunting to study in the laboratory,
especially in the context of species-specific agents such
as oncolytic adenoviruses, human data could provide
important mechanistic data.

Consent
Written informed consent was obtained from the patient

for the publication of this report.

Additional file

Additional file 1: Table S1. Observed frequencies of polymorphisms
and linkage disequilibrium statistics. Table S2. Observed frequencies of
genotype combinations. Table S3. The effect of virus arming on the
survival of patients with different FcgR genotypes. Kaplan-Meier analyses
were performed to study the effect of the virus arming (GM-CSF, CD40L,
both or unarmed) on survival of patients with different genotypes.
Calculations were made by first restricting the study population by each
genotype and then comparing the overall survival for patients treated
with a certain type of virus versus all other patients. Abbreviations: H,
histidine allele of FcgRilla; V, valine allele of FcgRllla; F, phenylalanine allele
of FcgRllla; CD40L, CD40 ligand; GM-CSF, granulocyte macrophage
colony-stimulating factor. Figure S1. FcgRlla and FcgRIlla genotypes are
not predictive of imaging results in patients treated with oncolytic
adenovirus therapy. Clinical outcome of patients treated with oncolytic
adenoviruses by (a) FcgRIla-H131R and (b) FcgRllla-V158F genotypes.
Objective clinical outcome could be determined for 134 patients.
Abbreviations: DC, disease control (= stable disease or better); PD,
progressive. Figure S2. Hypothetical mechanisms-of-action. (a) Strong
binding of NK cells to tumor cell-bound IgG (W) causes virus elimination
prior to effective oncolytic dissemination. (b) Intermediate activity of NK
cells (VF) gives time for the virus to replicate and spread while
simultaneously being still effective enough in tumor cell killing. This
combined with efficient tumor antigen presentation by APCs (HH) plus
the ability of GM-CSF and CD40L to recruit more APCs and other
immune cells to the tumor site may explain the good responsiveness to
oncolytic adenovirus therapy with armed viruses. Abbreviations: APC,
antigen presenting cell; NK cell, natural killer cell; MHC-II, major
histocompatibility complex |I.
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